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In high altitude environments, extreme levels of solar radiation and important differences
of ionic concentrations over narrow spatial scales may modulate microbial activity.
In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high
diversity of microbial communities has been characterized and associated with strong
environmental variability. Communities that differed in light history and environmental
conditions, such as nutrient concentrations and salinity from different spatial locations,
were assessed for bacterial secondary production (BSP, 3H-leucine incorporation)
response from short-term exposures to solar radiation. We sampled during austral
spring seven stations categorized as: (a) source stations, with recently emerged
groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations
connected to source waters but far downstream from source points; and (d) isolated
ponds disconnected from ground sources or streams with a longer isolation and
solar exposure history. Very high values of 0.25 µE m−2 s−1, 72 W m−2 and
12 W m−2 were measured for PAR, UVA, and UVB incident solar radiation, respectively.
The environmental factors measured formed two groups of stations reflected by
principal component analyses (near to groundwater sources and isolated systems)
where isolated ponds had the highest BSP and microbial abundance (35 microalgae
taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO 3

4
−

concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-
leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and
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dark. Microbial communities established in waters with the longest surface exposure
(e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and
thus were likely best adapted to solar radiation exposure contrary to ground source
waters. These results support our light history (solar exposure) hypothesis where the
more isolated the community is from ground water sources, the better adapted it is
to solar radiation. We suggest that factors other than solar radiation (e.g., salinity,
PO 3

4
−, NO3

−) are also important in determining microbial productivity in heterogeneous
environments such as the Salar de Huasco.

Keywords: extremophiles, Central Andes, Salar de Huasco, bacterial secondary production, solar radiation, light
history, heterogeneous microbial production, environmental gradients

INTRODUCTION

Biological communities located at high altitude endure extreme
conditions such as high daily temperature variability and
high incident solar radiation (Rothschild and Mancinelli, 2001;
Catalán et al., 2006; Albarracín et al., 2015a,b). In addition,
high altitude saline wetlands from the Andean Altiplano present
contrasting mineral composition at small spatial scales (Acosta
and Custodio, 2008; Risacher and Fritz, 2009; Uribe et al., 2015)
that range from freshwater to hypersaline conditions, as well as
from limiting to high nutrient concentrations (Dorador et al.,
2008b, 2010). While biodiversity of higher trophic levels is low in
extreme environments (Guerrero et al., 2013), there is evidence
that lakes located above 2000 m (e.g., Tibet, Pyrenean, or Andean
lakes) hold a large microbial diversity (Wang et al., 2011; Triadó-
Margarit and Casamayor, 2012; Albarracín et al., 2015a,b) in
association with environmental heterogeneity.

One of the variables that define high altitude systems as
extreme environments for life is solar radiation (Rothschild and
Mancinelli, 2001; Piacentini et al., 2003; Cordero et al., 2014;
Albarracín et al., 2015a,b). Low zenith angle and high altitude
result in incident solar radiation that would be detrimental
for aquatic microbial productivity at sea level (Helbling et al.,
2001; Sommaruga, 2001; Alonso-Saez et al., 2006; Santos et al.,
2012) and could be enhanced by thin ozone and reflectance
by clouds and salt (Lovengreen et al., 2005; Häder et al.,
2015). Solar radiation (in the visible as well as UV range) can
induce changes in heterotrophic bacteria community structure,
growth and production directly or indirectly (Jeffrey et al.,
2000). High levels of UV radiation are known to affect cell
structure, function, and integrity (Häder et al., 2015). As a
result, phototolerant or resistant microbial strains dominate
in systems exposed to high solar radiation (Fernández-Zenoff
et al., 2006; Flores et al., 2009; Paulino-Lima et al., 2013;
Zenoff et al., 2014). In marine systems, bacterial secondary
production (BSP) under solar radiation has been shown to
depend on the solar exposure history (photobiological history)
of the bacterioplankton community (Jeffrey et al., 1996a,b;
Hernández et al., 2006). The detrimental effect of UV on
community production from waters exposed to high solar
radiation for long periods of time are significant, but lower
than that of communities previously unexposed (Hernández
et al., 2006; Santos et al., 2012). This is supported by observed

differences in the presence of phototolerant strains between
communities with different solar exposure histories (Fernández-
Zenoff et al., 2006; Zenoff et al., 2014; Albarracín et al.,
2016).

Although a few reports on primary production are available
for high altitude Andean lakes, such as the deep oligotrophic
Lago Titicaca (Lazzaro, 1981; Villafañe et al., 1999; Helbling
et al., 2001), Lago Chungará and Laguna Negra (Cabrera and
Montecino, 1987), and benthic primary production at Salar de
Huasco (De la Fuente, 2014), to the best of our knowledge,
no reports on BSP are available for high altitude northern
Andean wetland systems. Nevertheless, it is reasonable to
consider the importance of microbial productivity knowing
that invertebrate and vertebrate populations are permanently
supported by these systems (Márquez-García et al., 2009;
Vila et al., 2013) and adapted microbial communities might
show marginal detrimental responses to high solar radiation
exposure.

In extreme environments, strong spatial and temporal
heterogeneity of physico-chemical conditions promote a variety
of niches (Albarracín et al., 2015a,b) affecting microbial
production, diversity, and community structure within the same
system (Rodríguez-Valera et al., 1985; Pedrós-Alió et al., 2000;
Benlloch et al., 2002; Oren et al., 2009; Pollet et al., 2010; Wang
et al., 2011). Species richness and BSP have been shown to have
either insignificant (Wang et al., 2011) or negative (Benlloch
et al., 2002; Gasol et al., 2004; Pollet et al., 2010) responses along
positive salinity gradients. Freshwater to hypersaline conditions
found at different location within a salt flat can lead to variation
in microbial communities characterized by their tolerance/need
of NaCl (Fernández-Zenoff et al., 2006; Flores et al., 2009;
Paulino-Lima et al., 2013). Environmental spatial heterogeneity
has been related to microbial abundance (e.g., bacteria, archaea,
and microalgae) and biomass as well as to the development of
highly diverse bacterial communities in water and sediment of
high altitude systems (Dorador et al., 2003, 2008a,b, 2009, 2010,
2013; Márquez-García et al., 2009; Demergasso et al., 2010; Thiel
et al., 2010; Vila et al., 2013). However, it is not yet possible to
infer how the BSP of communities from extreme environments
responds to strong environmental variability in a narrow spatial
scale.

The high altitude saline wetland ecosystem of Salar de Huasco
is formed by an intricate mosaic of different ground sources,
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streams, and shallow permanent and non-permanent ponds
(Dorador et al., 2008a, 2010). During the dry season, the wetland
receives an important input of low salinity groundwater from
point sources (Acosta and Custodio, 2008) with no recent history
of exposure to solar radiation. Chloride concentration (as a
conservative tracer) in ponds and streams reflect the local balance
of water loss (evaporation) and groundwater input (Acosta and
Custodio, 2008) so high salinity levels mainly reflect surface
evaporation and a longer history of solar radiation exposure.
The dynamic configuration of Salar de Huasco provides an
opportunity to study solar radiation effects on BSP under
different salinity and nutrient concentrations. We hypothesized
that the inhibitory effects of solar radiation on BSP are lower
in waters with higher salinity (and therefore a longer history of
solar exposure) than in those recently emerged and exposed (low
salinity groundwater). To test this hypothesis, we: (i) quantified
bacterial biomass and BSP in different water bodies in Salar
de Huasco, (ii) determined BSP response to solar radiation
spectra in selected stations, and (iii) characterized each site
regarding physico-chemical (salinity, nutrients) and biological
(microalgae composition, abundance, photosynthetic efficiency,
chlorophyll a) conditions to establish their relationships with BSP
measurements.

MATERIALS AND METHODS

Study Area
Salar del Huasco (20.274◦S, 68.883◦W, 3800 m) is a saline
wetland from the Tarapacá Region in northern Chile (Figure 1A)
recognized as a Ramsar site by the Convention on Wetlands
of International Importance (Ramsar Convention, 1996).
Precipitation at Salar de Huasco is low and occurs over a short
summer rainy season (Risacher et al., 1999; Risacher and Fritz,
2009; Sieland, 2014). Surface water flow (especially during the
rainy season) and groundwater contribute to the maintenance of
the lagoon, while evaporation of groundwater and surface water
account for the only loss from the system (Uribe et al., 2015).
The aquifers providing groundwater are re-filled seasonally
after the percolation of precipitation. Infiltration due to surface
characteristics and flatness of the relief is highly variable, forming
a shallow but complex water system. Water flow varies abruptly
in less than a kilometer of distance (Figure 1B). Several streams
flowing from groundwater sources into a lagoon form water
ponds with higher residence time which eventually become
isolated due to evaporation (Figure 1C). The aquifer feeding
groundwater-dependent streams shows a mineral composition
similar to that of the crust and overlaying sediments which
change mainly due to evaporation and water flow (Risacher
et al., 1999; Acosta and Custodio, 2008; Risacher and Fritz, 2009;
Sieland, 2014). Therefore, physico-chemical conditions within
Salar de Huasco have been described as highly heterogeneous
(Acosta and Custodio, 2008; Dorador et al., 2008a,b, 2009, 2013).

Sampling Stations
Groundwater sources (and water bodies fed by them) northwest
of the lagoon of Salar de Huasco have been previously

characterized in terms of physico-chemical properties and
microbial diversity (Magaritz et al., 1990; Dorador et al., 2003,
2008b, 2010; Acosta and Custodio, 2008; Vila et al., 2013).
During November 15, 2013, we selected three of these subsystems
(stations H0, H3, H4; Dorador et al., 2008b, 2010), and within
them a total of seven stations were chosen considering site
connectivity (distance and isolation) from the corresponding
groundwater source (Figures 1B,C). Following these criteria, we
expected to include sites with contrasting conditions regarding
salinity and solar exposure history, with minima at the sources of
groundwater and maxima at ponds isolated by evaporation.

With the previous considerations we sampled: (i) sources,
with recently emerged groundwater and no-previous solar
exposure, stations H0 and H3; (ii) streams and ponds with
running water connected to sources (50 m downstream
from sources, with recent solar exposure), stations stream
running water (H3-RW), and H4 connected pond (H4-CP);
(iii) isolated ponds disconnected from streams and sources
(450 m from sources), with longer solar exposure, H4
isolated pond (H4-IP) and H3 isolated pond (H3-IP); and
(iv) isolated pond disconnected from streams and sources
(500 m from sources, with longer solar exposure), H4 isolated
pond “Virgin Mary” (H4-VMP) (Figure 1C; Supplementary
Figure S1).

Solar Radiation Measurements
Incident solar radiation was monitored during the experiment
using a GUV-511C radiometer (Biospherical Instruments). The
GUV511 is a temperature-stabilized, multichannel radiometer
that measures downwelling irradiance with moderately narrow
bandwidth channels (near 10 nm) within the UVR (380, 340,
320, 305 nm), plus a broad band channel with full width at
maximum of 300 nm for PAR (400–700 nm). Data points were
recorded every minute between sunrise and sunset and processed
using software provided by Biospherical Instruments. The total
UVA (320–400 nm) and UVB (280–320 nm) irradiances were
calculated by following Orce and Helbling (1997).

Environmental Physico-Chemical
Characterization
Temperature and conductivity were measured in situ at each
sampling site with a Multiparameter pH/ISE/EC/DO/Turbidity
Waterproof Meter with GPS option (Hanna Instruments,
HI9829). Conductivity was converted to salinity (practical
salinity units) considering the temperature of measurement using
the Chemiasoft online calculator (http://www.chemiasoft.com/c
hemd/salinity-calculator) following Standard Methods for the
Examination of Water and Wastewater, 20th edition (1999).
Approximately 5 l of water were collected at dawn from each
station on November 15, 2013. Subsamples were taken for
different supporting parameters and the remaining water samples
were kept submerged at H0 until water was distributed for
the BSP incubation. Samples for nutrient determinations (two
replicates) were collected from each sampling site for nitrate
(NO3

−), nitrite (NO2
−), and phosphate (PO4

3−) determinations
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FIGURE 1 | (A) Location of the study area at Salar de Huasco (SH), Chile. (B) Distribution of sampled stations along Salar de Huasco on previously described
subsystems H0, H3, and H4 (Dorador et al., 2008b). Details of the intricate water flow system are shown as station types: (1) ground sources stations, with no
previous solar exposure, (2) running water and connected ponds stations, and (3) isolated ponds. (C) Conceptual diagram of the Salar de Huasco suggested for the
water flow connectivity and microbial communities distribution: ground sources H0 and H3 represented by yellow circle (1), close and connected downstream
stations H3-RW and H4-CP with yellow circle (2), isolated ponds closer to the main shallow lake with H3-IP, H4-IP, H4-VMP represented by yellow circle (3).
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soon after collection. Water was filtered through 0.7 µm pore-
size (GF/F) filters and stored frozen in 15 ml polycarbonate tubes
until analysis at the Laboratorio Biogeoquímica, Universidad
de Concepción (Chile) using a Seal analytical AutoAnalyzer
AA3 SEAL G-172-96 Rev 15 (Multitest MT 19 for NO3

− and
NO2

−) and G-297-03 Rev 3 (Multitest MT 19 for PO4
3−). Silica

(Si2O3
4−) was determined as previously described (UNESCO,

1983).

Chlorophyll a
Chlorophyll a was measured by filtering replicate 150 ml from
each site onto Whatman GF/F filters, which were kept in the dark
at −20◦C until extraction in cold acetone (90%) for 24 h. The
concentration of chlorophyll a was determined fluorometrically
using a Turner Designs fluorometer (Model 10AU) previously
calibrated against pure chlorophyll a (Sigma) following the
method described by Holm-Hansen et al. (1965).

In vivo Chlorophyll a Fluorescence
Kinetics
Photosynthetic efficiency was measured with an AquaPen-
C AP-C 100 fluorometer (Photon Systems Instruments). It
was equipped with a blue and red light-emitting diode
(LED), optically filtered to give light intensities of up to
3000 µmol photons m−2 s−1 to the samples on which it
measures. Blue excitation light (455 nm) is for chlorophyll
a excitation in eukaryote algae. Red-orange excitation light
(620 nm) is for chlorophyll a excitation through phycobilin
pigments in cyanobacteria samples (AquaPen manual, PSI). If
the fluorescence signal was too weak due to low concentration
of cells, the samples were concentrated by a filtration (Sartorius)
with a 47 mm diameter polycarbonate filter of pore size 0.8 µm
(Millipore) and a weak manual suction vacuum. The filtration
was kept in motion to avoid cells settling on the filter. Three to
four milliliters of each water sample was added to a plastic 1 cm
cuvette and left in the dark inside the AquaPen instrument for
1 min before measurements to allow dark adaptation but not
recovery from solar exposure. Fluorescence quantum yield (Qy)
was measured by the saturation pulse method where the maximal
fluorescence yield (Fm) is measured by a flash with very high
irradiance that saturates all the reaction centers in photosystem
II (Cosgrove and Borowitzka, 2010). The minimum fluorescence
(F0) was measured by a low measuring light that does not induce
light reactions in photosystem II. The difference Fm − F0 is the
variable fluorescence (Fv). In a dark adapted sample (after 1–
5 min), Qy = Fv/Fm. The Qy is a measure of how efficiently
light is transferred into electron transport in the chloroplast
membrane and thus into photosynthesis and can have values
between 0 and 1, but values of 0.6–0.7 indicate good condition of
photosystem II and are realistic maximum values for microalgae
(Cosgrove and Borowitzka, 2010).

Microalgae Abundance and Community
Composition
One 250 ml sample of water from each site was taken
and preserved with Lugol’s solution following Villafañe and

Reid (1995). Samples were stored in the dark until analysis.
Quantification of microalgae was performed using a light
inverted microscope Nikon Eclipse TS 100 at 20× and 100×
and equipped with an Olympus DP25 camera. A maximum
of 50 ml was settled for low abundance samples. For high
abundance samples, 5 ml were counted using the whole camera
area following Utermöhl (1958). Abundance was expressed
as number of Cells per liter by the formula: Cells/l = (N◦
cells × FC × 1000)/V. obs. where: N◦ cells = total number of
cells quantified. FC = camera factor. V. obs = analyzed sample
volume (ml). Diameter was measured for centric diatoms and
length and width for pennate diatoms of different genera to
estimate biovolume (BV). The BV of each taxon was calculated
using the appropriate geometric formula or combination of
geometric formulas that best represented observed cell shape
(Edler, 1979). The microalgae identification was performed
according to standard protocols (Cupp, 1943; Bourelly, 1970;
Lazzaro, 1981; Liberman and Miranda, 1987; Wetzel and Likens,
1991; Parra and Bicudo, 1995; Tomas, 1997; Díaz and Maidana,
2005; Álvarez-Blanco et al., 2011; Blanco et al., 2013).

Bacterial Secondary Production
We measured BSP following Smith and Azam (1992) with small
modifications. From each sampling site, a subsample of 70 ml
of water was spiked with sterile 3H-leucine (121 Ci mmol−1)
to a final concentration of 10 nM. At the start of incubation,
two 1 ml replicate samples of water from each sampling site
were killed immediately with 5% (v/v) trichloroacetic acid
(TCA) as a T = 0 control. The remaining labeled water from
each site was distributed in 5 ml aliquots into 12 (60 ml)
Whirlpack polyethylene bags to be incubated under four different
solar conditions (Aas et al., 1996). Three bags were incubated
without cover Full sun (PAB treatment), three bags were covered
with Mylar 500D, 50% cut-off at 320 nm, i.e., no UVB (PA
treatment), three bags were incubated wrapped in Court guard,
50% cut-off at 400 nm, no UVR (PAR treatment) and the
remaining three bags were covered in opaque black plastic
(Dark).

Solar radiation incubations started at approximately
10:30 hours and lasted for 4 h. All Whirlpack bags were
held in situ attached to a tray submerged on the stream below
H0 to assure homogeneous temperatures across incubations
(Supplementary Figure S1). At the end of the experiment, TCA
was added to each bag to a final concentration of 5% (v/v).
Triplicate 1 ml subsamples were then transferred from each bag
to microcentrifuge tubes which were processed as described in
Smith and Azam (1992).

Leucine incorporation was measured using a Packard Model
1600TR liquid scintillation counter. The counting efficiency
was calculated from the non-quenched standard of 3H-toluene.
BSP from leucine incorporation was calculated using a ratio of
cellular carbon to protein of 0.86 and a fraction of leucine in
protein of 0.073 (Simon and Azam, 1989) and was expressed
as µg C l−1 h−1. Finally, the cell-specific incorporation rate
of carbon was calculated as the quotient of estimated BSP
to total bacterial abundance (BA) determined for each water
sample and expressed as fg C cell−1 h−1 following Hernández
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et al. (2007). Percentage inhibition/enhancement of BSP by PAR,
UVA, or UVB was calculated with respect to dark BSP as 100%
(Hernández et al., 2006).

Flow Cytometry
Two replicate 1.35 ml subsamples were taken for each site in
cryovials and fixed with glutaraldehyde (2% final concentration)
and immediately frozen in liquid nitrogen. Photosynthetic
and non-photosynthetic prokaryotic picoplankton abundances
were estimated based on 165 particles counts of subsamples
(150 µl) previously stained with SYBR-Green I (Molecular
Probes; Marie et al., 1997). Light scatter and fluorescence
measurements of particles were made using a FACSCaliburTM

flow cytometer (Becton Dickinson) with MED flux 30 and 34
(µl/min) using Cytowin software at Universidad de Concepción
facilities. The FACSCalibur BD had five PMTs based on size
(FCS), rugosity (SSC), phycobilins (FL1), phycoerythrins (FL2)
and chlorophyll (FL3). Several groups of picophytoplankton
are reported including total abundance of picoeukaryotes (PE),
bacterial (bacteria and archaea) and nanoflagellates (NA) as
cells l−1.

Statistical Analysis
In order to evaluate bio-physical environmental similarity
between stations, we conducted ordination analysis considering
salinity, NO2

−, PO4
3−, and NO3

− concentrations, chlorophyll
a concentrations, and photosynthetic efficiency as Qy450 and
Qy620. Principal component analysis (PCA) was conducted after
data standardization (variables standardized to the maximum)
using Primer 6 software. In order to evaluate the similarity of
sampling sites based on microalgae community composition
and abundance, we performed a classification analysis.
Microalgae abundance data were fourth root transformed
and the dissimilarity between stations was calculated as the
Bray–Curtis dissimilarity index (Legendre and Legendre,
1998) to conduct group average clustering using Primer 6
software.

A covariance analysis was conducted on BSP response to
solar radiation (fixed factor, four levels) with distance from
source points as the covariate chosen to evaluate the interaction
between type of site and BSP response to the different treatments.
Two stations (H0 and H3) were at 0 m from point sources
of groundwater. H3-RW and H4-CP were 50 m downstream
from point sources, and isolated ponds were 450 and 500 m.
The analysis considered the mean value of BSP measured for
each site and treatment, disregarding/neglecting the within site
variability to avoid pseudoreplication (Hurlbert, 2004). This
study combines a manipulative approach to the response of
microbial communities to solar radiation at Salar de Huasco,
with the explicit consideration of spatial characteristics of water
bodies at the scales of tens to hundreds of meters (manipulative-
correlative study sensu; Hewitt et al., 2007).

After covariance for treatments and groups of stations at
different distance from source was confirmed, BSP response to
different solar radiation treatments (four levels) was compared
for each station with one-way ANOVA. BSP was previously
transformed (square root) to meet variance homogeneity

assumptions when it was needed. Post hoc Tukey tests were
conducted to identify the specific differences between BSP among
solar radiation treatments after checking for the significance of
the main factor as a whole (Statistica 7 software). When ANOVA
assumptions were not met even after root (or logarithmic
transformation), a non-parametric Kruskal–Wallis test was
applied followed by the test of rank means (Statistica 7). Finally,
a cluster analysis (group average clustering) was conducted on
the Euclidean distance matrix between stations based on the
standardized mean BSP per station and treatment. The analysis
allowed the grouping of stations with the same pattern of
response to the different solar treatments.

RESULTS

Solar Radiation
During November 15, 2013, maximum irradiance reached
1168 W m−2 (0.25 µE cm−2 s−2) for PAR, 72 W m−2 for UVA
and 12 W m−2 for UVB at 1:13 pm local time (Figure 2). The
sky was cloudless and the solar day was approximately 12 h (from
6 am to 6 pm).

Environmental (Physico-Chemical and
Biological) Characterization
Salinity was below 1 across all sampled sites, except for H4-
VMP, the only hypersaline site (49.1 PSU; Table 1). Among
the other stations, sources and H3-RW were approximately 0.3
PSU while isolated and connected ponds were slightly saltier,
about 0.55 PSU. While silica concentrations were above 40 mM
at all sites, NO3

− concentration varied over several orders of
magnitude (Table 1). Ponds showed no detectable to 0.1 µM
concentrations (H4-VMP) and sources and the stream waters
contained over 10 µM of nitrate NO3

−. PO4
3− was also lower

in ponds (except H4-VMP), while sources and the stream. In
contrast, H4-VMP presented a PO4

3− peak concentration of
81.1 µM (Table 1).

FIGURE 2 | Solar radiation diurnal cycle in Salar de Huasco during
November 15, 2013 (radiometer GUV511C). Continuous PAR (left y-axis),
UVA and UVB (right y-axis). Incident irradiance was expressed as W m−2.
Data break at approximately 18:00 was due to sunset behind the surrounding
mountains.
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TABLE 1 | Physico-chemical characterization during sample collection at selected stations in Salar de Huasco during November 15, 2013.

Stations∗ Temp (◦C) Salinity (PSU) NO3
− (µmol L−1) NO2

− (µmol L−1) PO4
3− (µmol L−1) Si2O3

4−.(mmol L−1)

H0 13 0.38 12.2 0.5 1.4 ≥40

H3 13 0.3 11.6 0.2 1.0 ≥40

H3-RW 15 0.29 11.3 0.3 0.97 ≥40

H4-CP 0.1 0.56 BDL∗∗ 0.3 0.8 ≥40

H4-IP 0.3 0.6 BDL 0.3 0.9 ≥40

H3-IP 5 0.55 BDL 0.3 0.5 ≥40

H4-VMP 0.1 49.1 0.1 0.1 81.1 ≥40

Temp, temperature; PSU, salinity; NO3
−, nitrate; NO2

−, nitrite; PO4
3−, phosphate; Si2O3

4−, silicate.
∗Seven stations were selected as follows: (a) Ho source (H0); (b) H3 source (H3); (c) H3 stream running water (H3-RW); (d) H4 connected pond (H4-CP); (e) H4 isolated
pond (H4-IP); (f) H3 isolated pond (H3-IP); (g) H4 isolated pond “Virgin Mary pond” (H4-VMP).
∗∗Values below detection limits (BDL).

Chlorophyll a was lowest in source waters (0.3–1 µg l−1),
higher in streams and ponds (from 3 to 4 µg l−1), and
intermediate at H4-VMP (1.6 µg l−1; Table 2). Qy450 as
photosynthetic efficiency for eukaryotes was higher in source and
stream waters (above 0.43), and lower in ponds, except at H4-IP.
Qy620 for Cyanobacteria was highest in H3-RW.

Three different groups of stations were separated by PCA
according to environmental characteristics. PC1 separated H0,
H3, and H3-RW sites from a second group formed by H3-
CS, H3-IP, and H4-CP sites (Figure 3A). The most relevant
environmental factors contributing to PC1 were NO3

− and
chlorophyll a concentrations. The first group of stations were
characterized by high NO3

− and low chlorophyll a and the
opposite conditions was true for Group B. PC2 separated H4-
VMP from the other two groups, based on the high salinity, high
PO4

3−, and low NO3
− concentrations (Figure 3A).

Microalgae Community Composition
A total of 35 microalgae taxa were identified, mainly belonging
to the family Bacillariophyceae (diatoms). Only five taxa
were identified belonging to families Chrysophyceae (2),
Euglenophyceae (1), and Cyanophyceae (2), respectively
(Supplementary Table S1). The number of taxa did not show

a trend either between systems nor stations, varying between
14 and 21 taxa (Supplementary Table S1). In general, the more
abundant species of microalgae were also ubiquitous, detected
at six or seven stations. While Uroglena sp. (Chrysophyceae)
was the fourth most abundant organism, it was found only
in H4-VMP (Supplementary Table S1). Some taxa were only
abundant at a few sites. Oscillatoria sp. (Cyanophyceae) was
only present in H0, H3, and H3-RW, and in the two source
sites it comprised over one-third of total microalgae abundance.
Anabaena constricta (Cyanophyceae) was found in three sites but
made up 20 and 50% of total abundance in H4-CP and H3-IP,
respectively.

Microalgae abundance peaked at H4-CP, followed by H4-
VMP and stream waters, with lowest values in source waters.
The same trend was observed for microalgae biomass except
that the peak occurred at H4-VMP followed by H4-CP. At H4-
VMP, the peak in biomass was due to the large diatom Navicula
decussis. At other stations the dominating diatom was Achnanthes
lanceolata. One-fourth of H4-VMP total microalgae abundance
was due to this diatom but it was also observed in isolated ponds
and the connected pond (Supplementary Table S1). Communities
from source stations (H0, H3) and running water close to source
(H3-RW) were separated from pond systems by cluster analysis
at higher than 50% similarity (Figure 3B). Photoautotrophic

TABLE 2 | Biological characterization of seven stations in Salar de Huasco during November 15, 2013.

Stations∗ BSP
(µg C L−1 h−1)

BA
(cells L−1)

PE
(cells L−1)

NA
(cells L−1)

MB
(µg C L−1)

MA
(cells L−1)

Chl a
(µg Chl L−1)

Qy Euk
(450 nm)

Qy Cyan
(620 nm)

H0 0.05 1.2E+08 ∗∗∗∗∗ ∗∗∗∗∗ 8 1.70E+05 0.35 0.55 0.23

H3 0.13 1.8E+08 ∗∗∗∗∗ 3.4E+04 14 1.80E+05 1.08 0.43 0.19

H3-RW 0.23 3.1E+08 ∗∗∗∗∗ 6.6E+03 27 1.20E+06 3.06 0.61 0.42

H4-CP 0.15 1.5E+09 ∗∗∗∗∗ 7.5E+04 200 3.80E+06 3.44 0.33 0.31

H4-IP 0.87 1.60E+09 ∗∗∗∗∗ 3.7E+04 61 6.50E+05 4.41 0.42 0.31

H3-IP 3.3 3.30E+09 4.00E+05 1.05E+04 15 2.00E+05 3.44 0.12 0.19

H4-VMP 11 4.30E+09 3.30E+06 1.47E+05 379 2.70E+06 1.64 0.40 0.19

Average values of: bacterial secondary production (BSP), bacterial abundance (BA), picoeukaryotes abundance (PE), nanoflagellates abundance (NA), microalgae biomass
(MB), microalgae abundance (MA), chlorophyll a (Chl a), photosystem II efficiency expressed as microalgae quantum yield (Qy Euk) and cyanobacteria quantum yield (Qy
Cyan).
∗Seven stations were selected as follows: (a) Ho source (H0); (b) H3 source (H3); (c) H3 stream running water (H3-RW); (d) H4 connected pond (H4-CP); (e) H4 isolated
pond (H4-IP); (f) H3 isolated pond (H3-IP); (g) H4 isolated pond “Virgin Mary pond” (H4-VMP). ∗∗∗∗∗ No cells observed.
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FIGURE 3 | (A) Statistical multivariate principal component analysis to evaluate environmental similarity among stations including salinity, NO2
−, PO4

3−, and NO3
−

concentrations, chlorophyll a concentration, photosynthetic efficiency of photosystem II for microalgae (Qy450) and cyanobacteria (Qy620). Stations are plotted
according to their the first and second principal component (PC) scores; environmental variables are plotted according to PC1 and PC2 coefficients; because PC
scores were in the range −100 to 100, they were divided by 100 and the two coordinate systems were overlaid at the same scale (ranging from −1 to 1 for
both × and y-axis). (B) Group average cluster of station similarity based on microalgae abundance data across seven stations studied.

picoeukaryotes were found only in ponds H3-IP and H4-VMP
and their abundance was an order of magnitude higher at H4-
VMP than in H3-IP (3.3× 106 and 4× 105 cells l−1, respectively,
Table 2). Nanoflagellates were detected by flow cytometry across
all stations except in source H0. Maximum abundance was
1.5× 105 cell l−1 at H4-VMP.

Mean BSP varied widely among stations. H4-VMP showed
the highest mean BSP value (11.25 µg C l−1 h−1), followed
by the two other isolated ponds (3.27 and 0.87 µg C l−1 h−1

for stations H3-IP and H4-IP, respectively). The lowest value
was found for source water H0 (Table 2). BA was an order
of magnitude higher in ponds compared to source and stream
waters, a maximum of 4.3 × 109 cells l−1 in H4-VMP and a
minimum of 1.2 × 108 cells l−1 at H0 source. Cellular rates of
BSP were also higher in H4-VMP than at the other stations.

BSP Response to Solar Radiation
Treatments across Stations
The response of BSP to solar radiation treatments showed a
significant interaction (df 4; F = 4.6, p < 0.05) with the covariate
distance from source (distance× treatment in covariance analysis
with heterogeneous slopes). The largest BSP effect was observed
in waters from H0 source (threefold enhancement after PAR
exposure) while the lowest difference was observed in H4-
VMP waters after PAR incubation (Figures 4A–C). BSP absolute
response was highest at source waters (H0 and H3) and close to
source running waters (H3-RW), decreasing through connected
ponds and isolated ponds, reaching a lowest BSP response to
solar radiation at H4-VMP (Figures 4A–C). BSP from H4-CP
and H3 showed the same response after light exposure: PAR
and DARK treatments were similar and higher than PAB and
PA treatments (Figure 4A; Table 3). PAB and PA were not
significantly different among them for each of the two stations.
This indicates that BSP is negatively affected by UVA but less so

by UVB. The same trend was also observed for H3-RW. The BSP
in H0 (ground water source) was higher in PAR and PA than in
the other treatments that did not differ significantly from each
other. Therefore, an increasing detrimental effect of UVA and
UVA + UVB is evidenced after PAR maximum enhancement
over DARK conditions in H0.

BSP from isolated ponds H4-IP and H3-IP and H4-VMP
were not significantly different between DARK, PAR, and
PAB exposures (Figure 4A; Table 3) Nevertheless, BSP in PA
treatment differed from other treatments, increasing in H3-IP
and H4-IP and decreasing in H4-VMP waters (Figures 4A,B).
The similarities and differences in response patterns among
stations were captured by cluster analysis. Isolated pond waters
grouped separately from the other stations, with H0 as the station
showing the largest distance with all others.

Ground sources and running water sites (H0, H3, and H3-
RW) as well as isolated ponds (H3-IP and H4-IP) had low BSP
and production per cell (BSP per cell). The maximum BSP per
cell was measured at H4-VMP while the lowest was in H4-CP
(Figure 4C). BSP per cell showed the same responses to solar
radiation treatments as BSP by volume in isolated ponds and H0.
For H3 and running water, BSP per cell changed slightly from
that of BSP, but PA and PAB were always below PAR and DARK
(Figure 4C).

DISCUSSION

We reported the first BSP measurements for Salar de Huasco,
as well as the first measured diurnal cycle of full spectrum
solar radiation. Previously, only shortwave pyranometer
estimations for total radiation (1000 W m−2) and heat fluxes
(∼1150 W m−2) have been reported for Salar de Huasco area
(Aceituno, 1996; De la Fuente, 2014, respectively). We also
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FIGURE 4 | Bacterial secondary production (BSP) experimental
response to solar radiation at seven stations in Salar de Huasco. Error
bars represent standard deviation. The BSP samples from each sampling site
were incubated under four different solar conditions: Full sun (PAB treatment),
no UVB (PA treatment), no UV (PAR treatment), and no light exposure (dark
treatment). (A) Average BSP under solar radiation treatments expressed as
µg C l−1 h−1. (B) Variation of BSP as percentage of dark treatment (C). BSP
cell−1 (as proxy of growth efficiency) expressed as fg C cell−1 h−1. (D) Group
average cluster of station similarity based on BSP response to different solar
radiation treatments.

showed the relevance of distance and isolation of sampling
sites from ground water sources, which contributed to spatial
heterogeneity of physico-chemical conditions, microbial
community composition, and BSP responses to solar radiation
in Salar de Huasco.

Physico-chemical conditions have been reported to vary
markedly on small spatial scales in Salar de Huasco (Risacher

and Fritz, 2009). In this study, it was possible to recognize three
different groups of stations based on nutrient levels (NO3

−,
NO2

−, or PO4
−3) and salinity together with chlorophyll a and

Qy (Figures 1C and 3A). Source waters (H0 and H3) and close
to source running waters grouped with the lowest salinities
and high NO3

− concentration. Sources shared rather similar
conditions as could be expected since the emerging groundwater
originates from the same aquifer (Magaritz et al., 1990;
Acosta and Custodio, 2008; Uribe et al., 2015). Downstream,
ponds exhibited increased salinity and the depletion of NO3

−,
indicating evaporation and biological consumption. Therefore,
the change in properties with time and distance from water
sources might arise not only as a consequence of abiotic
but also of biotic processes. Concentration of minerals and
increased salinity through time due to evaporation, as well as
mineral exchange with sediments, contribute to water properties
variability (Acosta and Custodio, 2008) especially as water
flows along the stream or becomes isolated from groundwater
sources. Biotic processes such as the uptake of nutrients by
primary producers and bacterial mats, or remineralization would
impact dissolved nutrients availability. Changes in the dissolved
ionic species concentrations and ratios might affect microbial
organisms in their cellular ion pumps and osmolality balance
creating electrochemical gradients for energy production and
nutrient transport (Oren, 2013).

Two groups of locations were identified by microalgae
community composition and abundance with source and “close-
to-source” waters in one of them and isolated pond systems
in the other. Low microalgae abundance and low chlorophyll
a were characteristic of ground water source stations (H0,
H3) as expected for recently emerged waters in contrast with
downstream sites. This important biological variability between
downstream sites could be associated with local conditions, in
running waters (e.g., H3-RW), where the NO3

− concentration
was still similar to that of source waters, we measured the highest
photosynthetic efficiency for both eukaryotes and cyanobacteria.
There, microalgae and bacterial biomasses were at intermediate
levels. Minima of photosynthetic efficiency (Qy) were observed
in source waters. In the absence of external sources of nutrients
in isolated ponds, they can only sustain new production by the
regeneration of nutrients through microbial coupling, as was
potentially observed in H4-VMP. This site with high salinity,
low NO3

−, high incident solar radiation and nighttime partial
freezing, had a higher microalgae biomass, higher bacterial,
picoeukaryote and NA, and a BSP 1-2 orders of magnitude higher
than all other stations, and showed the highest BSP/biomass ratio.

BSP variability along the sampled stations around the main
lagoon of Salar de Huasco range over two orders of magnitude
(Table 2). Unfortunately, there are no comparable estimations
for salt flats wetlands or other High Altitude northern Andean
locations. Nevertheless, BSP at Salar de Huasco is quite high
as compared to other high altitude lakes (Sommaruga et al.,
1997; Eiler and Bertilsson, 2004; Sarmento et al., 2015). BSP and
bacterial numbers were higher at isolated ponds as compared
to connected stations. This increase in BA and BSP in water
bodies after evaporation is consistent with results from other
systems. For example, in a flooding-desiccation-cycle in Silver
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TABLE 3 | One-way ANOVA results for bacterial secondary production (BSP) after incubation under different solar radiation treatments.

Stations∗ Transformation df MS F p BSP∗∗ Post hoc results Tuckey

a H0 – 3 0.006 210.2 <0.001 P > PA > PAB = D

b H3 TR 3 0.049 63.4 <0.001 D = P > PA > PAB

c H3-RW – 3 0.14 299.2 <0.001 D > P > PA = PAB

d H4-CP TR 3 0.06 108.5 <0.001 D = P > PA > PAB

e H4-IP – 3 0.52 42.28 <0.001 PA > PAB = P = D

f H3-IP KW-MR 3 H = 22.4 <0.001 PA > PAB = P = D

g H4-VMP TR 3 0.053 2.9 <0.05 PA<PAB = P = D

Transformation indicates when the variable BSP has been root transformed (TR) to fit ANOVA homogeneity of variance and normality assumptions, or, when non-
parametric Kruskal–Wallis and multiple comparison of mean ranks (MR) were applied. All differences described as (post hoc results) were significant at p < 0.05 (post hoc
parametric Tukey-except f).
∗The response for seven sampled stations was tested independently as follows: (a) Ho source (H0); (b) H3 source (H3); (c) H3 stream running water (H3-RW); (d) H4
connected pond (H4-CP); (e) H4 isolated pond (H4-IP); (f) H3 isolated pond (H3-IP); (g) H4 isolated pond “Virgin Mary pond” (H4-VMP).
∗∗Total bacterial secondary production (BSP) and average bacterial production per cell (BSP cell−1) incubated under different solar radiation treatments: full sun (PAB
treatment), no UVB (PA treatment), no UV, only PAR (P treatment), and no light exposure (dark treatment).

Lake California, USA, changes in pH and total dissolved solids
were inversely related to NO3

− and evaporation, which promoted
an increase in BA (used as a BSP proxy) by three orders of
magnitude (Navarro et al., 2009). The microbial community
of isolated ponds in Salar de Huasco could be expected to
be adapted to high natural solar exposure by means of gene
transfer and direct selection. Biosynthesis of detoxifying enzymes
or antioxidant molecules such as glutathione is among the
biochemical mechanisms of tolerance reported (e.g., Wang et al.,
2011; Albarracín et al., 2015a,b, 2016; Häder et al., 2015;
Kurth et al., 2015). Li et al. (2014) also described high relative
evolutionary rates (rERs) of microbial communities from more
extreme natural environments, where the microbes inhabiting
extreme habitats (acid mine drainage, saline lake, and hot spring)
evolved faster than those populating benign environments (e.g.,
surface ocean, fresh water, and soil). This high evolutionary
rate was attributed potentially to more frequent horizontal gene
transfer in communities from extreme habitats.

BSP production shifts observed in Salar de Huasco responded
as expected when extreme solar radiation conditions prevailed,
as was observed in other aquatic systems (Sommaruga, 2001;
Gasol et al., 2004; Ruiz-González et al., 2013). For well-adapted
communities (long light exposure history) in the isolated ponds,
the exposure to full solar radiation (PAR+UVA+UVB) did not
result in production shifts, and showed the lowest response under
light treatments as compared to dark condition (also observed
in brines, see Pedrós-Alió et al., 2000; Benlloch et al., 2002).
In contrast, significant BSP responses to PAR + UVA and full
solar radiation, as compared with dark and PAR conditions, were
observed in ground water sources and connected stations. For
less adapted communities (recent light exposure history) as are
expected in ground water sources and connected stations, the
BSP response to different light treatments was stronger than that
of communities with long light exposure history (Jeffrey et al.,
1996a,b, 2000; Alonso-Saez et al., 2006; Hernández et al., 2007;
Ruiz-González et al., 2013).

BSP responses (inhibition or enhancement) under short-
term solar exposure cannot be only related to light exposure
history, but also to some other extreme conditions (Rothschild

and Mancinelli, 2001; Triadó-Margarit and Casamayor, 2012;
Guerrero et al., 2013; Li et al., 2014). The irradiance conditions
experienced by isolated pond communities in our experiments
were in combination with other potentially limiting conditions.
Exposing the community to PAR + UVA implies a single
source of damage is removed (UVB), and productivity shifts
could result from its interplay with other extreme variables
such as nutrients and/or organic substrates availability (Häder
et al., 2015; Table 3). Hence, isolated ponds (H3-IP and
H4-IP) showed a productivity enhancement from dark to
PAR + UVA treatment, but no enhancement from dark to PAR
or PAR + UVA + UVB (Figure 4; Table 3). This would be the
result, for example, if photoheterotrophic strains benefit through
competitive interaction only when PAR is available and they
out compete other strains when UVB is absent (Church et al.,
2004).

In aquatic systems most deleterious effects on primary
producers of solar radiation has been related directly to UVB
damage and indirectly to UVA and some PAR photoinhibition
(Helbling et al., 2001; Häder et al., 2015). Nevertheless,
autotrophs, mixotrophs, and heterotrophs also develop tolerance
which has been observed in isolated strains (Fernández-Zenoff
et al., 2006; Flores et al., 2009; Paulino-Lima et al., 2013).
In the isolated pond H4-VMP, BSP decreased only under
PAR + UVA irradiance (Table 3). This could be due to
competitive interactions with other trophic components of the
system (e.g., microalgae). At H4-VMP all microbial biomass and
BSP were the highest measured (Table 2), and BSP response to
different light treatments was the lowest among all other stations.
At the same time, salinity is extreme, PO4

3− concentration
was high and nitrogen species reached a minimum level of all
stations (Table 1). Microbial communities here must cope with
multiple “extremes.” When one source of UV stress is removed,
a new state for competitive or trophic biological interactions
might be developing with very complex interactions which may
be difficult to separate with only BSP, abundance or biomass
measurements. For instance, Liu et al. (2014) found relationships
between dominating strains and changes in biodiversity at local
scales related to pH and ferrous and ferric concentrations in
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extreme environments. Some other factors such as conductivity
and rainfall (Edwards et al., 1999), temperature and sulfide
(Purcell et al., 2007), and organic carbon (Polymenakou et al.,
2005) can also have an influence on the phylogenetic microbial
assemblage differentiation in extreme environments.

Isolation in the complex water systems in Salar de
Huasco with different physico-chemical conditions promote
microbial communities which respond differently to
solar radiation stress (PAR, UVA, and UVB) in a daily
cycle. We propose that the adaptation of the microbial
community to other extreme conditions (evaporation, nutrient
limitation, temperature gradients, distance, and isolation
from groundwater sources) affects the response of BSP
to solar exposure directly or indirectly through biological
interactions.
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