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The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was

sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C

content, and contains 2591 open reading frames (ORFs). Strain A20 shares ∼95.6%

identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization

(DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus

islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus

species. Comparison of the genome of strain A20 with those of the type strains of

S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which

were isolated from geographically separated areas, identified 1801 genes conserved

among all Sulfolobus species analyzed (core genes). Comparative genome analyses

show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes

involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2

fixation pathways are predominantly encoded by the core genes. All Sulfolobus species

encode genes required for the conversion of ammonium into glutamate/glutamine. Some

Sulfolobus strains have gained the ability to utilize additional nitrogen source such as

nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e.,

S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies

for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur

oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain

genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the

genome of strain A20, raising the possibility that an unknown pathway for the utilization

of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate
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or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These

clusters appear to have become fixed at a specific genomic site in some strains and

lost in other strains during the course of evolution. The versatility in nitrogen and sulfur

metabolism may represent adaptation of Sulfolobus to thriving in different habitats.

Keywords: Sulfolobus, strain A20, genome sequencing, comparative genomics, carbon metabolism, nitrogen

metabolism, sulfur metabolism

INTRODUCTION

Archaea of genus Sulfolobus are widespread in solfataric fields
around the globe. Known Sulfolobus species were mostly isolated
from the Northern hemisphere (Brock et al., 1972; Grogan et al.,
1990; Huber and Stetter, 1991; Jan et al., 1999; Suzuki et al., 2002;
Xiang et al., 2003; Guo et al., 2011; Mao and Grogan, 2012; Zuo
et al., 2015). These Sulfolobus isolates have been classified into
nine species. Since Sulfolobus is readily grown and manipulated
under laboratory conditions (Grogan, 1989), it has been used as a
model for the study of Archaea. Sulfolobus also serves as a model
for the study of eukaryotic genetic mechanisms because of the
striking resemblance between Archaea and Eukarya in the flow
of genetic information (Bell et al., 2002). In addition, Sulfolobus
has been used as a host for the study of an increasing number
of archaeal viruses and plasmids (Arnold et al., 2000; Rice et al.,
2001; Xiang et al., 2003; Guo et al., 2011; Wang et al., 2015).

The complete genomes of 17 Sulfolobus strains belonging
to four species have so far been deposited in GenBank. These
include a Sulfolobus tokodaii strain (str.7) (Kawarabayasi et al.,
2001), three Sulfolobus solfataricus strains (She et al., 2001;
McCarthy et al., 2015), four Sulfolobus acidocaldarius strains
(Chen et al., 2005; Mao and Grogan, 2012), and nine Sulfolobus
islandicus strains (Reno et al., 2009; Guo et al., 2011; Zhang
et al., 2013). Genomic comparisons show that Sulfolobus species
are genetically diverged in relation to their geographic distance
(Whitaker et al., 2003; Reno et al., 2009). Discontinuous and
distantly separated habitats seem to be geographic barriers
limiting gene flow among Sulfolobus populations. The variation
in gene content among geographically diverse isolates is
consistent with an isolation-by-distance model of diversification
(Whitaker et al., 2003; Grogan et al., 2008; Reno et al., 2009).
Apparently, genomic analyses of more geographically separated
isolates would help shed more light on the genetic diversity and
phylogenetic relationships of Sulfolobus strains.

All species of Sulfolobus are aerobic sulfur oxidizers,
and many of them are initially described as autotrophs or
mixotrophs (Brock et al., 1972). Two autotrophic carbon
fixation cycles have been described in Crenarchaeota, i.e., the
3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle and the
dicarboxylate/4-hydroxybutyrate (DC/HB) cycle (Berg et al.,
2007, 2010; Huber et al., 2008; Ramos-Vera et al., 2011).
The HP/HB cycle was confirmed by biochemical assays in
Sulfolobales including Sulfolobus, Acidianus, andMetallosphaera
(Berg et al., 2007; Teufel et al., 2009; Estelmann et al.,
2011; Demmer et al., 2013). H2, hydrogen sulfide, sulfur,
tetrathionate, and pyrite have been described as electron donors
for autotrophically-grown Sulfolobus (Brock et al., 1972; Wood

et al., 1987; Huber and Stetter, 1991; Huber et al., 1992). For
the heterotrophical growth of Sulfolobus, the conversion of
glucose to pyruvate was thought to rely on a non-phosphorylative
Entner-Doudoroff (ED) pathway, as shown in S. solfataricus
and S. acidocaldarius (Siebers et al., 1997). However, extensive
in vivo and in vitro assays later indicated that both the semi-
phosphorylative and the non-phosphorylative ED pathways
might operate in S. solfataricus (Ahmed et al., 2005; Ettema
et al., 2008). Genomic analyses of the metabolic pathways have
been reported for several Sulfolobus strains (Sensen et al., 1998;
Kawarabayasi et al., 2001; She et al., 2001; Chen et al., 2005; Guo
et al., 2011; Jaubert et al., 2013). A further genomic comparison
of metabolic pathways in various Sulfolobus strains will be
of significance to the understanding of the strategies of the
organisms to adapt to thriving in their environments. In the
present study, we isolated a novel Sulfolobus species, denoted
strain Sulfolobus sp. A20, from an acidic hot spring in Laguna
Fumarólica, Costa Rica, and sequenced the genome of the strain.
The 16S rRNA gene of strain A20 exhibits the highest sequence
identity (∼95.6%) to those of S. islandicus and S. solfataricus
isolates, but the significant differences suggest that strain A20
represents an independent Sulfolobus species. The genome of
strain A20 was compared with all other available Sulfolobus
genomes, and analyses of the pathways of carbon, nitrogen and
sulfur metabolism in various Sulfolobus strains were performed.

MATERIALS AND METHODS

Isolation of Strain A20
A water sample FL1010-1 was collected in October 2010 from
a hot spring, known as Laguna Fumarólica (10◦46,365′ N and
85◦20,646′ W, ∼85◦C, pH 3–4), in the Las Palias hydrothermal
field (Las Pailas sector), which is located in the southwest flank of
the Rincón de la Vieja volcano crater. Rincón de la Vieja volcano
(10◦49′ N, 85◦19′ W), an andesitic volcano in northwestern
Costa Rica, belongs to the Circum Pacific Ring of Fire, which
is a geothermal belt different from its nearest neighbors,
the Yellowstone National Park and the Lassen Volcanic
National Park. The sample was concentrated by tangential
flow ultrafiltration through a hollow fiber membrane with a
molecular mass cutoff of 6 kDa (Tianjin MOTIMO Membrane
Technology, China). An enrichment culture was established
by inoculating the concentrate in Zillig’s medium (Zillig et al.,
1994), which contained 0.3% (NH4)2SO4, 0.05% KH2PO4·3H2O,
0.05% MgSO4·7H2O, 0.01% KCl, 0.001% Ca(NO3)2·4H2O,
0.07% Glycine, 0.05% yeast extract, 0.2% sucrose, and 0.2%
of a trace element solution (0.09% MnCl2·4H2O, 0.225%
Na2B4O7·10H2O, 0.011% ZnSO4·7H2O, 0.0025% CuCl2·2H2O,
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0.0015% NaMoO4·2H2O, 0.0005% CoSO4·7H2O). After
incubation for 7–10 days at 75◦C with shaking at 150 rpm,
samples of the grown culture were spread on Zillig’s medium
plates solidified with 0.8% gelrite. The plates were incubated for
7 days at 75◦C. Colonies were picked and purified by re-plating.
Observation of the cells of strain A20 was carried out under a
transmission electron microscope (JEM-1400, Jeol Ltd., Tokyo,
Japan) at 80 kV by negatively staining with 2% uranyl acetate.

Genome Sequencing and Annotation
The genomic DNA of strain A20 was isolated and purified,
as described (Chong, 2001), and sequenced on the Pacific
Biosciences (PacBio) RS II and Illumina Hiseq 2000 systems
at AnnoGenne, Beijing, China. The genome was assembled
with SMRT analysis v2.3.0 and RS_HGAP_Assembly.3, and
the genome assembly was improved by using the software
Pilon (Walker et al., 2014). Identification of protein-coding
open reading frames (ORFs) and annotation of the ORFs were
performed by NCBI using the NCBI Prokaryotic Genome
Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/
annotation_prok/). Genes were functionally annotated by
BLAST search in COG, KEGG, Nr, and Pfam Databases
(Camacho et al., 2009; Finn et al., 2011). Putative insertion
sequence (IS) elements were identified by BLASTn search against
the IS finder Database (http://www-is.biotoul.fr).

Comparative Genomics Analysis
The nucleotide sequences of all genome-sequenced Sulfolobus
strains and the corresponding amino acid sequences were
retrieved from the GenBank database and the NCBI Reference
Sequence database (RefSeq) (Table 1). The dot plots of any
two genomes for their genomic synteny were profiled with
Mummer (Kurtz et al., 2004), and DNA-DNA hybridization
(DDH) values in silico were computed using the Genome-
to-Genome Distance Calculator (GGDC) version 2.0 (Meier-
Kolthoff et al., 2013) by submitting the genome sequences to
DSMZ (http://ggdc.dsmz.de) (Auch et al., 2010). All protein
sequences derived from the Sulfolobus genomes were compared
using all-by-all BLASTp with a threshold E-value 10−10, and
grouped into orthologous gene families by OrthoMCL (Li et al.,
2003). Gene groups consisting of orthologous genes present in all
genomes, in more than two but not all genomes or in only one
genome were defined as core, variable, or individual gene groups,
respectively. A Venn diagram of the orthologous analysis of gene
families was built with R version 3.0.2.

Phylogenetic Analysis
The 16S rRNA gene sequences of Sulfolobus species were
extracted from the genome sequences and aligned using the
CLUSTAL X program (Thompson et al., 1997). Phylogenetic
trees were constructed using the neighbor-joining, maximum-
parsimony, and maximum-likelihood methods implemented in
the software package MEGA version 5.0 (Tamura et al., 2011).
Evolutionary distances were calculated using Kimura’s two-
parameter model. The resulting tree topologies were evaluated by
bootstrap analysis with 1000 re-samplings.

Metabolic Pathway Assignments
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Ogata et al., 1999; Kanehisa and Goto, 2000) was
used in the analysis of the metabolic pathways of Sulfolobus
species. All amino acid sequences derived from the genomes
of Sulfolobus were submitted to the KEGG database, and the
metabolic functions of these sequences were annotated by kass
(Moriya et al., 2007). The KO (KEGG Orthology) term and
corresponding KEGG pathway for each ORF were automatically
generated and provided.

Sequencing Data Accession Number
The genome data of Sulfolobus sp. A20 have been deposited in the
Genbank database under accession number CP017006.

RESULTS

General Features of Sulfolobus sp. A20
Sulfolobus sp. A20 was isolated from a hot spring in Costa
Rica. The cells of strain A20 were irregular cocci (0.8–1.0µm
in diameter) with flagella (Figure 1). Growth occurred at
temperatures between 65 and 85◦C, and pH between 2.0 and
4.5. The strain grew optimally at 75–85◦C and pH 4.0. The
doubling time of the strain was∼14.3 h under the optimal growth
conditions.

The Genome of Sulfolobus sp. A20
The genome of strain A20 was sequenced using a combination of
PacBio RS II and Illumina Hiseq 2000 sequencing technologies
with a 2 × 100 bp mode at a 150-fold and a 700-fold
coverage, respectively. The genome consists of a single circular
chromosome of 2,688,317 bp with 2591 ORFs, a single 16-
23S rRNA cluster, a 5S rRNA gene, 45 tRNA genes and 5
miscellaneous RNA genes (misc RNAs). The average size of
an ORF is ∼291 amino acids. No extra-chromosomal genetic
elements were detected in the strain. The G+C content of the
genome is 34.78%. BLASTp searches identified matches in the
protein database at GenBank for ∼97.22% of the total ORFs of
strain A20 (2519 ORFs). Among these ORFs, 2223 (∼85.80%
of total ORFs) are most closely related to those from the genus
Sulfolobus, and 227 are closely related to those from other genera
of the Sulfolobales. The general features of the strain A20 genome
are compared with those of the other sequenced Sulfolobus
genomes in Table 1.

Strain A20 encodes a complete set of enzymes and proteins
involved in DNA transactions, including DNA replication,
DNA repair and recombination, and RNA transcription. These
proteins are highly conserved among the Sulfolobus strains,
whose genomes have been sequenced, and share the highest
sequence identity with those from S. islandicaus or S. solfataricus.
For example, DNA replication proteins, including ORC1-type
DNA replication proteins (BFU36_RS04705, BFU36_RS02195,
and BFU36_RS09865), mini-chromosome maintenance protein
(MCM, BFU36_RS02210), primase subunits (BFU36_RS01270,
BFU36_RS03220, and BFU36_RS03380), proliferating
cell nuclear antigen subunits (PCNA, BFU36_RS01275,
BFU36_RS03780, and BFU36_RS03820), replication factor
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TABLE 1 | Sulfolobus strains with complete genome sequences.

Strains GenBank

accession no.

NCBI RefSeq

no.

Genome size

(Mb)

No. of

ORFs

No. of

rRNAs

No. of

tRNAs

GC% Habitat

Sulfolobus sp. A20 CP017006 NZ_CP017006 2.69 2591 3 45 34.8 Las Palias, Costa Rica

S. solfataricus P2 AE006641 NC_002754 2.99 2896 3 45 35.8 Naples, Italy

S. solfataricus P1 LT549890 NZ_LT549890 3.03 2967 3 45 35.8 Naples, Italy

S. solfataricus 98/2 CP001800 NC_017274 2.67 2605 3 45 35.8 Yellowstone, USA

S. islandicus REY15A CP002425 NC_017276 2.52 2535 3 46 35.3 Reykjanes, Iceland

S. islandicus HVE10/4 CP002426 NC_017275 2.66 2692 3 44 35.1 Hvergaardi, Iceland

S. islandicus LAL14/1 CP003928 NC_021058 2.47 2505 3 45 35.1 Iceland

S. islandicus L.S.2.15 CP001399 NC_012589 2.74 2767 3 45 35.1 Lassen, USA

S. islandicus 14.25 CP001400 NC_012588 2.61 2682 3 45 35.1 Kamchatka, Russia

S. islandicus M16.4 CP001402 NC_012726 2.59 2678 3 45 35.0 Kamchatka, Russia

S. islandicus M16.27 CP001401 NC_012632 2.69 2766 3 45 35.0 Kamchatka, Russia

S. islandicus Y57.14 CP001403 NC_012622 2.7 2708 3 48 35.4 Yellowstone, USA

S. islandicus YN15.51 CP001404 NC_012623 2.81 2791 3 46 35.3 Yellowstone, USA

S. acidocaldarius

DSM639

CP000077 NC_007181 2.23 2224 3 48 36.7 Yellowstone, USA

S. acidocaldarius N8 CP002817 NC_020246 2.18 2188 3 48 36.7 Hokkaido, Japan

S. acidocaldarius

Ron121

CP002818 NC_020247 2.22 2227 3 30 36.7 Ronneburg, Germany

S. acidocaldarius

SUSAZ

CP006977 NC_023069 2.06 2038 3 46 36.3 Los Azufres, Mexico

S. tokodaii str.7 BA000023 NC_003106 2.69 2764 3 46 32.8 Kyushu, Japan

C (RFC, BFU36_RS02175, and BFU36_RS02180) and
DNA polymerases (BFU36_RS05445, BFU36_RS13105, and
BFU36_RS03245), from strain A20 closely resemble their
homologs at the amino acid sequence level from the other
Sulfolobus strains. Strain A20 also encodes small, basic and
nucleic acid-binding proteins, i.e., Cren7 (BFU36_RS01545),
two Sul7d proteins (BFU36_RS09545 and BFU36_RS11200),
and two members of the Sac10b family (BFU36_RS01605 and
BFU36_RS01615).

Like other Sulfolobus strains, strain A20 carries integrative
elements, CRISPR-based immune systems and antitoxin/toxin
systems (Guo et al., 2011). About 13 ORFs are annotated
as the homologs of transposase, and nine copies of putative
insertion sequence (IS) elements are found. Among these
IS elements, eight belong to the IS200/605 family and
one to the IS607 family. Six CRISPR loci of the two
subtypes (I-A and III-B) and cmr1-6 proteins are identified
(Grissa et al., 2007). No apparent sequence homology was
detected between the spacers and the known sequences of
Sulfolobus/Acidianus viruses. Five copies of family II (VapBC)
antitoxin-toxin gene pairs are found in the strain A20
genome.

Dot plot analysis reveals no genomic synteny between strain

A20 and any of the genome-sequenced Sulfolobus strains.

Pairwise DNA-DNAhybridization (DDH) in silico between strain

A20 and one of the tested Sulfolobus strains, including S. tokodaii

str.7, S. acidocaldarius DSM 639, three S. solfataricus strains, and
four S. islandicus strains, produces DDH values between 16.7 and
23.1% (Table 2), which are far below the 70% threshold proposed

FIGURE 1 | A transmission electron micrograph showing the

morphology of Sulfolobus sp. A20.

for species definition (Tindall et al., 2009). These results suggest
that strain A20 represents a novel Sulfolobus species.

Phylogenetic Analysis of Sulfolobus Strains
The 16S rRNA gene sequence of strain A20 was retrieved
from the genome sequence of the strain. BLAST searches show
that it is most similar (∼95.6% identity) to those from several
isolates of S. islandicus and S. solfataricus. The known Sulfolobus
species appear to group into two main clades, as indicated
by the phylogenetic analysis based on the 16S rRNA gene

Frontiers in Microbiology | www.frontiersin.org 4 November 2016 | Volume 7 | Article 1902

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dai et al. Genome of Sulfolobus sp. A20

FIGURE 2 | Phylogenetic tree of genome-sequenced Sulfolobus strains based on the 16S rRNA gene sequences. Metallosphaera sedula DSM 5348 is

used as the outgroup. Numbers denote the bootstrap percentages obtained with 1000 replicates.

TABLE 2 | In silico DNA-DNA hybridization (DDH) values (%) between Sulfolobus strainsa.

Sample Strain SSO SIS SAC STO

A20 P1 P2 98/2 LS2.15 REY15A HVE10/4 LAL14/1 DSM639 str7

Strain A20 – 16.80 16.80 16.80 16.70 16.70 16.70 16.70 23.10 19.60

SSO-P1 – 94.80 91.50 38.00 37.50 37.30 37.40 18.80 24.00

SSO-P2 – 91.10 40.00 39.30 38.90 39.20 18.20 23.00

SSO-98/2 – 37.20 37.00 36.90 36.90 18.90 24.30

SIS-LS2.15 – 85.80 87.80 81.70 18.40 20.00

SIS-REY15A – 94.90 94.10 18.10 21.10

SIS-HVE10/4 – 94.00 18.20 21.70

SIS-LAL14/1 – 18.10 21.20

SAC-DSM639 – 15.70

STO-str7 –

aSSO, S. solfataricus; SAC, S. acidocaldarius; SIS, S. islandicus; STO, S. tokodaii.

sequences (Figure 2). Strain A20, together with S. islandicus,
S. solfataricus, S. shibatae, and S. tengchongensis, comprise one
clade, while S. acidocaldarius, S. tokodaii, S. vallisabyssus, and
S. yangmingensis make up the other. S. metallicus DSM6482,
a strictly chemolithoautotrophic and ore-leaching Sulfolobus
species, appears to be phylogenetically distant from the two main
clades.

Core, Variable, and Individual Genes
A total of 18 Sulfolobus genomes, including the strain A20

genome, have been completely sequenced so far. To gain
insight into the similarities and differences of the genomes from
various Sulfolobus species, we compared the genome sequences
available for the type strains of four Sulfolobus species, i.e., S.
acidocaldarius DSM 639, S. islandicus REY15A, S. solfataricus

Frontiers in Microbiology | www.frontiersin.org 5 November 2016 | Volume 7 | Article 1902

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dai et al. Genome of Sulfolobus sp. A20

FIGURE 3 | Venn diagram of the conservation of protein-coding ORFs of the genome-sequenced type strains of Sulfolobus species. The overlaps

between the ellipses show the gene groups shared by different strains with the number of shared gene groups indicated. The number of genes for each strain in a

section of the diagram is shown by an underlined number in italics. Each underlined number in italics in the middle of the diagram indicates the number of core genes

for a strain analyzed.

P1, and S. tokodaii str.7 as well as strain A20. The numbers
of predicted ORFs for the five genomes are 2663 ± 439. The
ORFs from these genomes are grouped into homologous groups.
A total of 1368 gene groups form the core gene groups of the
genus Sulfolobus (Figure 3). This number corresponds to 1801
genes (∼69.51% of the total genes) in strain A20 (Table S1).
Notably, the difference between these two numbers (i.e., 1368
gene groups vs. 1801 genes) is greater in strain A20 than in other
Sulfolobus strains analyzed in this study, suggesting greater gene
redundancy in A20 than in the other strains. Eight hundred and
sixty nine gene groups are found in more than one, but not all,
of the five genomes. These groups may constitute the variable
parts of the Sulfolobus genomes. Strain A20 shares most gene
groups with S. solfataricus P1 (1797), in agreement with their
closest phylogenetic relationship. Moreover, the tested Sulfolobus
genomes contain variable numbers of individual gene groups.
In strain A20, 140 genes (∼5.40% of the total ORFs) are not
found in other four Sulfolobus strains. By comparison, S. tokodaii
str.7 has the most individual genes (407, or ∼14.72% of the total
ORFs), whereas S. islandicus REY15A has the fewest individual
genes (101, or ∼3.98% of the total ORFs). Notably, the majority
(>80%) of the individual genes encode hypothetical proteins.
Conceivably, the exact numbers of core, variable and individual

genes in Sulfolobus strains will change as the sample size increases
but the general pattern of the distribution of these three groups
of genes will likely remain.

Metabolic Pathways
KEGG analyses reveal that the genome of strain A20 contains 84,
3 and 10 genes encoding functions in central carbon metabolism,
nitrogen metabolism and sulfur metabolism, respectively. As
compared to other known Sulfolobus genomes, the A20 genome
appears to have similar numbers of the genes encoding proteins
or protein subunits involved in carbon and sulfur metabolism
but fewer genes for nitrogen metabolism. In addition, a
total of 15 different ATP-binding cassette (ABC) transporters
are identified in the strain A20 genome. By comparison,
the numbers of ABC transporters are 10–14 in various S.
islandicus strains (Guo et al., 2011), 11 in S. solfataricus P2
(She et al., 2001), 6 in S. tokodaii str.7 (Kawarabayasi et al.,
2001), and 3 in S. acidocaldarius DSM639 (Chen et al., 2005).
The ABC transporters in strain A20 include those for the
transportation of trehalose (BFU36_RS00560–BFU36_RS00575,
4 ORFs in all), arabinogalactan oligomer/maltooligosaccharide
(BFU36_RS00855–BFU36_RS00870, 4 ORFs), and glucose/
arabinose (BFU36_RS07440–BFU36_RS07455, 4 ORFs, and
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TABLE 3 | Enzymes involved in the Entner-Doudoroff pathway in strain

A20.

KO term ORF(BFU36_RS) Enzyme Pathwaya

K18125 06060 Glucose dehydrogenase ED

K05308 06085 Gluconate dehydratase ED

K18126 06095 2-keto-3-deoxygluconate kinase sp ED

K11395 06090 2-keto-3-deoxy-6-

phosphogluconate

aldolase

sp ED

K18978 06100 Glyceraldehyde-3-phosphate

dehydrogenase

sp ED

K15634 10260 ED

K15635 03725 Phosphglycorate mutase

K01689 02015 Enoase ED

K00873 01505 Pyruvate kinase ED

K11395 06090 2-keto-3-deoxygluconate aldolase np ED

K18020 09145 np ED

K18021 09155 Glyceraldehyde dehydrogenase

K18022 09150

K11529 02730 Glycerate kinase np ED

asp, semi-phosphorylative pathway; np, non-phosphorylative pathway.

BFU36_RS08120–BFU36_RS08130, 3 ORFs), suggesting the
potential ability of strain A20 to utilize a wide range of sugars.
There are 16 ORFs belonging to eight glycoside hydrolase
(GHs) families, supporting the possibility that strain A20
uses a number of disaccharides and polysaccharides, e.g.,
cellobiose, maltotriose, mannan, and starch, for growth. A
gene (BFU36_RS09315) encoding a putative trehalose glycosyl-
transferring synthase (TreT) exists in the genome of strain
A20. TreT from Thermoproteus tenax has been shown to
catalyze trehalose synthesis from NDP-glucose or glucose
(Kouril et al., 2008). Therefore, it is possible that strain A20
is capable of trehalose synthesis. There is also a cluster of
four putative carotenoid biosynthetic genes (BFU36_RS07010–
BFU36_RS07025), encoding homologs of lycopene cyclase,
phytoene synthase, beta-carotene hydroxylase and phytoene
desaturase, respectively, in the strain A20 genome, and these
genes are arranged in the same manner as those in S. solfataricus
(Hemmi et al., 2003) (Table S2).

Central Carbon Metabolism
As revealed by the genome analysis of S. solfataricus P2,
strain A20 lacks the classical Embden–Meyerhof–Parnas
(EMP) and pentose phosphate pathways, since the genes
encoding the homologs of the key enzymes in these pathways,
i.e., phosphofructokinase in the former and glucose-6-
phosphate dehydrogenase, 6-phosphogluconolactonase and
6-phosphogluconate dehydrogenase in the latter, are missing
from the genomes (She et al., 2001; Ulas et al., 2012). Like
other genome-sequenced Sulfolobus strains, strain A20 may
utilize glucose through either the semi-phosphorylative or the
non-phosphorylative-Entner-Doudoroff (ED) pathway, or both
(Table 3). Like all other Sulfolobus species, strain A20 contains
all genes involved in the tricarboxylic acid (TCA) cycle, except

for those encoding the alpha-ketoglutarate dehydrogenase
complex. The genes for the alpha-ketoglutarate dehydrogenase
complex are replaced by those encoding the two subunits of
2-oxoacid:ferredoxin oxidoreductase, an enzyme catalyzing
coenzyme A-dependent oxidative decarboxylation of 2-oxoacids
(Zillig, 1991; Nishizawa et al., 2005). Intriguingly, the copy
number of the genes for 2-oxoacid:ferredoxin oxidoreductase
varies among Sulfolobus species. A single copy of the genes
are present in strain A20, S. solfataricus and S. islandicus,
whereas two copies of the genes are found in S. acidocaldarius
and S. tokodaii, in apparent agreement with the phylogenetic
relationship among these species (Figure 2).

All tested Sulfolobus strains are mixotrophs capable of
growing chemolithotrophically on CO2 with inorganic sulfur
compounds (RISCs) as an energy source or heterotrophically
on organic compounds (Brock et al., 1972; Keeling et al.,
1998; Jan et al., 1999). Two CO2 fixation pathways, i.e., the
3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle and
the dicarboxylate/4-hydroxybutyrate (DC/HB) cycle, have
been reported to exist in (hyper)thermophilic autotrophic
Crenarchaeota (Berg et al., 2010). Like the other 17 Sulfolobus
genomes, the strain A20 genome contains all of the genes
encoding homologs of the enzymes of the two cycles
(Figure 4).

Nitrogen Metabolism
Like all other Sulfolobus genomes, the A20 genome
contains genes encoding putative glutamate dehydrogenase
(BFU36_RS08195), glutamine synthetase (BFU36_RS04000,
BFU36_RS09525, and BFU36_RS10890) and the two subunits
of carbamoylphosphate synthase (BFU36_RS02825 and
BFU36_RS02830) (Table 4). It seems that all Sulfolobus
strains employ a common strategy in the utilization
of ammonium as a universal nitrogen source for the
synthesis of glutamate, glutamine and carbamoyl-
phosphate.

It is worth noting that four of the S. islandicus strains
(i.e., REY15A, LAL14/1, M14.25, and M16.27) isolated from
Iceland and Russia carry the narGHJI operon encoding a
nitrate reductase and a nitrate transporter (narK) (Table 4),
and, therefore, are potentially capable of utilizing nitrate. An
operon encoding the subunits of urease (UreAB and UreC)
and its accessory proteins (UreE, UreF, and UreG) is found
in the genomes of S. islandicus HEV10/4, S. tokodaii str.7
and S. metallicus DSM 6482, suggesting that these strains are
probably able to hydrolyze urea. Besides, genes for a putative
cyanate lyase and a formamidase are found in the genomes of S.
tokodaii str.7 and S. islandicus HEV10/4, respectively, suggesting
a broader spectrum of nitrogen sources for these Sulfolobus
strains.

Sulfur Metabolism
All sequenced Sulfolobus genomes contain a gene cluster
(BFU36_RS07995–BFU36_RS08005 in strain A20) coding for
sulfite reductase, phosphoadenosine phosphosulfate reductase,
and sulfate adenylyltransferase (Tables 4, 5). These enzymes
probably catalyze the conversion of hydrogen sulfide into
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FIGURE 4 | The 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle and the dicarboxylate/ 4-hydroxybutyrate (DC/HB) cycle in Sulfolobus.

Homologs of the enzymes in the two pathways in strain A20 are indicated by ORF numbers for the strain: ©1 acetyl-CoA caroxylase, ©2 malonyl-CoA reductase

(NADPH), ©3 malonate semialdehyde reductase (NADPH), ©4 3-hydroxypropionate-CoA ligase (AMP-forming), ©5 3-hydroxypropionyl-CoA dehydratase, ©6

acrryloyl-CoA reductase (NADPH), ©7 propionyl-CoA carboxylase, ©8 methylmalonyl-CoA epimerase, ©9 methylmalonyl-CoA mutase, ©10 succinyl-CoA reductase, ©11

succinic semialdehyde reductse (NADPH), ©12 4-hydroxybutyrate-CoA ligase (AMP forming), ©13 4-hydroxybutyryl-CoA dehydratase, ©14 crotonyl-CoA hydratase, ©15

(S)-3-hydroxybutyryl-CoA dehydrogenase (NAD+), ©16 acetoacetyl-CoA beta-ketothiolase, ©17 pyruvate synthase, ©18 pyruvate:water dikinase, ©19 PEP carboxylase, ©20

malate dehydrogenase (NAD), ©21 fumarate hydratase, ©22 fumarate reductase, ©23 succinyl-CoA synthetase (ADP-forming).

sulfite, and the subsequent transformation of sulfite into sulfate,
with concomitant generation of ATP through substrate level
phosphorylation (Kappler and Dahl, 2001; Rohwerder and Sand,
2007). A sulfide:quinine oxidoreductase (SQR) gene also exists
in all Sulfolobus genomes (BFU36_RS09190 in strain A20). SQR
may catalyze the oxidation of hydrogen sulfide into polysulfide
(Rohwerder and Sand, 2007; Brito et al., 2009). Intriguingly, no
homologs of sulfur oxygenase/reductase (SOR), a key enzyme
for archaeal sulfur oxidation (Kletzin, 1992; Urich et al., 2006),
are found in the genomes of Sulfolobus except for that of S.
tokodaii str.7 (Kawarabayasi et al., 2001). The mechanism of
elemental sulfur oxidization in Sulfolobus strains lacking SOR
remains unknown. Putative genes for sulfur reductase (SRE) and
thiosulfate:quinine oxidoreductase (TQO), which serve key roles
in the reduction of elemental sulfur into hydrogen sulfide and
the transformation of thiosulfate into tetrathionate, respectively
(Laska et al., 2003; Guiral et al., 2005; Liu et al., 2012),
are also found variably in Sulfolobus genomes (Tables 4, 5).
Strain A20 and S. tokodaii str.7 carry doxDA (BFU36_RS07850–
BFU36_RS07855), which encode a TQO homolog. S. islandicus
and S. solfataricus have an SRE-encoding gene cluster (sreABC)
and doxDA. S. acidocaldarius contains neither of the genes.

DISCUSSION

Sulfolobus sp. A20 was isolated from a hot spring in Costa
Rica and the genomic DNA of the strain was completely
sequenced. The addition of strain A20 to the growing list of the
members of the genus Sulfolobuswould aid further biogeographic
comparison and evolutionary studies of this interesting group of
archaea.

Sequence analysis indicates that strain A20 might be a
mixotroph. The strain appears to be able to fix CO2 via the
HP/HB cycle. It is also capable of metabolizing glucose through a
branched-ED pathway and the TCA cycle, as are other Sulfolobus
strains. In general, genes involved in central carbon metabolism
are conserved in all sequenced Sulfolobus genomes. Some of
the genes may exist in different numbers of copies and/or be
arranged differently among different species, and the differences
are in apparent agreement with the phylogenetic relationship
rather than the geographical separation of the species (Figure 2).
It is of interest that genes encoding enzymes for CO2 fixation
through both HP/HB and DC/HB cycles are found in strain
A20 and other sequenced Sulfolobus genomes. A similar finding
has been reported for the genome of Acidianus hospitalis W1, a
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TABLE 4 | Patterns of the distribution of genes encoding putative enzymes in nitrogen and sulfur metabolism in various Sulfolobus strainsa.

KO terms S. solfataricus S. islandicus S. acidocaldarius

A
2
0

P
2

P
1

9
8
/2

H
E
V
1
0
/4

R
E
Y
1
5
A

L
A
L
1
4
.1

M
1
6
.4

M
1
4
.2
5

M
1
6
.2
7

L
S
2
.1
.5

Y
G
5
7
.1
4

Y
N
1
5
.5
1

D
S
M
6
3
9

N
8

R
o
n
1
2
1

S
U
S
A
Z

S
.
to
k
o
d
a
ii
s
tr
.7

NITROGEN METABOLISMb

K00261 (gdhA)

K01915 (glnA)

K01955 (carB)

K01956 (carA)

K00370 (narG)

K00371 (narH)

K00373 (narJ)

K00374 (narI)

K02575 (narK)

K01725 (cynS)

K01455 (for)

SULFUR METABOLISMc

K01011 (tst)

K00381 (cysI)

K00390 (cysH)

K00958 (sat)

K01738 (cysK)

K01739 (metB)

K17218 (sqr)

K16936 (doxA)

K16937 (doxD)

K16952 (sor)

K17219 (sreA)

K17220 (sreB)

K17221 (sreC)

aThe presence of KO terms in nitrogen and sulfur metabolism is shown in gray.
bNitrogenmetabolism: gdhA, glutamate dehydrogenase (NAD(P)+ ) [EC 1.4.1.3]; glnA, glutamine synthetase [EC 6.3.1.2]; carB, carbamoyl-phosphate synthase large subunit [EC 6.3.5.5];

carA, carbamoyl-phosphate synthase small subunit [EC 6.3.5.5]; narG, nitrate reductase/nitrite oxidoreductase, alpha subunit [EC 1.7.5.1; 1.7.99.4]; narH, nitrate reductase/nitrite

oxidoreductase, beta subunit [EC 1.7.5.1; 1.7.99.4]; narJ, nitrate reductase delta subunit; narI, nitrate reductase gamma subunit [EC 1.7.5.1; 1.7.99.4]; narK, nitrate/nitrite transporter;

cynS, cyanate lyase [EC 4.2.1.104]; for, formamidase [EC 3.5.1.49].
cSulfur metabolism: tst, thiosulfate sulfurtransferase [EC 2.8.1.1]; cysI, sulfite reductase (NADPH) hemoprotein [EC 1.8.1.2]; cysH, phosphoadenosine phosphosulfate reductase [EC

1.8.4.8; 1.8.4.10]; sat, sulfate adenylyltransferase [EC 2.7.7.4]; cysK, cysteine synthase A [EC 2.5.1.47]; metB, cystathionine gamma-synthase [EC 2.5.1.48]; sqr, sulfide:quinone

oxidoreductase [EC 1.8.5.4]; doxA, thiosulfate dehydrogenase [quinone] small subunit [EC 1.8.5.2]; doxD, thiosulfate dehydrogenase [quinone] large subunit [EC 1.8.5.2]; sor, sulfur

oxygenase/reductase [EC 1.13.11.55]; sreA, sulfur reductase molybdopterin subunit; sreB, sulfur reductase FeS subunit; sreC, sulfur reductase membrane anchor.

facultative anaerobe of the Sulfolobales (You et al., 2014). The
two pathways differ in their sensitivity to oxygen, although they
share many enzymes and intermediates in common (Ramos-
Vera et al., 2011). The HP/HB cycle is more oxygen-tolerant
than the DC/HB cycle since pyruvate synthase, one of key
enzymes in the latter cycle, is oxygen sensitive (Jahn et al., 2007;
Huber et al., 2008). As aerobes or microaerobes, members of the
Sulfolobales have been shown to fix CO2 through the HP/HB
cycle. However, genes coding for putative pyruvate synthase,
pyruvate:water dikinase and PEP carboxylase in the DC/HB
cycle were found to be expressed, although at a low level, in
Metallosphaera sedula, an aerobe closely related to Sulfolobus

strains (Berg et al., 2010). Therefore, we infer that the DC/HB
pathway may also be employed by Sulfolobus to fix CO2 under
certain conditions.

Similarly, genes involved in the two ED pathways, i.e.,
the semi-phosphorylated pathway and the non-phosphorylated
pathway, are also conserved in all the sequenced Sulfolobus
genomes. The two ED pathways were named as the archaeal
branched ED pathway (Sato and Atomi, 2011), and their
functions were verified in S. solfataricus (Ahmed et al., 2005).
The redundancy of the pathways for central carbon metabolism
in Sulfolobusmay contribute to the adaption of the organisms to
thriving in the extreme and oligotrophic habitats.
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TABLE 5 | Predicted reactions in sulfur metabolism in Sulfolobusa.

Strains A20 S. acidocaldarius S. solfataricus S. islandicus S. tokodaii

thiosulfate + cyanide ⇌ sulfite + thiocyanate (tst) + + + + +

hydrogen sulfide + 3NADP+ + 3H2O ⇌ sulfite + 3NADPH + 3H+ (sqr) + + + + +

PAP + sulfite + thioredoxin disulfide ⇌ PAPS + thioredoxin (cysH) + + + + +

APS + diphosphate ⇌ sulfate + ATP (sat) + + + + +

Sulfur → hydrogen sulfide + thiosulfate (sor) − − − − +

Thiosulfate + 6-decylubiquinone ⇌ tetrathionate + 6-decylubiquinol (doxAD) + − + + +

Sulfur + hydrogen ⇌ hydrogen sulfide (sre) − − + + −

aAPS, adenylyl sulfate; PAPS, 3′-phosphoadenylyl sulfate; PAP, adenosine 3′, 5′-bisphosphate.

All Sulfolobus genomes contained a complete pathway for
ammonium assimilation, which is similar to that found in
heterotrophic bacteria (Zalkin, 1993; Guo et al., 2011; Wang
et al., 2016), suggesting that Sulfolobus prefers to use ammonia
as the nitrogen source. Strain A20 is probably unable to use
other inorganic nitrogen sources for growth, while several of
the S. islandicus strains and S. tokodaii str.7 might be able to
use nitrate, urea, cyanate or formamide as their nitrogen source.
These results point to the diversity of nitrogen utilization by
Sulfolobus. It remains to be determined if the difference in the
ability of Sulfolobus strains to use inorganic nitrogen compounds
correlates with the availability of the nitrogen sources in the
habitats of the strains.

Genomic analyses reveal the presence of transposase
genes and repeating sequences near the nar gene cluster,
suggesting the potential mobility of the cluster. The nar
cluster was found at either of the two genomic sites in
four S. islandicus strains containing the cluster. In the
two S. islandicus strains from Iceland (i.e., REY15A and
LAL14/1), the nar cluster resides on the complementary
strand downstream of a sequence encoding a GntR family
transcriptional regulator, a CoA ester lyase and an esterase
(SIRE_RS02235–SIRE_RS02245 in REY15A and SIL_RS02325–
SIL_RS02335 in LAL14/1). This site of potential nar insertion is
termed insertion site A. On the other hand, in the two strains
from Kamchatka (i.e., M16.27 and M14.25), the cluster is
located downstream of a sequence encoding a 3-hydroxyacyl-
CoA dehydrogenase, an AMP-dependence synthetase and an
acetyl-CoA synthetase (M1627_RS04095–M1627_RS04105 in
M16.27 and M1425_RS04080–M1425_RS04090 in M14.25).
We denote this potential location for the insertion of the nar
cluster insertion site B. Although only two strains were found
to contain the nar cluster at insertion site A, this insertion
site is present in all Sulfolobus strains analyzed in this study.
Variation occurs downstream of the site. There are seven
types of gene organization downstream of insertion site A in
the 18 strains (Tables S3, S4). The tandem array of the three
genes at insertion site B is found only in S. islandicus strains
isolated form Kamchatka, Yellowstone National Park (YNP),
and Lassen in USA (Tables S3, S4). Three general patterns of
gene arrangement were identified at insertion site B. The two S.
islandicus strains from USA (i.e., L.S 2.15 and Y57.14) are of one
type, and the two Kamchatka S. islandicus strains (i.e., M16.27

and M14.25) belong to the other type. Remarkable variation in
gene arrangement indicates that the two sites are where active
transposition has taken place. The biogeographical difference in
genomic location of the nar gene cluster presumably resulted
from the transposition of the cluster. Since the presence of
the nar cluster is restricted to S. islandicus and some of the
strains in this species lack the gene cluster, we hypothesize
that the species originally carried the cluster. When it spread
to various geographical locations, loss or transposition of the
gene cluster occurred, producing variants that thrive in various
parts of the globe today. Whether the nar cluster was originally
acquired through horizontal gene transfer is unclear. However,
no significant difference in GC content between the gene cluster
and the genome was detected.

Elemental sulfur metabolism is complex in Sulfolobus, and
relatively low conservation in sulfur metabolism exists among
the sequenced genomes. Strain A20 is likely capable of utilizing
hydrogen sulfide because of the presence in its genome a
conserved gene cluster for sulfur metabolism (Kawarabayasi
et al., 2001; Chen et al., 2005). Although most Sulfolobus strains
have been described as sulfur-oxidizing microbes (Brock et al.,
1972), the biochemical process of elemental sulfur oxidation
has yet to be fully understood. The sor gene encoding the
classical sulfur oxygenase/reductase required for the initial step
in the archaeal sulfur oxidation pathway (Urich et al., 2006)
is present in none of the sequenced Sulfolobus genomes except
for the genome of S. tokodaii str.7 (Kawarabayasi et al., 2001;
She et al., 2001; Chen et al., 2005; Guo et al., 2011; Jaubert
et al., 2013). Instead, there is a gene cluster encoding sulfur
reductase (SRE), which reduces S0 with the help of a hydrogenase
in anaerobically grown Acidianus ambivalens (Laska et al.,
2003), in the genomes of S. solfataricus and S. islandicus.
However, no hydrogenase genes have been identified in the
two species. So, whether and how the sulfur reductase catalyzes
sulfur reduction in the absence of a hydrogenase under aerobic
conditions remains to be determined. It has been reported
that Sulfolobus tokodaii str.7 grows poorly in the presence
of elemental sulfur under the facultatively chemolithotrophic
conditions (Suzuki et al., 2002), although it encodes a homolog of
the classical sulfur oxygenase/reductase. However, the strain was
able to oxidize hydrogen sulfide into sulfate (Kawarabayasi et al.,
2001), suggesting the possibility of functional divergence of the
homologs of sulfur oxygenase/reductase in Sulfolobus. Therefore,
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further investigation is needed to understand the mechanisms
underlining elemental sulfur metabolism in Sulfolobus.

The sre gene cluster is flanked upstream by a hypothetical
protein and a 4Fe-4S ferredoxin and downstream by another
4Fe-4S ferredoxin and two hypothetical proteins (Tables S3, S4).
This entire sequence is located downstream of a cupin gene.
Based on the presence of genes between cupin and the sre cluster,
three types of gene arrangement were identified at this site. A
transposase gene is located between cupin and the sre cluster in
S. solfataricus strains P1 and P2, both of which were isolated
from Naples, Italy. However, no transposase gene at this site
was found in S. solfataricus strain 98/2 or S. islandicus strains
from YNP. Instead, a gene for the large subunit of nitricoxide
redutase is present at this site in these strains. By comparison, a
pseudogene is in the place of the transposase gene in S. islandicus
strain 14.25 from Kamchatka. The two other S. islandicus strains
(i.e., M16.4 and M16.27) from Kamchatka contain multiple
transposase genes as well as hypothetical proteins at the site.
Patterns of gene arrangement upstream of the sre gene cluster
appear to carry distinct geographical markers, since they exhibit
similarity among closely located strains of the same species.
Whether the function of the sre gene cluster is affected by its
genomic environment is unclear.

A putative tusA-dsrE2-dsrE3A gene cluster is linked to the
hdr cluster (hdrC1-hdrB1A-hyp-hdrC2-hdrB2) in all Sulfolobus
genomes. The hdr cluster encodes a heterodisulfide-reductase
complex, which may be involved in sulfur transfer and reversible
reduction of the disulfide bond X-S-S-X in Acidithiobacillus
ferrrooxidans (Quatrini et al., 2009; Liu et al., 2014), while the
tusA-dsrE2-dsrE3A gene cluster may encode functions in the
transformation of tetrathionate into thiosulfate inMetallosphaera
cuprina (Liu et al., 2014). How the two genomically linked gene
clusters function in sulfur metabolism remains to be understood.

Taken together, our genomic analyses reveal that these
Sulfolobus species are conserved in central carbon metabolism,

but differ in the ability to use inorganic nitrogen and sulfur
sources. The ability of Sulfolobus to utilize nitrate or sulfur
is encoded by a gene cluster flanked by IS elements or their
remnants. These clusters appear to have become fixed at a specific
genomic site in some strains and lost in other strains during the
course of evolution.
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