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INTRODUCTION

Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human
consumption worldwide and represents a rich source of protein, vitamins, minerals, and fiber
(Broughton et al., 2003). The recent sequencing of the common bean genome, together with the
availability of genomic and transcriptomic data have provided useful information to common bean
breeders that will help in the development of genotypes with desirable characteristics (Schmutz
et al., 2014; Vlasova et al., 2016).

Endornaviruses are persistent viruses with a non-encapsidated RNA genome that ranges
from 9.8 to 17.6 kb, infect plants, fungi, and oomycetes, are transmitted only via gametes, and
do not cause apparent symptoms (Stielow et al., 2011; Fukuhara and Gibbs, 2012). Although
endornaviruses have been reported in several economically important plant species, little is known
about the effect they have on their hosts. One of the major obstacles to study their effect to the host
is the lack of a transmission method. In plants, endornaviruses do not move from cell to cell and
spread only during cell division.

Recently, Khankhum et al. (2015) reported that most common bean genotypes ofMesoamerican
origin are double-infected with Phaseolus vulgaris endornavirus 1 (PvEV1) and Phaseolus
endornavirus 2 (PvEV2); in contrast, genotypes of Andean origin are often endornavirus-free. Black
Turtle Soup (BTS), a cultivar of Mesoamerican origin has been reported to be double-infected by
these two endornaviruses (Okada et al., 2013). A BTS endornavirus-free selection (BTS−), obtained
from an endornavirus-infected BTS (BTS+) seed lot has been reported by Okada et al. (2013). To
establish the bases for future research on the role that endornaviruses play in the common bean
plant, and the effect these viruses have on the host gene expression, we conducted RNAseq on two
BTS lines: one endornavirus-infected and the other endornavirus-free.

VALUE OF THE DATA

Currently, there are no sources of gene annotation for any organism infected with endornaviruses.
This information will be helpful in determining the nature of the symbiotic interaction between

Abbreviations: BARD, Binational Agricultural Research and Development; BTS, Black Turtle Soup; BTS−, Black Turtle Soup

endornavirus-free; BTS+, Black Turtle Soup endornavirus-infected; FPKM, Fragments per kilobase of transcript per million

mapped reads; GO, Gene ontology; PvEV1, Phaseolus vulgaris endornavirus 1; PvEV2, Phaseolus vulgaris endornavirus 2.
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endornaviruses and their host; more specifically between
Mesoamerican common bean and PvEV1 and PvEV2.

These data may help to identify relevant genes in common
bean that are differentially expressed under endornavirus
infections.

MATERIALS AND METHODS

Library Preparation and Transcriptome
Sequencing
Seeds from the BTS− selection and seeds from a BTS+ plant
obtained in previous investigations (Okada et al., 2013) were
increased at least three generations by self-pollination. Crosses
using the BTS+ selection as male and the BTS− as female
were conducted in the greenhouse facilities of the Department
of Plant Sciences, North Dakota State University, Fargo, ND.
From the F1 generation, a plant double-infected with PvEV1
and PvEV2 designated BTS+ 3 was selected and increased
two generations. The original BTS− line was increased two
generations and designated BTS− 4. For the detection of the
two viruses in the plants selected for the RNAseq, we used
two methods reported in previous investigations, electrophoretic
analysis of extracted viral dsRNA and RT-PCR using specific

FIGURE 1 | (A) Heatmap of normalized expression matrix of the six RNAseq libraries. Highly expressed genes are in red while low expressed genes are in green. (B)

Heatmap of the Pearson correlation between the expression levels of differentially expressed genes. Red color marks highly correlated samples while green color

marks low correlation. BTS_minus, endornavirus-free sample; BTS_plus, endornavirus-infected sample.

primers for each virus (Khankhum et al., 2015, 2016). Seeds of
each line were planted under controlled temperature (25◦C) and
light (16 h photoperiod) conditions. Three weeks after planting,
100mg of leaf tissue (trifoliate leaves) was collected, placed in
a 1.5ml nuclease-free microcentrifuge tube, and immediately
submerged in liquid nitrogen. Samples were kept at −70◦C until
ready for RNA extraction. Total RNA was extracted following
the extraction procedure of the SpectrumTM Plant Total RNA
Kit (Sigma-Aldrich, St. Louis, MO). Collected leaf tissues were
ground in liquid nitrogen using a micro-pestle. To eliminate
residual DNA contamination, the RNA was DNase treated using
the On-Spin Column DNase I Kit (MO BIO Laboratory, Inc.,
Carlsbad, CA) following the manufacturers’ directions. Total
RNA was eluted out from the column using nuclease-free
water. The quantity and quality of the RNA was determined
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA). Samples were placed in RNAstable R© (Biomatrica
Inc., San Diego, CA) tubes and shipped for sequencing. RNA
sequencing was conducted by SeqMatic (SeqMatic, Fremont,
CA). A total of six RNA libraries, three from individual plants
of BTS− 4 and three from individual plants of BTS+ 3, were
prepared using Illumina TruSeq Stranded Total RNA Library
Prep Kit (Illumina, Diego, CA) and sequenced using the Illumina
Hiseq2500 platform to generating 50 bp single-end reads.
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Bioinformatics Analysis
The reference genome of common bean (P. vulgaris) version
1.0 (Schmutz et al., 2014) was downloaded from the Phytozome
website (Goodstein et al., 2012). Six RNAseq libraries of
BTS common bean, three double-infected with PvEV1 and
PvEV2 and three endornavirus-free were mapped to the
reference genome using bowtie software (Langmead and
Salzberg, 2012). Quantification of the transcript expression
was conducted using RSEM method (RNA-Seq by Expectation
Maximization) (Li and Dewey, 2011). Differential expression
analysis was done using R bioconductor package edgeR
(Robinson et al., 2010). To associate sequences and gene
expression data with biological functions, gene ontology (GO)
distribution analysis was conducted using Blast2GO (Conesa
et al., 2005).

RESULTS

Differential expression analysis of RNAseq data revealed
that a total of 132 genes were differentially expressed. In
the endornavirus-infected line 84 genes were down-regulated
while 48 genes up-regulated (Supplementary Tables 1, 2).
Figures 1A,B shows a visual reference of the differentially
expressed gene vs. samples heatmap and Pearson correlation
heatmap. GO distribution data on up-regulated and down-
regulated genes is provided as excel files in Data Sheets 1
and 2 respectively in Supplementary Material. Gene ontology
distribution show that oxidation-reduction processes were
the main process associated with endornavirus infection.
Reduction–oxidation (redox) changes have been reported to
be associated with plant response to pathogen infection
(Frederickson Matika and Loake, 2014), environmental stresses,
development, and acclimation (Dietz, 2014; Dietz et al.,
2016; Carmody et al., 2016). Data Sheets 3–5 contain excel
files with expression levels, p-values, and FPKM (fragments
per kilobase of transcript per million mapped reads) values

respectively for all genes of the virus-infected and virus-free
plants.

Direct Link to Deposited Data and
Information to Users
Raw reads were deposited into the NCBI Sequence Read Archive
(SRA) database (https://www.ncbi.nlm.nih.gov/sra/srp090495)
under accession SRP090495.
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