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Mangrove rhizosphere environment harbors diverse populations of microbes, and
some evidence showed that rhizobacteria behavior was regulated by quorum sensing
(QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems
may shed light on the bacterial roles and lead to a better understanding of the
symbiotic interactions between plants and microbes. The aims of the current study
focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in
Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were
screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene
sequencing and dereplication analyses identified 24 species from the positive isolates,
which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and
Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL
profiles and detected at least one active compound in the supernatant of these 24
cultivable AHL-producers. The active extracts from these bacterial isolates were further
evaluated by ultra performance liquid chromatography-mass spectrometry, and the
carbon side chain length ranged from C4 to C14. This is the first report on the diversity
of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to
expand our knowledge of plant-bacteria interactions with respect to the maintenance of
wetland ecosystem health.

Keywords: quorum sensing, acyl homoserine lactone, diverse profiles, rhizobacteria, mangrove plant, plant-
microbes interactions

INTRODUCTION

Wetland plants contain dense and abundant microbial communities within the thin-layer of
root-adherent soil known as the rhizosphere environment (Bulgarelli et al., 2013). Rhizospheric
bacteria are living in the direct vicinity of the roots, and root-associated bacteria play important
roles in mangrove ecosystem involving nitrogen fixation (Alfaro-Espinoza and Ullrich, 2015),
nutrient acquisition (Holguin et al., 2001; Berendsen et al., 2012; Prakash et al., 2015), abiotic
stress tolerance (Rout and Southworth, 2013), as well as production of regulators of plant growth
and development such as auxins, cytokinins, and gibberellins (Kaai et al., 2008). Additionally, the
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microbial communities associated with root also play an essential
role in the matter cycle (for instance phosphorus, organic acids,
and siderophores) and maintenance of the health of wetland
ecosystem (Gomes et al., 2011; Zeng et al., 2014).

It is noteworthy that the structure and function of mangrove
bacterial community determined by the interactions not
only between bacterial groups but also between plants and
bacteria (Berendsen et al., 2012). Plant-bacteria symbiosis is
dependent on molecular and biochemical sensors to be able
to dynamically perceive fluxes in their internal and external
environments and coordinate the appropriate response at the
whole ecosystem level (Scharf et al., 2016). Nevertheless, based
on the extremely complex symbiotic relationship between
plants and microbes, more work is still needed in order
to better understand the important interactions between the
inter- or intra-players of ecosystem function, plants and
their associated microorganisms. Recent evidence showed that
chemical ecology is a robust and efficient methodology to
uncover the behavior and ecological functions of microbes
(Schwartz et al., 2016).

Quorum sensing (QS) is a common form of chemical
signaling receiving increasing attention from marine ecologists
recently. QS is the coordinated regulation of gene expression in
individual bacterial cells mediated by the population density-
dependent release of extracellular signals (autoinducers, AI)
to affect many diverse behaviors in a wide range of bacterial
species (Banerjee and Ray, 2016). Microbial communities
use a variety of molecules, including N-acyl-homoserine
lactones (AHLs, AI-1), furanosyl borate (AI-2), polypeptides,
and diketopiperazines, as autoinducing signals (Boyen et al.,
2009; Rajput et al., 2016). Among them, AHLs are arguably
the most common and important signaling molecules and
regulate various biological functions including biofilm formation,
genetic competence, symbiosis, motility, and the production
of virulence factors in bacteria (especially in Gram-negative
group; Atkinson and Williams, 2009; Hense and Schuster,
2015).

Based on the ecological importance of AHL signal, AHL
production and distribution in various niches such as sediment,
seaweed, coral, and marine snow have been extensively
investigated in the field of marine microbiology (D’Angelo-
Picard et al., 2005; Scott et al., 2006; DeAngelis et al.,
2008; Ransome et al., 2014; Singh and Reddy, 2014; Certner
and Vollmer, 2015; Jatt et al., 2015). At the same time,
the ecological distribution and potential functions of AHL-
producing microbes in plant field have also garnered much
attention. AHL signaling has been shown to play a role in the
manifestation of the plant-associated phenotypes of numerous
autotrophic, pathogenic, and symbiotic bacterial strains (Chong
et al., 2012; van Dam and Bouwmeester, 2016; Zhou et al.,
2016). A recent study demonstrated that AHL-producing Alpha-
proteobacteria participated in nitrogen-cycling in legumes plant
soil (Venturi and Keel, 2016). Enhanced specific activities of
nitrogen-cycling enzymes accompanied by bacterial density-
dependent behaviors in the rhizosphere soil suggest that AHL
could be a control point in the complex process of rhizosphere
nitrogen mineralization (DeAngelis et al., 2008; Lamers et al.,

2012). Furthermore, AHL molecules can affect plant gene
expression and physiological features such as growth rate, root
development, and resistance to microbial pathogens (Scott et al.,
2006; Ma et al., 2014). More recently, the presence of AHL
signaling molecules in soil microbes can affect the production
of extracellular hydrolytic enzymes, suggesting that AHLs may
take part in population communications and co-exist behaviors,
especially in plant and other complex environments (Crevelin
et al., 2013; Jayaraman et al., 2014; Schikora et al., 2016; Venturi
and Keel, 2016).

In wetland biosphere, bacterial communities associated with
the rhizosphere of wetland plants seem to be unique because
they are shaped by multiple plant and water factors and
can form complex biofilms themselves. Furthermore, AHL
often occurs in environments that are physically, biologically
and chemically heterogeneous. Identification of AHL-producing
microbes in rhizospheres of wetland plants could provide
important information for understanding bacteria-bacteria and
plant-bacteria interactions (Venturi and Keel, 2016). However,
to this day, the diversity features of AHL signaling molecules
in wetland sediments and their potential effects on plant
health are still limited, and only a few studies have focused
on mangrove plants (Zeng et al., 2014; Viswanath et al.,
2015).

In order to fill this gap, we set out to investigate the diversity
of cultivable AHL-producing rhizobacteria associated with the
mangrove plant Kandelia obovata by (1) screening for AHL
producers using reporter strains; (2) identifying positive bacterial
strains by molecular sequencing; (3) profiling the chemical
characteristics using thin-layer chromatography (TLC), ultra
performance liquid chromatography, and mass spectrometry
methods; and (4) drawing the taxonomical position of AHL-
producing candidates by evolutionary tree construction. The
aims of this work are to dissect the diversity profile of AHLs
in the mangrove rhizosphere environment to better understand
plant-microbial community associations on the micro-ecological
level.

MATERIALS AND METHODS

Chemicals and Reagents
Two AHL reporter strains were used in this study: Agrobacterium
tumefaciens strains A136 (pCF372-PtraI-lacZ; detection of
a broad range of C4-C12 AHLs) and KYC55 (pJZ372-
traI-lacZ; detection of a broad range of C4-C18 AHLs).
The two reporter strains were obtained as gifts from Dr.
Zhigang Zhou (Chinese Academy of Agricultural Sciences,
Beijing, China). Pseudomonas aeruginosa PAO1 (GDMCC No.
15692) and Escherichia coli DH5α (GDMCC No. 67878) from
Guangdong Microbiology Culture Center of China (GMCC)
were used as controls. X-Gal (5-bromo-4-chloro-3-indolyl-
β-D-galactopyranoside) and AHL standards were obtained
commercially from Sigma–Aldrich (St. Louis, MO, USA).
Microbial media and salt solutions were purchased from
Guoyao Co., Ltd. (Shanghai, China). Antibiotics, including
tetracycline (4.5 µg/ml), spectinomycin (50 µg/ml), kanamycin
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(50 µg/ml), ampicillin (100 µg/ml), and gentamicin (40 µg/ml),
were obtained from the National Vaccine and Serum Institute
(NVSI, Beijing, China). They were supplemented into the
growth medium whenever necessary. Methanol, acetonitrile,
and other reagents with purity of >99.5% (analytical grade or
chromatographical grade) were obtained from Shenggong Co.,
Ltd. (Shanghai, China).

Sample Collection and Preparation
Naturally grown K. obovata mature fine branch roots with
adhering rhizosphere soil were obtained from the Zhanjiang
Mangrove National Nature Reserve (110008′ E, 20054′ N). It
is the largest mangrove forest wetland reserve in China (about
20,279 ha), located along coastal areas of the Leizhou Peninsula
at the southernmost tip of China between the South China Sea
and the Tonkin Gulf, adjacent to Hainan Island. The Reserve
is characterized by a subtropical oceanic monsoon climate, and
the mean annual temperature is 22.9◦C. The K. obovata root
samples were collected at a depth of 10–15 cm (upper soil) using
a spade and sterile scissors and placed in sterile polythene bags
without air in coolers for transport to the laboratory. There
are three trial sites to collect the samples, in each site three
replicate rhizosphere soil were randomly collected to assemble
a composite sample, which was used for bacterial screening.
Three grams of root sample were added to 30 ml sterile
saline (15 ppt) in a 50 ml sterile centrifuge tube, incubated
with shaking for 30 min and then ultrasonicated for 30 s.
Finally, the root was discarded and the soil suspension was
separated into two 10 ml sterile tubes. One tube was processed
for analysis of the microbial diversity and another tube was
used for isolation of the bacterial strains. The environmental
parameters temperature, pH, salinity, and conductivity were
measured directly in the field, using a multiparameter probe
(Multiparameter Display System Model 650, YSI, Yellow Springs,
OH, USA).

Diversity of Rhizobacteria
DNA was extracted using the PowerSoil kit (MoBio, Carlsbad,
CA, USA) according to the manufacturer’s instructions.
DNA samples were sequenced by Beijing Genomics Institute
(BGI, Shenzhen, China) using the Illumina MiSeq platform
with the primer set Gray28F–Gray519R as previously
described (Lane, 1991). The obtained sequences were
processed using Mothur (Schloss et al., 2009) according to
the analysis pipeline described on the web site1. Sequences were
analyzed for features including biodiversity, community, and
taxonomy.

Isolation of Bacterial Strains
The rhizosphere soil suspension was vortexed for 10 s, serially
diluted and plated onto 2216E medium plates containing 1.2%
agar. The formulae of 2216E medium (per liter) is peptone
(5.0 g), yeast extract (1.0 g), ferric citrate (0.1 g), sodium chloride
(19.45 g), magnesium chloride (8.8 g), sodium sulfate (3.24 g),
calcium chloride (1.8 g), potassium chloride (0.55 g), sodium

1http://www.mothur.org/wiki/MiSeq_SOP

bicarbonate (0.16 g), potassium bromide (0.08 g), strontium
chloride (34.0 mg), boric acid (22.0 mg), sodium silicate (4.0 mg),
sodium fluoride (2.4 mg), ammonium nitrate (1.6 mg), disodium
phosphate (8.0 mg), and agar (12.0 g). The plates were incubated
at 28◦C for 24–48 h. Unique colonies were selected based on
color and morphology and transferred into 96-well plates with
each well containing 100 µl LB (Luria–Bertani) liquid media. The
plates were shaken slowly for 12 h. Colonies were mixed with
glycerol (15%) and stored at−80◦C for further analysis.

Screening Test for AHL-Producing
Strains
Preliminary Screening
N-acyl-homoserine lactones screen was detected using biosensors
according to Chu et al. (2011) methods. Briefly, A136 and
KYC55 were grown overnight at 28◦C in 5 ml of LB medium.
The reactivated rhizosphere isolates was cultured overnight at
28◦C in 96-well plates. Seventy-five microliter of 5 × diluted
A136 overnight culture were added to 75 µl of samples
(activated rhizosphere isolates) in a 96-well plate and incubated
at 28◦C with constant shaking at 150 rpm before X-Gal (final
concentration of 40 µg/ml) was added to each well. Plates were
incubated overnight at 28◦C and the strain with production of
blue color after 24–48 h incubation was recorded as an AHL-
producing strain. P. aeruginosa PAO1 was used as the positive
control and E. coli DH5α as the negative control.

Second Screening
The potential AHL activity of the isolates was tested by well
diffusion agar plate assays as described elsewhere (Zhu et al.,
2001; Lv et al., 2016). Briefly, 5 ml overnight reporter strain
culture was mixed with 50 µl X-Gal in 50 ml LB media
containing 1% agar when the temperature of the LB was about
45◦C. The mixture was plated and allowed to solidify before
sterile filter paper circles (0.5 cm diameter) were attached
to the LB surface at regular intervals. The putative AHL-
positive bacterial strains identified in the preliminary screen
were pipetted onto the filter paper. Positive AHL production
was recorded as visible blue pigmentation after overnight
incubation at 28◦C. AHL production active against A136 was
confirmed by streaking the test-isolate on LB agar plates
supplemented with 40 µg/ml X-Gal. To detect if any of the
isolates produced extracellular factors that could hydrolyze
X-Gal and thus give a false-positive readout, isolates that
produced a blue coloration in the patch test were retested on
a plate containing only agar with X-Gal. Isolates producing
blue coloration on these plates were considered false-positive
results in the A136 or KYC55 assay and were scored as
negative.

Extraction of AHLs
The AHLs extract was adapted from the procedure of Krick
et al. (2007). Each of the isolate cultures was grown 24 h in
200 ml volume with agitation at 200 rpm. The fermentation
culture was centrifuged at 12,000 × g for 10 min and extracted
with an equal volume of acidified ethyl acetate (0.1% glacial
acetic acid). The mixture was then shaken vigorously for 20 min.
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The ethyl acetate phase was removed, and the extraction was
repeated. The combined extracts were evaporated in a rotary
evaporator at 45◦C. The residue was dried by nitrogen flow,
reconstituted in 1 ml acidified ethyl acetate, transferred to
HPLC glass vials and re-evaporated. The dry extracts were
reconstituted in 100 µl acidified ethyl acetate and stored at
−20◦C.

AHL Profiling Using TLC
The extracted samples together with the standards were
profiled using C-18 reverse phase TLC plates (20 cm × 20 cm
TLC aluminum sheets; RP-18 F254 S, Merck, Germany), and
the chromatogram was developed with a methanol/water
mixture (60:40) as described by Shaw et al. (1997). The
developed active AHL spots were visualized by agar overlay
bioassay using the bioreporter strain A136 on TLC plate. For
the overlay, approximately 5 ml overnight mid-exponential
A136 culture were added to 50 ml LB media containing
1% agar and 40 µg/ml X-Gal. The cultures were mixed
and poured immediately over the developed TLC plates
placed in sterile Petri dishes. The plates were incubated
overnight and examined for the presence of respective color
induction exhibited by the bioreporters. AHL chain lengths
were rough calculated by comparing the Rf values and
the shape of the spots with standard AHLs (N-butanoyl-L-
homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine
lactone (C6-AHL), N-octanoyl-DL-homoserine lactone (C8-
AHL), 3-hydroxy-N-homoserine lactone (3-OH-C8-AHL),
N-decanoyl-DL-homoserine lactone (C10-AHL), N-dodecanoyl-
DL-homoserine lactone (C12-AHL), and N-tetradecanoyl-DL-
homoserine lactone (C14-AHL). Standard AHL molecules were
obtained from Sigma–Aldrich (St. Louis, MO, USA) and used as
controls.

UPLC and MS Analyses of AHLs
N-acyl-homoserine lactones were identified by UPLC and liquid
chromatography in tandem with mass spectrometry (LC-MS)
detection methods. Samples were kept at 4◦C until injection,
and 10 µl of each sample were injected onto a reverse phase
C18 core-shell column (Phenomenex Kinetex, Torrance, CA,
USA) via a Thermo Electron Surveyor auto-sampler (Thermo
Fisher Scientific, Waltham, MA, USA). Separation was obtained
using a gradient of 0.1% acetic acid in water and 0.1%
acetic acid in acetonitrile at a flow rate of 0.3 ml/min. The
eluent was introduced into a TSQ Quantum Ultra Triple
Stage Quadrupole mass spectrometer (Thermo Scientific) using
electrospray ionization, and detection was achieved using
multiple reaction monitoring (MRM) in positive ion mode. For
identification of AHL molecules, the LC fractions were subjected
to electro spray ionization tandem mass spectrometry (ESI-
MS-MS; Ion Trap MS Esquire 3000 Plus) under positive ion
conditions (Ortori et al., 2011). AHL molecules were detected by
screening the samples for those precursor ions that gave rise to a
fragment ion at m/z 102. All possible chain lengths ranging from
4 to 20 carbons were included in the method, and the potential to
have a hydroxyl or ketone at the three position, with or without a
single double bond in the chain, was also taken into account.

Identification of AHL Bacteria by 16S
rRNA Genotyping
Genomic DNA from AHL-positive strains was isolated using the
UltraClean Microbial DNA Isolation Kit (MoBio Laboratories,
Carlsbad, CA, USA). DNA was amplified using the universal
primers 8F (5′-AGACTTTGATYMTGGCTCAG-3′) and 1512R
(5′-GTGAAGCTTACGG(C/T)TAGCTTGTTACGACTT-3′)
as previously described (Viswanath et al., 2015). Primers were
obtained from the BGI (Shenzhen, China). The reaction mixture
included 12.5 µl Reddy MixPCR master mix containing 1.5 mM
MgCl2 and 0.2 mM of each deoxynucleoside triphosphate, 1 µl
each of the forward and reverse primers, 1–2 µl of genomic
DNA, and water to bring the total volume to 25 µl. An initial
denaturing hot start of 4 min at 95◦C was followed by 30 cycles
of 94◦C for 30 s, 55◦C for 40 s, and 72◦C for 70 s. The final
extension step consisted of 20 min at 72◦C, concluding the
reaction. The PCR products were separated by electrophoresis on
a 1.0% agarose gel and stained with ethidium bromide to confirm
that an approximately 1,500 bp product was present. The purified
PCR products were then sequenced by BGI (Shenzhen, China).

16S rRNA gene sequences were compared with those in
the GenBank database using the basic local alignment search
tool BLAST2. A ≥97% match of the unknown clone with the
GenBank dataset was considered suitable identification at the
species level. Similarity of 93–96% was accepted as genus-level
identification (Stackebrandt and Goebel, 1994). The 16S rDNA
sequences were aligned using the ClustalW multiple alignment
package,3 and a consensus region covering all the sequences
was selected for further analysis. The aligned sequences were
subjected to phylogenetic tree construction using the neighbor-
joining method provided by the MEGA44 software package
(Kumar et al., 2004). Maximum likelihood bootstrap analyses
were carried out with 1,000 replicates.

Statistical Analysis
The mean and standard deviations of environmental parameters
were calculated using the Origin 8.1 software (OriginLab Corp.,
Northampton, MA, USA).

RESULTS

Environmental Factors and Relative
Diversity of Rhizobacteria
The sampling habitats were relatively similar in environmental
parameters. The temperature, pH, salinity, and conductivity
values were 23.4 ± 0.2◦C, 6.36 ± 0.13, 6.90 ± 0.57h, and
8.65± 1.44 ms−1, respectively.

The relative biodiversity of rhizobacteria was shown
in Supplementary Figure S1. A total of 15 phyla were
identified from the tested samples, and the top-five phyla
(Proteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes,

2http://www.ncbi.nlm.nih.gov/BLAST
3http://www.mbio.ncsu.edu/bioedit/bioedit.html
4http://www.megasoftware.net/mega4/mega.html
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and Actinobacteria) contributed up to more than 90% of the
total quality reads (Supplementary Figure S1A). Among the
Proteobacteria, Gamma-proteobacteria, Delta-proteobacteria,
and Alpha-proteobacteria were the most abundant classes,
which occupied 64.4, 25.8, and 7.7% percentage (Supplementary
Figure S1B). The Candidate division WS3, Gemmatimonadetes,
Actinobacteria, Deferribacteres, and Spirochaetae as the
minorities and comprised 2.0, 1.4, 0.9, 0.7, and 0.5% of the total
population, respectively. The unidentified species is about 2.5%
(Supplementary Figure S1A). When sequences were assigned
to the taxonomic rank of “order,” 10 taxonomic groups were
found to make up 88.9% of the total quality reads. Vibrionales
(43.8%) and Desulfobacterales (15.7%) were the two most
abundant, followed by Anaerolineales (5.5%), Alteromonadales
(5.5%), Xanthomonadales (4.5%), Myxococcales (3.6%),
Rhodospirillales (3.5%), Chromatiales (3.1%), Cytophagales
(1.8%), and Oceanospirillales (1.5%). The less abundant taxa
(near 1%) were Rhizobiales (1.26%), Desulfuromonadales
(1.07%), Deferribacterales (1.01%), Rhodobacterales (0.98%),
and Desulfarculales (0.79%; Supplementary Figure S1C).

Screening for AHL Producers
A total of 1200 cultivable strains were isolated from rhizosphere
soil and screened for AHL activity. Of these isolates, 300 were

identified as AHL-producing candidates active with at least one
of the two reporter strains (A136 or KYC55) in the preliminary
screening. After verification by second screening and removal of
false-positives (the rate was about 20%), 184 bacterial strains gave
rise to a positive signal as blue color zones with both reporter
strains (A136 and KYC55) were observed. The activity of positive
isolates was recorded as either strong (++) or weak (+) based
on the color intensity produced by the reporter strains. The data
obtained are summarized in Table 1 (part A). In total, AHL-
producing bacteria represented 15.33% (184/1200) of all cultured
bacteria isolated from K. obovata rhizosphere soils.

Identification of AHL-Producing Bacterial
Strains by 16S rRNA Sequencing
The 16S rRNA gene sequences of these 184 bacterial isolates
were aligned to the NCBI database using BLAST. BLAST results
showed that 82 of the total belonged to the class Gamma-
proteobacteria, 45 to the class Alpha-proteobacteria, 36 to
the phylum Firmicutes, and 17 to the phylum Actinobacteria.
After dereplication analyses, 24 AHL-producing rhizobacterial
representatives were chosen from the candidates for taxonomical
identification and AHL profiling studies. Most of the
representative isolates shared 99% sequence similarity and
five of them had a 100% sequence similarity with their respective

TABLE 1 | N-acyl-homoserine lactone (AHL) profiling of 24 representative rhizobacteria isolated from the mangrove rhizosphere environment.

Part A Part B

Strain No. A136 KYC55 OTU No. Closest cultivated bacteria ID at 16S-rRNA gene cocus Potential AHL compounds∗

Strain 1 ++ ++ OTU1 Enterobacter sp. 99% C12-, C8-OH, C6-

Strain 2 ++ ++ OTU2 Pasteurella pneumotropica 100% C12-, C10-, C8-OH, C6-

Strain 3 ++ ++ OTU3 Photobacterium rosenbergii 99% C12-, C8-, C8-OH

Strain 4 ++ ++ OTU5 Vibrio fluvialis 99% C8-OH

Strain 5 ++ ++ OTU6 Gallaecimonas sp. 99% C10-

Strain 6 + ++ OTU8 Staphylococcus xylosus 99% C10-

Strain 7 + + OTU9 Vibrio sinaloensis 99% C8-OH

Strain 8 ++ ++ OTU10 Brachybacterium paraconglomeratum 99% C14-, C12-, C8-OH

Strain 9 + + OTU11 Bacillus aerophilus 99% C12-, C10-, C8-OH

Strain 10 ++ ++ OTU12 Vibrio communis 100% C12-, C10-, C8-OH

Strain 11 + ++ OTU13 Staphylococcus saprophyticus 100% C14, C12-, C8-OH

Strain 12 + – OTU14 Photobacterium sp. 99% C12-

Strain 13 + + OTU15 Bacillus sp1. 99% C14-, C12-

Strain 14 ++ + OTU17 Bacillus aquimaris 99% C8-

Strain 15 ++ ++ OTU18 Vibrio sp. 99% C14-, C12-, C8-OH

Strain 16 + + OTU19 Bacillus cereus 99% C8-

Strain 17 + + OTU20 Paenibacillus sp. 100% C12-, C8-

Strain 18 ++ ++ OTU21 Paracoccus sp. 100% C12-, C10-, C8-, C6-

Strain 19 ++ ++ OTU22 Psychrobacter sp. 99% C14-, C12-, C8-

Strain 20 + + OTU23 Bacillus sp2. 99% C8-

Strain 21 ++ – OTU24 Alteromonas sp. 99% C10-

Strain 22 ++ ++ OTU26 Acinetobacter sp. 99% C12-

Strain 23 ++ ++ OTU27 Pseudomonas chlororaphis 99% C14-, C12-, C10-

Strain 24 ++ ++ OTU28 Pseudomonas aeruginosa 98% C14-, C10-, C8-OH

++, Strong colouration; +, Weak colouration; −, No colouration. ∗Detection of AHL compounds using bioreporter strain A136 as an agar overlay on thin-layer
chromatography (TLC) plates. AHL identified by the spot shape and corresponding Rf value. Part A: AHL activity detected from plate bioassays using bioreporters
(A136 and KYC55). Part B: Identification and compounds information of AHL-producers.
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reference strains (Table 1, part B). These 24 bacterial strains
represented four different bacterial groups, 13 belonging
to Gamma-proteobacteria, 9 to Firmicutes, 1 to Alpha-
proteobacteria, and 1 to Actinobacteria. The bacterial sequences
have been submitted to GenBank Database and the accession
number is KX941451–KX941474.

A phylogenetic tree based on the 16S rRNA gene sequences
was constructed by neighbor joining clustering for the 24 AHL-
positive bacterial strains. The AHL producers were classified into
four different bacterial clusters, namely Gamma-proteobacteria,
Actinobacteria, Alpha-Proteobacteria, and Firmicutes (Figure 1).
In the Gamma-proteobacteria family, most of the positive
strains were related to the genus Vibrio sp., Enterobacter sp.,
Alteromonas sp., Photobacterium sp., and Pseudomonas sp.
Six AHL-producing members of the Firmicutes group were
closely related to the genus Bacillus sp., two to Staphylococcus
sp., and only one to the genus Paenibacillus sp. One strain
(OTU21), for which AHL activity was only detected by
the bioluminescent reporter strain A136, was assigned to
the Paracoccus genus of Alpha-proteobacteria. 16S rRNA
gene sequence analysis indicated that OTU10 shared the
greatest similarity to the Brachybacterium sp. (99% similarity),
forming a cluster in Actinobacteria, which was closely related
to B. paraconglomeratum. Remarkably, this strain belongs
to a genus that has never been reported to synthesize
AHLs.

Profiling of AHL Molecules
Reverse phase TLC was utilized to determine the signal molecule
profiles of the 24 positive strains. A diverse range of AHL
profiles was observed among the mangrove rhizobacteria. Most
of the isolates produced more than one active compound,
which included both 3-unsubstituted acyl-AHLs and 3-hydroxy-
substituted acyl-AHLs (Figure 2). Among the AHL substances,
the dominant signals belonged to mid length compounds ranging
from C8- to C12-. The most common AHL variant produced
by the 24 isolates was C12-, produced by 17 (70.8%) of the
strains in liquid culture, followed by C8- or OH-C8-, detected
in 12 (50.0%) of the strains. A broad range of AHL molecules,
including short- and long-chains with different substituted side
chains (C6–C12 or C8–C14), was detected in some strains. For
example, the Bacillus aerophilus (OTU11) and Vibrio communis
(OTU12) produced triple AHL profiles that had three circular
spots with Rf values of 0.52, 0.33, and 0.18, representing C8-
OH, C10-, and C12-AHL, respectively. In addition, Bacillus sp3.
(OTU15) and Pasteurella pneumotropica (OTU2) produced a
double and a quadruple spot in the TLC plate, respectively
(Table 1, Part B).

UPLC and LC-MS Analysis of AHLs
N-acyl-homoserine lactone-positive strain extracts on the TLC
plate were spiked and further analyzed by UPLC. Peaks of
samples and AHLs standards were combined at a retention time
of 10.0 min. A calibration curve was prepared with standard
AHLs and used to estimate the AHL amount in the extracts
at various time points. The controls were mixtures of six AHL
standards (C6, C8, C8-OH, C10, C12, and C14) with their

retention times. For example, for samples 15 (OTU18) and 17
(OTU20), peaks 7 and 10 are likely C12-AHL, peaks 8 and
11 are C8-AHL, and peak 9 is C14-AHL (Figure 3; Table 1,
part B).

Liquid chromatography in tandem with mass spectrometry
(LC-MS) of AHLs contains a molecular ion [M+H]+ or
[M+Na]+ peak and a characteristic lactone fragment peak at
m/z of 102. Based on these two analyses (TLC and LC-MS),
the corresponding AHL substances of these AHL molecules
were identified. For example, LC-MS data for the OTU2 extract
show the presence of a characteristic lactone fragment at m/z
of 102 and the molecular ion peak at m/z of 200 or 222
[Na+], suggesting the AHL to be C6-AHL (spot 1; Figure 4A).
Accordingly, spot 2 (B), spot 3 (C), and spot 4 (D) are C6-O-
AHL, C8-AHL, and C10- or C12-AHL, respectively. Figure 4
shows the LC-MS spectra acquired from chromatographic runs
of extracts with chromatographic peaks that further confirm
the patterns observed on the TLC plates. The LC-MS analysis
further revealed that the isolates produced AHLs of varying
acyl chain lengths ranging from 6 to 14 carbons. Some signal-
producing isolate synthesized more than one type of AHL,
and multiple genera/species could produce the same AHL. The
dominant signal detected in the root community was from
medium AHLs.

DISCUSSION

Overview of Bacterial Diversity
The dominant native mangrove species in Leizhou Reserve are
K. obovata, Aegiceras corniculatum, and Avicennia marina. In
the present study, we focused on K. obovata and found that
prokaryotic communities in mangrove roots were dominated
by Proteobacteria, Chloroflexi, Bacteroidetes (previously
Cytophaga–Flexibacter–Bacteroides), Planctomycetes, and
Actinobacteria (Supplementary Figure S1A). The observation
was consistent with previous reports (Andreote et al., 2012;
Hong et al., 2015; Zhang et al., 2015). Among the Proteobacteria,
Gamma-proteobacteria, Delta-proteobacteria, and Alpha-
proteobacteria were the three most abundant classes in our
sampling sites (Supplementary Figure S1B), in agreement with
previous findings in Aegiceras corniculatum, Avicennia marina,
and Sonneratia caseolaris (Yang et al., 2014; Alzubaidy et al.,
2016; Chen et al., 2016). These results suggest that Alpha-,
Gamma-, and Epsilon-proteobacteria are prevalent in mangrove
plants. Beta-, Zeta- and Epsilon-proteobacteria comprise only
2.02% of the total quality reads, which is lower than Liang et al.
(2007) reported result (16%). Biogeography (distinct soil depths
and locations) may be a major determinant factor that influences
bacterial structure. In addition, anthropogenic interference
may contribute to this difference, because various degrees of
human activities (urbanization, pollution, and aquaculture)
have different effects on environmental competitiveness and
co-shaping the microbial communities (Marcial et al., 2008;
Basak et al., 2015; Chakraborty et al., 2015).

At order level, Vibrionales (belongs to Gamma-
proteobacteria) was the most predominant group and
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FIGURE 1 | Phylogenetic tree of N-acyl-homoserine lactone (AHL)-producing rhizobacteria based on neighbor joining clustering and species
identification by 16S rRNA gene sequence alignment to the NCBI GenBank database. Phylum taxa appear on the right, with the external distribution made
by class and the internal distribution made by genus. N, isolates that induced AHL activity detected by the A136 indicator strain. Bootstrap probabilities are indicated
at branch nodes (values under 50% were excluded). The bar represents three substitutions per 100 nucleotide positions. GenBank accession numbers deposited in
the NCBI database are given for partial 16S rRNA sequences of all isolates.
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FIGURE 2 | Analysis of AHLs from supernatant extracts with the sensor strain. AHLs extracted from cell-free culture supernatants were separated by
thin-layer chromatography (TLC) and detected using an overlay of agar seeded with A. tumefaciens 136. Line AHL are the QS standards (arrows point to C6-, C8-,
OH-C8-, C10-, C12-, and C14-AHL, respectively). Lines 1–24 represent the sample extracts. The strain names were: Enterobacter sp., Pasteurella pneumotropica,
Photobacterium rosenbergii, Vibrio fluvialis, Gallaecimonas sp., Staphylococcus xylosus, Vibrio sinaloensis, Brachybacterium paraconglomeratum, Bacillus
aerophilus, Vibrio communis, Staphylococcus saprophyticus, Photobacterium sp., Bacillus sp1., Bacillus aquimaris, Vibrio sp., Bacillus cereus, Paenibacillus sp.,
Paracoccus sp., Psychrobacter sp., Bacillus sp2., Alteromonas sp., Acinetobacter sp., Pseudomonas chlororaphis, and Pseudomonas aeruginosa.

FIGURE 3 | Ethyl-acetate extracted culture supernatant analyzed by ultra performance liquid chromatography (UPLC). A gradient from 30 to 100%
acetonitrile was applied at a flow rate of 0.3 ml/min in 0.5 min intervals following an isocratic flow of 0.2 min with the initial composition. The controls (line 1) used
were mixtures of six AHL standards (C6-, C8-, C8-OH, C10-, C12-, and C14-) with the following retention times: peak 1 is C6-, peak 2 is C8-, peak 3 is C8-OH,
peak 4 is C10-, peak 5 is C12-, and peak 6 is C14-AHL. UPLC showing the presence of at least one AHL compound in the tested samples 17 (line 2) and 15 (line 3)
as examples. Peaks 7 and 10 probably are C12-, peaks 8 and 11 are C8-, and peak 9 is C14-AHL, respectively.

approximately 43.8% of the OTU sequences were classified in
it (Supplementary Figure S1C). The abundance of Vibrionales
was much higher in K. obovata rhizosphere samples than
bulk sediment samples (Yin et al., 2016). The possibility of
this distribution pattern of Vibrionales may be attributed to
the contribution of root influence. Around the mangrove
habitat, root secrete can attract some heterotrophic bacteria
and most of them were Vibrionales, Actinomycetales, and

Bacillales (Dias et al., 2009). Desulfobacterales (belongs to Delta-
proteobacteria) sequences represent the second largest fraction
(15.7%) of total quality reads at class level, and the abundance
of Desulfobacterales is higher compared with that in published
literature (Zhang et al., 2016). The Desulfovibrionales has been
reported to be able to adapt to or tolerate to environmental
stresses, such as low salinity or low sulfate supply (Kuever et al.,
2005; Leloup et al., 2006), heavy metals contamination (Cabrera
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FIGURE 4 | Extracted ion chromatogram of the m/z 102 fragment (a characteristic of the homoserine lactone ring) of AHLs produced by
representative strain (OTU2) recovered from preparative TLC. Identification of the AHL in the extract was determined from the mass spectrometry (MS)
spectra by comparison with the corresponding AHL standards. For example, the MS data for the spot 1 (A) extract indicates the presence of a characteristic lactone
fragment at m/z of 102 and the molecular ion peak at m/z of 200 or 220 [Na+], suggesting the AHL to be C6-AHL. Accordingly, The spot 2 (B), spot 3 (C), and spot
4 (D) are C6-O-, C8-, and (C10- or C12-) AHL, respectively.

et al., 2006), and anthropogenic activities (Miralles et al., 2007).
The presence of such organisms and the shifts observed in
these groups are indications that the effects of environmental
conditions on mangrove functioning might exert selection
pressure on the sulfate- and sulfite-reducing process. In addition,
Desulfovibrionales has a more efficient nutrient uptake and
reduced energy utilization in oligotrophic environment (Varon-
Lopez et al., 2014), partly explaining their distinct distribution
patterns. It is worthwhile to note that some fluctuates appeared
in non-abundant species (Anaerolineales, Alteromonadales,
Xanthomonadales, Myxococcales, Rhodospirillales, and
Chromatiales), hinting the possibility of terrigenous influence in
the community variation.

Relative Occurrence of AHL-Producers
in the Rhizosphere Environment
This work found the presence of AHL-producers among the
K. obovata rhizobacteria, comprising 15.33% of a total of 1200
cultivable bacterial strains. In this study, the pH value in
rhizosphere environment ranged from 6.23 to 6.49, making the
mangrove soils suitable environment for AHL substances or their

producers. Furthermore, the high percentage of AHL-producing
strains isolated in the present study could indicate that AHLs are
strategically used in the rhizosphere niche to achieve competitive
advantages, at least in the fluctuating mangrove habitats exposed
to tidal cycles (Krumme et al., 2012). More detailed studies on
the presence of AHL activity in cultivable bacteria in mangrove
plants should be carried out and would likely add valuable
information to the elucidation of the ecological importance of
AHL-mediated micro-environmental processes in the wetland
ecosystem (Romero et al., 2011).

Among the 24 AHL-producing rhizobacterial representatives,
16S rRNA gene sequences exhibited greater than 98%
similarity to known species belonging to the genera Bacillus,
Photobacterium, Gallaecimonas, Vibrio, Staphylococcus,
Alteromonas, Paracoccus, Brachybacterium, Pseudomonas,
Acinetobacter, Enterobacter, and Psychrobacter (Table 1). The
Alpha- and Gamma-proteobacteria represented approximately
60% of these AHL-producing bacteria. The fact that most of
these AHL-producing bacteria are Proteobacteria is in agreement
with the up-to-date reports that AHL synthesis has only been
found in the members of these three phylogenetic groups (alpha-,
beta-, and gamma-) so far (Gray and Garey, 2001; Manefield

Frontiers in Microbiology | www.frontiersin.org 9 December 2016 | Volume 7 | Article 1957

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01957 December 1, 2016 Time: 18:16 # 10

Ma et al. AHLs Signal in Mangrove Rhizobacteria

and Turner, 2002). The remaining strains belong to Firmicutes
(Paenibacillus sp.) and Actinomyces (Brachybacterium sp.). Some
AHL producers isolated in this study belong to known AHL-
producing genera but other strains were detected for the first
time, including Brachybacterium paraconglomeratum (belongs
to the Dermabacteraceae family) and Acinetobacter sp., which
implied mangrove root habitat as a reservoir for AHL screen
to be explored. Interestingly, we identified three Gram-positive
bacteria (Staphylococcus sp., Bacillus sp., and Brachybacterium
sp.) that could produce AHLs. Since presently known AHL
producers are Gram-negative bacteria, we speculated that genetic
events (gene flow or horizontal gene transfer) from certain
Gram-negative bacterium/bacteria might occur to confer the
AHL productivity to Gram-positive individual. Deeper sequence
analysis of this strain will allow these hypotheses to be assessed
and an ecological interpretation of this functional versatility to
be proposed (Biswa and Doble, 2013).

It is worth noting that compared to the composition of total
microbial structures in rhizobacteria, five phyla (Proteobacteria,
Chloroflexi, Bacteroidetes, Planctomycetes, and Actinobacteria)
dominated the strains, comprising more than 90% percent of
the total OTUs (Supplementary Figure S1A). In agreement with
this, the cultivated root-associated strains producing AHLs seem
to be more frequently clustered with these bacteria which are
commonly found in the rhizosphere holobiont. This observation
suggests that AHL producers mainly come from the predominate
taxa.

The Diversity and Characterization of
AHLs
Thin-layer chromatography coupled with AHL bioreporters gave
a rapid and directly visible system for the detection of AHL
molecules. UPLC and LC-MS further confirmed the inducing
signal to come from AHL substances (Figures 3 and 4). The
TLC plate showed more than one AHL molecule in each positive
isolate and most frequently identified medium- or long-chain
AHLs (such as C8-, C10-, and C12-; Figure 2). The broad
AHL spectrum suggests that the root microbial community has
the capacity to synthesize multiple signals. This observation
also corresponds with the profile of AHLs identified in the
floccular sludge community (Tan et al., 2014). In addition, our
results are consistent with a previous report that AHL-producing
bacteria often produce long-chain rather than short-chain AHLs
(Wagner-Dobler et al., 2005). This could be because short-
chain AHLs are known to degrade more rapidly in saltwater
environments (Hmelo and Van Mooy, 2009). Furthermore, based
on the pH sensitivity of AHL molecules, low or high soil
pH may be negative selection factors for short-chain AHL-
producers. This suggests a dominance of longer-chain AHLs
associated with the mangrove root species, where moderate acid
pH predominates. In addition to the above-mentioned points,
secreting medium- and long-chain AHL molecules could be an
intelligent behavior of bacteria balancing the energy expended
on self-preservation and ecological function (Winans, 2006; Jia
et al., 2016). This hypothesis still needs to be further confirmed in
future studies.

From the TLC results, we saw that isolates varied in the
relatively quantity of AHL production (Table 1, part B). It
has been suggested that there could be more than one AHL-
regulatory system, and that more than one signal molecule could
be produced by AHL synthases (Viswanath et al., 2015). The
high heterogeneity in AHL production is in agreement with the
high genetic diversity bacterial species. Though some bacterial
isolates representing different genera produce a similar group
of AHL molecules; for example, the major products among the
representative Proteobacteria as well as Firmicutes are medium-
chain AHLs (C8–C12), the roles of these similar AHLs in
the phenotypic regulation may differ between different strains.
This might be due to the procurement of homologous AHL
genes by means of horizontal gene flow. Thus, the production
of similar types of AHL molecules in different genera might
help interspecies communication in the natural environment
where mixed communities are often present (Viswanath et al.,
2015).

In previous studies, researchers found that AHL profiles were
not strictly conserved at the genus or species levels (Zimmer
et al., 2014; Rajput et al., 2016). Hence, some phylogenetically
distant species exhibited similar AHL profiles. Several studies can
provide plausible explanations for these complex patterns of AHL
production. At the molecular level, the amino acid sequences
of AHL synthases sometimes are more dissimilar within one
species than between distinct species (Gray and Garey, 2001).
At the ecological and evolutionary level, multiple AHL synthase
homologs or multiple luxI/luxR determinants in a bacterium
could be acquired independently (D’Angelo-Picard et al., 2005).
In addition, such heterogeneity within AHL profiles may result
from a selective pressure that favors distinct molecular languages
at the subspecies level, especially when related organisms share
common ecological niches such as the rhizosphere (Steidle et al.,
2001).

It is worth noting that we identified some AHL-producing
isolates (for example, Vibrio sp. and Aeromonas sp.) that also have
AHL-degrading genes or regulators using the SigMol tool (Rajput
et al., 2016). The coupling of AHL synthesis and degradation in
the same bacterium has previously been noted for Agrobacterium
tumefaciens, which produces and degrades 3-oxo-C8-AHL via a
lactonase encoded by AttM that is activated by starvation signals
and stress alarmone (p)ppGpp (Zhang et al., 2004). Haudecoeur
and Faure (2010) further pointed out that A. tumefaciens C58
exhibits a fine control of biosynthesis and biodegradation of
O-C8-AHL by lactonases AttM and AiiB. Similarly, a marine
Shewanella strain that produces AHLs in the late exponential
phase degrades its long-chain AHLs via both lactonase and
acylase/amidase activities (Tait et al., 2009). Indeed, organisms
known to be AHL producers or quenchers, such as members
of Proteobacteria and Bacteroidetes phyla, have recently been
expanded to also include Cyanobacteria, Acidobacteria, and
Archaea from a diverse range of environments (Chan et al.,
2011; Tan et al., 2015). So why do some strains of the same
species act as AHL producers or degraders in different specified
circumstances? In the rhizosphere habitat, extremely diverse
microbial species co-exist, and the co-occurrence of AHL and
anti-AHL activities is likely common (D’Angelo-Picard et al.,
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2005). A preliminary molecular analysis in our group suggests
that multiple AHL-producing and AHL-quenching genes are
present in the same marine bacterium from draft genome
sequences (data not shown), supporting the co-occurrence of
AHL and anti-AHL activities in the bioreactor. As for the role
of these bifunctional bacteria, we speculate that they modulate
signaling at the community level and could potentially be used
as bio-controllers targeting AHL-regulated functions, especially
in complex environments (D’Angelo-Picard et al., 2005). For
instance, as suggested earlier, the lack of short-chain AHLs in
the root may not be due to the absence of producer strains but
more likely a consequence of specific AHL-degrading activity by
the community.

The Connection between the Root and
AHLs or AHLs-Producers
Quorum sensing signals play an important role in the
ecological interactions between bacteria and their eukaryotic
hosts. In terrestrial plants, QS can control the virulence of
pathogens to tobacco (Chevrot et al., 2006; Lang et al., 2016),
and quorum-quenching bacteria capable of promote potato
(Solanum tuberosum) growth (Cirou et al., 2007). In aquatic
environment, many work have also demonstrated that AHLs
can regulate the plant hosts’ ecological behaviors, including
red algae biofouling (Manefield et al., 1999), green seaweed
attachment (Joint et al., 2007), sponge release (Taylor et al.,
2004), phycosphere carbon cycle (Huang et al., 2016), and
marine snow alkaline phosphatase biosynthesis (Jatt et al., 2015).
Similar phenomena were observed in the mangrove habitat;
a conceptual model suggested that bacterial density-dependent
behaviors might play a role in regulating mangrove soil nitrogen-
cycling (DeAngelis et al., 2008). Density-dependent QS provides
an interesting potential checkpoint for enzymes mediating
organic nitrogen depolymerization and rhizosphere nitrogen
mineralization (DeAngelis et al., 2008). These findings indicate
that QS is an essential ecological signal modulator between plant
and microbes.

This study has initiated steps toward understanding the role of
AHL-producing bacteria associated with mangroves. Mangrove
soil functions are closely related to bacterial activities, some plant-
growth-promoting or biocontrol bacteria are key regulators for
host healthy. Previously, Joseph and Phillips (2003) deemed it is
conceivable that bacterial AHLs may represent a plant-microbe
interaction in which both plant and root-associated bacteria
benefit from the production of QS signals in the rhizosphere.
It is possible to affect soil function by controlling bacterial
activity in the soil via QS (Huang et al., 2013; Zeng et al.,
2014). The study of the distribution and diversity of AHL-
producers greatly increases our knowledge about potential cell-
cell communications in natural niches and provides valuable
information for the in situ control of bacterial activities. In this
current work, 24 AHL-producing genera, such as Alteromonas,
Vibrio, and Pseudomonas were identified in wetland samples
using culture-dependent methods. Functionally, these putative
AHL-producers could be classified into four groups according to
their closest matches to indicate their possible relationships with

the host plant: plant growth promotion, pathogenesis, nitrogen-
fixing, and bioremediation (Parte et al., 2010). Alteromonas
sp. and Photobacterium sp. were the predominant cultivable
AHL-producers in the rhizosphere of wetland plants. Species
from these two genera, such as A. veronii and P. rosenbergii,
may act as beneficial rhizobacteria (plant growth promotion
rhizobacteria, PGPR) to promote growth of plant (Ortiz-Castro
et al., 2009). PGPR are able to stimulate plant growth by direct
or indirect mechanisms, like production of phytohormones,
mineralization of organic matter, and competing with pathogens
(Ortiz-Castro et al., 2009). Some Pseudomonas and Vibrio species
were considered to be potential pathogen to wetland plants
(Pollumaa et al., 2012). Previously, QS has been shown to
control Ti plasmid transfer in tumor-forming Agrobacterium spp.
and virulence factor production in soft-rotting P. carotovorum
(Pollumaa et al., 2012; Lang et al., 2016). Communication via
diffusible signaling molecules between plants and bacteria has
been proposed to be one of the important regulators in symbiotic
behaviors (Scott et al., 2006).

In order to address the complete picture of AHL-producers
and their ecological functions in the mangrove ecosystem,
reporter strains in combination with non-cultivable approaches
targeting AHL genes warrant further investigation (Viswanath
et al., 2015). Another question worth pursuing in the future is
the exploration of the parallel existence of AHL-producers and
AHL-degraders in the rhizosphere environment and their roles
in matter cycling (C, N, and P) in mangrove plants.

CONCLUSION

This study confirms the existence of multiple AHL producers in
the K. obovata rhizosphere environment, which provided novel
information concerning the profiles of AHL signals in mangrove-
associated bacteria. It is helpful for us to better understand the
complex relationship between mangrove plants and microbes
from chemical ecological perspective. Our work also speculated
that mangrove rhizosphere bacteria might act as a candidate
reservoir for identification new AHL-producers. In future, an
urgent requisite aspect is to arbitrate the crucial role of AHLs
associated traits of the rhizosphere bacteria, particularly their
impact via signal mechanism on mangrove ecosystem, which are
currently under way in our laboratory.
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FIGURE S1 | Taxonomic composition of the root-associated microbiome
of K. obovata from rhizosphere soil samples based on 16S rRNA
sequencing. (A) Bacteria diversity at phylum level; (B) classes of Proteobacteria;
and (C) the bacteria biodiversity at order level. The sequencing experiments were
repeated three times.
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