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Objectives: This work assesses different methods to interfere with Enterococcus
faecalis biofilms formed on human dentin slabs.

Methods: First, methods are presented that select for small molecule inhibitors
of biofilm targets using multi-well polystyrene biofilm plates. Next, we establish
methodologies to study and interfere with biofilm formation on a medically relevant
model, whereby biofilms are grown on human root dentin slabs.

Results: Non-conventional D-amino acid (D-Leucine) can efficiently disperse biofilms
formed on dentin slabs without disturbing planktonic growth. Cation chelators interfere
with biofilm formation on dentin slabs and polystyrene surfaces, and modestly impact
planktonic growth. Strikingly, sodium hypochlorite, the treatment conventionally used to
decontaminate infected root canal systems, was extremely toxic to planktonic bacteria,
but did not eradicate biofilm cells. Instead, it induced a viable but non-culturable state
in biofilm cells when grown on dentin slabs.

Conclusion: Sodium hypochlorite may contribute to bacterial persistence. A
combination of the methods described here can greatly contribute to the development
of biofilm inhibitors and therapies to treat Enterococcus faecalis infections formed in the
root canal system.

Keywords: biofilms, dentin, viable but non-culturable (VBNC) state, D-amino acids, root canal therapy

INTRODUCTION

Bacterial biofilms are multicellular microbial communities that adhere to surfaces and interfaces
(Kolter and Greenberg, 2006). The formation and maintenance of biofilms is dependent on the
production of extracellular substances including proteins and exopolysaccharides that constitute
the extracellular matrix. These extracellular matrices secure the bacteria together in a multicellular
community (Parsek and Singh, 2003; Branda et al., 2005; Oppenheimer-Shaanan et al., 2013;
Vlamakis et al., 2013). Biofilms offer the microbial communities shelter from environmental insults
and assaults, attachment to a host and access to oxygen and nutrients (Costerton et al., 1987; Chen
et al., 2012).

Microbial biofilms account for over 80% of microbial infections in the body (Costerton et al.,
1999; Stewart, 2002; Mah et al., 2003; Fux et al., 2005; Oppenheimer-Shaanan et al., 2013), and
are considered as a primary cause of apical periodontitis in teeth with infected root canal spaces
(Haapasalo and Shen, 2012). Apical periodontitis is a relatively common dental pathology that
involves an inflammatory reaction and destruction of tissues around the apex of a tooth-root. This
is caused by microbial invasion and infection of the dental pulp, and biofilm colonization within
the root canal system (Ricucci and Siqueira, 2010).
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Gram-positive and facultative anaerobes are the most
frequently isolated species within treated canals in teeth with
persistent intra-radicular infections, with Enterococcus faecalis (E.
faecalis) being the most prevalent (Zhang et al., 2015). In the root
canal environment, E. faecalis bacterium plays an important role
in bacterial biofilm formation, and therefore E. faecalis biofilms
are considered to be an appropriate model for testing novel
antimicrobial treatments (Meire et al., 2012; Du et al., 2013; Tay
et al., 2015; Shlezinger et al., 2016).

One of the primary goals of root canal treatment is to eliminate
bacteria from the root canal system in order to treat or prevent
apical periodontitis (Kishen, 2012). However, bacteria within
biofilm communities are 10-fold to 1000-fold more resistant
to antimicrobial agents and antibiotics than planktonic (free-
living) bacteria, and are also able to effectively evade the immune
system (Costerton et al., 1999; Stewart, 2002; Mah et al., 2003;
Fux et al., 2005; Oppenheimer-Shaanan et al., 2013; Tay et al.,
2015). For these reasons bacterial biofilms pose a major obstacle
to endodontic disinfection in root canal systems, and therefore
methods to promote biofilm dispersal may ultimately improve
the treatment outcome (Kishen, 2012; Meire et al., 2012; Du et al.,
2013).

The key element in the elimination of intra-canal biofilms is
the use of anti-microbial irrigating solutions during the root canal
treatment. However, currently the most commonly used anti-
microbial irrigation solution, sodium hypochlorite, has a limited
ability to completely eliminate the biofilm from the root canal,
sometimes leading to persistent infection. Thus, stressing the
need to develop novel anti-microbial biofilm agents in order to
achieve predictable, effective disinfection of the root canal system
(Ricucci and Siqueira, 2010).

Small molecules that target the cell envelope were found to be
efficient inhibitors for biofilms formed by Gram-positive bacteria,
and to effectively disperse the biofilms. Recently, flavomycin, an
antibiotic that inhibits transglycosylation directly by binding the
transglycosylation domain of PBP enzymes (Dengler et al., 2011)
was found to antagonize biofilm formation but not planktonic
growth in the soil bacterium, Bacillus subtilis (Bucher et al.,
2015). An additional group of cell-wall interfering agents that
promote dispersal are non-canonical D-amino acids (Bucher
et al., 2015, 2016). D-amino acids compete with D-Alanine
for the fifth position in the B. subtilis pentapeptide, and
interfere with transpeptidation (Lam et al., 2009; Cava et al.,
2011; Lupoli et al., 2011) and transglycosylation (Lam et al.,
2009). D-amino acids were found to inhibit and disperse
biofilms without affecting planktonic growth in various model
organisms (Kolodkin-Gal et al., 2010; Hochbaum et al., 2011;
Yu et al., 2012; Sanchez et al., 2013; Li and Wang, 2014;
Bucher et al., 2015, 2016; She et al., 2015), but to the best of
our knowledge their efficacy on endodontic biofilms was never
evaluated.

An additional method to induce dispersal of biofilms in
various model organisms is the use of cation chelators. Iron is
an essential component of many metabolically relevant proteins
in living cells, and the maintenance of biofilms requires higher
concentrations of iron than planktonic growth (Banin et al., 2005;
Ramos et al., 2010; Kolodkin-Gal et al., 2013). The functional

siderophore pyoverdin is required for biofilm maturation of
P. aeruginosa, and its absence promotes disassembly (Banin
et al., 2005). Moreover, lactoferrin, an innate immunity protein,
was shown to disrupt P. aeruginosa biofilm formation by
sequestering Fe(III) from siderophores (Singh et al., 2002), and
chelation of cations by Ethylenediaminetetraacetic acid (EDTA)
was demonstrated to disperse staphylococcal biofilms (Raad et al.,
2003). Overall, chelation of cations in biofilm deformation could
result in effective therapeutic strategies for eradication of medical
biofilms. In root-canal treatment, EDTA is traditionally used as
a chelating agent to remove calcium, demineralize and soften
dentin, and to remove the “smear layer,” a surface film of debris
containing dentin particles, remnants of vital or necrotic pulp
tissue, and bacterial components, retained on the dentin and
other surfaces after the root canal procedure (de Almeida et al.,
2016).

The aim of this study was to evaluate the use of small
molecules that were previously shown to inhibit and eradicate
biofilms, for the elimination of E. faecalis biofilms grown on
human dentin slabs, and compare their efficiency with sodium
hypochlorite, a commonly used antimicrobial agent in root canal
treatment.

MATERIALS AND METHODS

Samples Preparation
Twenty freshly extracted single rooted fully developed intact
human teeth were stored in 0.05% sodium hypochlorite solution.
Informed consent was obtained from the extracted teeth donors.

This study was approved by the Tel Aviv university ethics
committee.

The crowns of the selected teeth were removed in order
to obtain multiple root specimens of 13 mm length, and the
apical 3 mm of the root end was resected without a bevel
using Zakaria high speed bur (Maillefer, Ballaigues, Switzerland).
The root canal lumen was then enlarged to a minimum of
0.5 mm using low speed burs (Gates Glidden Drills, Dentsply
Maillefer, Tulsa, OK, USA). The roots were embedded in self-
cure acrylic repair material (UNIFAST Trad, GC America). To
prepare the dentin slabs, the roots were cut perpendicular to
the long axis of the root under water cooling with a diamond
saw rotating at 500 rpm (Isomet, Buehler Ltd., Lake Bluff,
IL, USA). Two dentin slabs of 1 mm thickness each were
obtained from each root (Kuci et al., 2014), see Supplementary
Figure S1. The specimens were then placed in small dishes
and sterilized overnight using ethylene oxide gas (Brosco
et al., 2010). For each of the indicated treatment at least
nine independent dentin slabs were evaluated under the same
conditions.

Strains and Media
All of the experiments were performed in a clinical isolate
of Enterococcus faecalis 29212 (Minogue et al., 2014). To
confirm reproducible results we evaluated biofilm formation
of a single virulent strain on-top of artificial and biological
surfaces.
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The strains were routinely manipulated in LB broth (Difco), or
in TSB broth (Difco), enriched with 0.5% glucose (Sigma) (Lopez
and Kolter, 2010).

Biofilm Formation Assay
Cells were grown in LB from a single colony isolated over
LB plates to a mid-logarithmic phase of growth (6 h at 37◦C
with shaking). To grow biofilms, 1.5 µl of starter culture was
inoculated into the TSB glucose media in 96-well polystyrene
plates and further incubated for 24 h. The growth media were
either applied or not with one of the following substances: (i)
A Sodium hypochlorite was added to the final concentration
of 0.6% from a stock solution of sodium hypochlorite solution,
reagent grade, 10–15% (sigma), (ii) D-Leucine (Sigma–Aldrich)
was added to the final concentration of 2 mM from a stock
solution of 76 mM D-Leucine in DDW, (iii) flavomycin (AK
Scientific) was added to the final concentration of 2 µg/ml from a
stock solution of 2 mg/ml (iv) EDTA (Sigma–Aldrich) was added
to the final concentration of 0.5 mM from a stock solution of
50 mM (0.5 mM), and (v) 2-2′ bipyridyl (Sigma–Aldrich) was
added to a final concentration of 10 µg/ml from a stock solution
of 10 mg/ml in ethanol. In the case of the 96-well polystyrene
plate, the crystal violet (Sigma–Aldrich) assay was performed as
described by Friedman and Kolter (2004).

Growth Measurements
Cells were grown from a single colony isolated from LB plates to
a stationary phase of growth (12 h at 37◦C with shaking). The
culture was then diluted 1:25 in 5 ml liquid TSB glucose medium
(Thermo Scientific). Cells were grown with agitation at 37◦C for
10 h in a growth chamber, and the optical density at 600 nm
(OD600) was measured every 2 h. Cells were either grown in
presence or absence of cell-wall inhibiting molecules, as indicated
in the corresponding figure legend.

Determination of Cell Density and Live
Cell Counts during Dentin Disk
Colonization
Cells were grown in LB from a single colony isolated over
LB plates to a mid-logarithmic phase of growth (6 h at 37◦C
with shaking). To grow biofilms, 1.5 µl of starter culture was
inoculated into 6 ml TSB glucose media dispensed into a Petri
dish containing the dentin disks. Cells were grown on-top of
dentin disks as described above. Following 24 h of growth, the
media was removed from the dentin disks, and the associated
bacteria were incubated in different substances and treated
further, as specified in the legends for each figure. Following
incubation, the suspension solution was collected and further
evaluated for the live cell counts as well as the biofilm fraction.
The biofilm fraction was obtained by three washes of the dentin
disks with phosphate buffer to the final volume of the suspension
solution. To determine the number of live cells, cells were serially
diluted in phosphate-buffered saline (PBS; Biological Industries,
Israel), plated on LB plates, and colony forming units (CFU)
were counted after incubation at 37◦C overnight as done by us
previously (Bucher et al., 2015).

FIGURE 1 | Analyzing the effects of small molecules on planktonic
growth of Enterococcus faecalis. Growth of strain 29212 was assessed at
37◦C with shaking in liquid TSB-glucose medium (untreated) or applied with
the following: Sodium hypochlorite (0.6%), D-Leucine (2 mM), flavomycin
(2 µg/ml), EDTA (0.5 mM), and 2-2′ bipyridyl (10 µg/ml). Growth was
monitored by measuring OD600. Results are averages of three independent
experiment performed in duplicates and their standard deviations.

Confocal Scanning Laser Microscopy
and Live\Dead Evaluation
To determine culture density and live cell counts of cells grown
on the disks, cells were harvested from a dentin biofilm dispersal
assay (described above): Cells were grown on-top of dentin disks
as described above. Following 24 h of growth, the media was
removed from the dentin disks, and the associated bacteria were
incubated in different substances and treated further, as specified
in the legends for each figure. Samples of biofilms grown for
24 h and treated as indicated were stained using LIVE/DEAD
BacLight Bacterial Viability kit L-7012 for microscopy and
quantitative assays (Molecular Probes, Eugene, OR, USA)
containing separate vials of the two component dyes (SYTO 9
and propidium iodide in 1:1 mixture) in solution was used for
staining of the biofilm following the manufacturer’s instructions.
The excitation/emission maxima for these dyes is approximately
480–500 nm for the SYTO 9 stain and 490–635 nm for propidium
iodide (Aziz et al., 2010). Fluorescence from the stained cell
was viewed under a confocal laser scanning microscope (Leica
TCS SP5, Leica Microsystems CMS GmbH Germany). Single
channel and simultaneous dual-channel imaging was used to
display green and red fluorescence (Zapata et al., 2008). Confocal
laser scanning microscope images of the biofilms were acquired
by the LAS AF software (version 2.6.0.7266; Leica Microsystems
CMS GmbH) at a resolution of 512 × 512 pixels. The mounted
specimens were observed using a X4 lens. Confocal LIVE/DEAD
images were analyzed and quantitated using the above mentioned
software (LAS AF; Zapata et al., 2008; Shen et al., 2010; Kuci et al.,
2014). The specimens were coded for blind evaluation.

Statistical Methods
All studies were performed in duplicates or triplicates at least
three separate and independent times. Data are expressed as
average values ± standard deviations of the means. Parametric
testing was performed after confirming that raw data were

Frontiers in Microbiology | www.frontiersin.org 3 December 2016 | Volume 7 | Article 2055

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-02055 December 22, 2016 Time: 16:4 # 4

Rosen et al. Dispersing Dental Biofilms

FIGURE 2 | Analyzing the effects of small molecules on biofilm formation of E. faecalis in a microplate model. Single colony of Strain 29212 was grown at
37◦C with shaking in liquid TSB-glucose medium to a mid-logarithmic stage. Cells were diluted 1:100 into a fresh medium (untreated) or applied with the following
small molecules: Sodium hypochlorite (0.6%), D-Leucine (2 mM), flavomycin (2 µg/ml), EDTA (0.5 mM), and 2-2′ bipyridyl (10 µg/ml). Cultures were split into a
96-well polystyrene plate, 100 µL in each well, and further incubated at 37◦C for 24 h. Biofilm formation was assessed by crystal violet staining as described in
“Material and Methods.” Results are averages of three independent experiments performed with five repeats. P value was calculated using a student’s t-test.
∗P < 0.1, ∗∗P < 0.05, compared with the untreated control.

FIGURE 3 | Analyzing the effects of small molecules on pre-established biofilms of E. faecalis on human dentin disks. Single colony of Strain 29212 was
grown at 37◦C with shaking in liquid TSB-glucose medium to a mid-logarithmic stage. Cells were diluted 1:100 into fresh medium in polystyrene plates, containing a
fixed dentin disk. Following 24 h of incubation cells were applied with the following solutions, phosphate-buffered saline (PBS), or a PBS solution applied with the
following substances: Sodium hypochlorite (0.6%), D-Leucine (2 mM), flavomycin (2 µg/ml), EDTA (0.5 mM), and 2-2′ bipyridyl (10 µg/ml) for 2 h. Cells were washed,
stained with BacLight Bacterial Viability kit and imaged as described in the section “Materials and Methods.” ∗P < 0.1, ∗∗P < 0.05, compared with the PBS
treatment.
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FIGURE 4 | Analyzing the effects of small molecules on the viability of E. faecalis biofilm cells grown on human dentin disks. Single colony of Strain
29212 was grown at 37◦C with shaking in liquid TSB-glucose medium to a mid-logarithmic stage. Cells were diluted 1:100 into a fresh medium in polystyrene plates,
containing a fixed dentin disk. Following 24 h of incubation cells were applied with the following solutions, PBS, or a PBS solution applied with the following
substances: Sodium hypochlorite (0.6%), D-Leucine (2 mM), flavomycin (2 µg/ml), EDTA (0.5 mM), and 2-2′ bipyridyl (10 µg/ml) for 2 h. Cells were washed and
imaged as described in the section “Materials and Methods.” The number of cells stained in PI (Dead), and the number of cells stained with fluorescein was
calculated as described in the section “Materials and Methods.” Results are averages of two independent experiments performed with at least three repeats. P value
was calculated using a student’s t-test. ∗P < 0.1, ∗∗P < 0.05, compared with the PBS treatment.

normally distributed. Data were analyzed by student’s t-test, used
to determine if the set of treated versus the untreated control
are different from each other (A paired t-test comparing two
sets of measurements) differ and P values of less than 0.1 were
considered significant.

RESULTS

Evaluation of Biofilm Inhibitors on
Planktonic Growth and Biofilm
Formation on Polystyrene Surfaces
Systematic evaluation of small molecule biofilm inhibitors
was performed on planktonic growth (Figure 1) and biofilm
formation, according to the Microtiter Dish Biofilm Formation
Assay (Friedman and Kolter, 2004). Three categories of
biofilm inhibitors were tested: (i) Small molecules that target
the cell envelope: Flavomycin, an antibiotic that inhibits
transglycosylation directly by binding the transglycosylation
domain of PBP enzymes (Dengler et al., 2011); and D-Leucine,
a non-canonical D-amino acid, which competes with D-Alanine
for the fifth position in the B. subtilis pentapeptide (Bucher et al.,
2015), and interferes with transpeptidation (Lam et al., 2009;
Cava et al., 2011; Lupoli et al., 2011) and transglycosylation (Lam
et al., 2009). (ii) Cation chelators: EDTA, a chelating agent that
sequesters a variety of polyvalent cations such as calcium; and
2,2′-bipyridyl, an organic bidentate chelating ligand, forming

complexes with many transition metals, with a strong affinity
to iron. (iii) Sodium hypochlorite (bleach) – commonly used
concentrations between 0.5 and 6% for irrigation in root canal
treatments (Bystrom and Sundqvist, 1985; Gomes et al., 2001;
Haapasalo et al., 2014).

For planktonic growth, sodium hypochlorite turned out to be
most toxic, eliminating E. faecalis growth altogether (Figure 1),
EDTA, flavomycin and 2-2′ bipyridyl inhibited (reversibly)
bacterial growth at indicated concentrations, and D-Leucine at
concentrations of up to 2 mg/ml had little or no effect on
planktonic growth.

In contrast, the results from the assay on biofilm formation
in polystyrene wells were as following: the mildly toxic 2-2′
bipyridyl and flavomycin had a modest inhibitory effect on
biofilm formation, while EDTA (mildly toxic), D-Leucine (non-
toxic), and sodium hypochlorite (highly toxic) inhibited biofilm
formation comparably and significantly. These results indicate
that inhibition of biofilm formation may not be directly
correlated to inhibition of planktonic growth.

Evaluation of Biofilm Inhibitors
Enterococcus faecalis Biofilms Formed
on a Root-Dentin Model
In order to establish a more ecological dentin model, root dentin
slabs of 1 mm thickness each were cut as described in the
section “Materials and Methods” (Supplementary Figure S1).
The sterile dentin disk was then inoculated with E. faecalis
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FIGURE 5 | Analyzing the effects of small molecules on the cultivability of E. faecalis biofilm cells grown on human dentin disks. Single colony of Strain
29212 was grown at 37◦C with shaking in liquid TSB-glucose medium to a mid-logarithmic stage. Cells were diluted 1:100 into a fresh medium in polystyrene plates,
containing a fixed dentin disk. Following 24 h of incubation, cells were applied with the following solutions, PBS, or a PBS solution applied with the following
substances: Sodium hypochlorite (0.6%), D-Leucine (2 mM), flavomycin (2 µg/ml), EDTA (0.5 mM), and 2-2′ bipyridyl (10 µg/ml) for 2 h. Cells were then obtained by
rigorous pipetting and cultures as described in the section “Materials and Methods.” Results are averages of two independent experiments performed with at-least
four repeats. ∗P < 0.1, ∗∗P < 0.05, compared with the PBS treatment.

and further incubated in biofilm media. As shown, E. faecalis
cells formed a thick biofilm on the dentin slab within 24 h.
Once a biofilm was established, we used the several biofilm
inhibitors that proved to effectively inhibit biofilm formation
on-top of polystyrene plates (Figure 2) and evaluated their
effect on dispersing root-dentin associated biofilms. For this
purpose, we first scored the remaining biofilm using the
Live/Dead BacLight Viability Kit (Figure 3). The outcome of
the application of biofilm inhibitors to an established dentin-
associated biofilm differed dramatically between treatments.
Surprisingly, the sodium hypochlorite treatment, found to be
most toxic to planktonic growth, had little effect on removal
of the biofilm biomass, and only modestly impacted the overall
viability of the biofilm cells. The concentration of flavomycin
which halted planktonic growth and biofilm formation (Figures 1
and 2) had no impact on established biofilms (Supplementary
Figure S2), and chelation of cations by EDTA had little or
no effect on the overall biofilm’s biomass. However, EDTA
treatment significantly increased the proportion of dead cells
(Figures 3 and 4). Specific chelation of iron by 2-2′ bipyridyl
greatly increased cell death within dentin-associated biofilms
(Figures 3 and 4). The most efficient treatment was D-Leucine,
as it significantly dispersed the biofilm’s biomass (Figure 3) and
modestly increased the fraction of dead cells compared with the
control. Importantly, the D-Leucine treatment was found to be

effective in sub-toxic concentration compatible with endodontic
therapy.

To further evaluate the viability of the E. faecalis following
different treatments, we assessed the replicative cell counts
from the treated biofilms and the growth media. Strikingly,
though the conservation of the biofilm biomass following
sodium hypochlorite treatment was evident between different
experiments (Figure 3), very few culturable cells could be eluted
from the dentin disks and the inoculation media (Figure 5). In
contrast, replicative cell counts from other treatments correlated
better with the confocal examination. This result could be an
indication that the sodium hypochlorite treatment is promoting
a viable but not culturable state (VBNC) in root-associated
biofilms.

DISCUSSION

Enterococcus faecalis is a commensal Gram-positive
microorganism residing within the gastrointestinal tract.
Nonetheless, it can cause life-threatening infections such as
endocarditis, bacteremia, urinary tract infection, and meningitis
(Khalifa et al., 2015), and is especially problematic in hospitals
where antibiotic resistance is developed (Deshpande et al., 2007).
In addition, E. faecalis is frequently recovered from persistent
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infections associated with root canal treatment failures (Zapata
et al., 2008), and can result in chronic or acute inflammation
and destruction of the tissues surrounding the tip of the
tooth-root with subsequent development of abscesses. Despite
meticulous mechanical and chemical preparation during root
canal treatment, infection may persist (Zhang et al., 2015),
in most of the treated and filled root canals, and in some
cases may lead to treatment failure and further complications
(Molander et al., 1998). To date, the available therapeutic tools
to efficiently and predictably eradicate intra-canal E. faecalis
biofilm infection are limited (Paganelli et al., 2012). Biofilms may
pose a severe health threat, since at this phase bacteria become
inaccessible to antibacterial agents and the body’s immune system
(Bryers, 2008; Wang et al., 2012). The penetration failure may
be associated with various factors, including the extracellular
matrix encapsulating the biofilm cells, and multidrug resistance
development of bacteria within the biofilm (Bryers, 2008).

In this study several biofilm inhibitors and dispersing agents
were evaluated for their ability to combat E. faecalis infection
on dentin slabs mimicking E. faecalis root canal infections.
Surprisingly, sodium hypochlorite, the commonly used anti-
bacterial irrigation solution for treatment of root canal infections
failed to reduce the biofilm biomass on dentin disks (Figure 3),
though it was most efficient in reducing the replicative properties
of the biofilm’s cells (Figure 5).

In addition, our results may imply the induction of a
VBNC state in enterococcus biofilms treated with sodium
hypochlorite. The entry of bacteria into a state described
as VBNC has been reported repeatedly for a large number
of bacterial species, and among them several Gram-positive
bacteria, including bacteria that reside in the oral cavity (Hiyari
and Bennett, 2011; E et al., 2015). A bacterium in the VBNC
state has been defined as a cell which can be demonstrated
to be metabolically active, while being incapable of undergoing
the sustained cellular division required for growth in or on
a medium normally supporting growth of that cell (Koch,
1997). Importantly, the presence of E. faecalis on dentin slabs
following a treatment with sodium hypochlorite may explain
the resistance of E. faecalis biofilms to the currently used
treatment protocols, and involvement in treatment failure with
persistent infections following root canal treatments (Zhang et al.,
2015).

In contrast, the anti-biofilm treatment D-Leucine efficiently
dispersed dentin-associated biofilms with little effect on the
viability of the biofilm cells. The biocompatibility of D-amino
acids is especially promising as they were non-cytotoxic to

human osteoblasts at concentrations less than 50 mmol/L,
25 times more than the required concentration for biofilm
inhibition (Harmata et al., 2015) and were non-toxic when orally
administrated (Tsume et al., 2014). Inducing dispersal by a sub-
toxic concentrations of an anti-biofilm agent is of high interest
(Kolodkin-Gal et al., 2010; Romero and Kolter, 2011; Bucher
et al., 2015, 2016), as it is expected to reduce the selective pressure
for the success of resistant mutants. Indeed toxic concentrations
of D-amino acids were shown to select for mutants that carry
various alleles of resistance (Leiman et al., 2015).

The iron chelator 2-2′ bipyridyl efficiently induced cell
death within dentin-associated biofilms, but did not change the
overall dentin-associated biomass. 2-2′ bipyridyl can inhibit Fe2+

containing enzymes at 10−8 M. However, in the concentrations
used in our study it is a widely used ligand (Kaes et al., 2000), and
may be appropriate for endocarditis treatment. Thus, our overall
result highlights the need and the potential for combination
therapies in root canal biofilm infections.
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