
ORIGINAL RESEARCH
published: 27 December 2016

doi: 10.3389/fmicb.2016.02101

Frontiers in Microbiology | www.frontiersin.org 1 December 2016 | Volume 7 | Article 2101

Edited by:

Mark Alexander Lever,

ETH Zurich, Switzerland

Reviewed by:

Jeremy Dodsworth,

California State University,

San Bernardino, USA

Malin Bomberg,

VTT Technical Research Centre of

Finland, Finland

*Correspondence:

Sergey N. Gavrilov

sngavrilov@gmail.com

Specialty section:

This article was submitted to

Extreme Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 08 August 2016

Accepted: 12 December 2016

Published: 27 December 2016

Citation:

Frank YA, Kadnikov VV, Gavrilov SN,

Banks D, Gerasimchuk AL,

Podosokorskaya OA, Merkel AY,

Chernyh NA, Mardanov AV, Ravin NV,

Karnachuk OV and

Bonch-Osmolovskaya EA (2016)

Stable and Variable Parts of Microbial

Community in Siberian Deep

Subsurface Thermal Aquifer System

Revealed in a Long-Term Monitoring

Study. Front. Microbiol. 7:2101.

doi: 10.3389/fmicb.2016.02101

Stable and Variable Parts of Microbial
Community in Siberian Deep
Subsurface Thermal Aquifer System
Revealed in a Long-Term Monitoring
Study
Yulia A. Frank 1, Vitaly V. Kadnikov 2, Sergey N. Gavrilov 3*, David Banks 4,

Anna L. Gerasimchuk 1, Olga A. Podosokorskaya 3, Alexander Y. Merkel 3,

Nikolai A. Chernyh 3, Andrey V. Mardanov 2, Nikolai V. Ravin 2, Olga V. Karnachuk 1 and

Elizaveta A. Bonch-Osmolovskaya 3

1Department of Plant Physiology and Biotechnology, Tomsk State University, Tomsk, Russia, 2 Federal Research Centre

(FRC) Biotechnology, Institute of Bioengineering, Moscow, Russia, 3 Federal Research Centre (FRC) Biotechnology,

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS), Moscow,

Russia, 4Glasgow and Holymoor Consultancy Ltd., Glasgow University, Chesterfield, UK

The goal of this work was to study the diversity of microorganisms inhabiting a deep

subsurface aquifer system in order to understand their functional roles and interspecies

relations formed in the course of buried organic matter degradation. A microbial

community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia

was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled

down to a Palaeozoic basement. The borehole water discharges with a temperature

of ca. 50◦C. Its chemical composition varies, but it steadily contains acetate, propionate,

and traces of hydrocarbons and gives rise to microbial mats along the surface flow.

Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed

within 5 years, revealed several dominating phylotypes consistently found in the borehole

water, and highly variable diversity of prokaryotes, brought to the surface with the

borehole outflow. The major planktonic components of the microbial community were

Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the

minor part of the community was unstable, and molecular analysis did not reveal any

regularity in its variations, except some predominance of uncultured Firmicutes. Batch

cultures with complex organic substrates inoculated with water samples were set in

order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis

of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae.

A continuous-flow microaerophilic enrichment culture with a water sample amended

with acetate contained Hydrogenophilus thermoluteolus, which was previously detected

in the microbial mat developing at the outflow of the borehole. Cultivation results

allowed us to assume that variable components of the 3P well community are hydrolytic

organotrophs, degrading buried biopolymers, while the constant planktonic components

of the community degrade dissolved fermentation products to methane and CO2,

possibly via interspecies hydrogen transfer. Occasional washout of minor community

components capable of oxygen respiration leads to the development of microbial mats
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at the outflow of the borehole where residual dissolved fermentation products are

aerobically oxidized. Long-term community analysis with the combination of molecular

and cultivation techniques allowed us to characterize stable and variable parts of the

community and propose their environmental roles.

Keywords: deep subsurface, thermophilic microbial communities, element cycles and biogeochemical processes,

Western Siberia, phylogenetic analysis

INTRODUCTION

The deep subsurface is one of the largest habitats for prokaryotes,
and the total biomass of subsurface microbes probably exceeds
the numbers in the rest of the biosphere (Whitman et al.,
1998; McMahon and Parnell, 2014). A number of studies
have demonstrated sizable and metabolically active subsurface
microbial communities in the deep sub-seafloor (Parkes et al.,
2000; Kimura et al., 2003; Takai et al., 2004; Teske, 2005;
Batzke et al., 2007; Edwards et al., 2011; Lomstein et al.,
2012). Abundant and diverse microbial communities have been
revealed in terrestrial deep subsurface habitats all over the
world (Fredrickson and Hicks, 1987; Ghiorse and Wilson, 1988;
Jiménez, 1990; Takai et al., 2001; Itävaara et al., 2011; Bomberg
et al., 2015; Frank et al., 2016). Some studies have suggested
that microbes in the deep subsurface have extremely slow in-situ
growth rates because of the lack of detrital energy inputs over
thousands to millions of years (Onstott et al., 2014; Lever et al.,
2015). While uncultured and poorly studied microorganisms are
speculated to play major roles in geochemical cycles in these
environments (Wrighton et al., 2012; Castelle et al., 2013), a
great deal of uncertainties exists, stimulating a search for novel
microorganisms from subsurface ecosystems. Characterization
of microbial and metabolic diversity in the deep terrestrial
subsurface is in incipient stages and very far from complete (Hug
et al., 2016).

Deep terrestrial subsurface environments may represent
extreme habitats with high pressure, temperature, and/or salinity
(Ollivier et al., 2007). Depending on the energy source, deep
subsurface microbial communities could be “lithoautotrophic”
and “organotrophic” (Fredrickson and Hicks, 1987). In the
former ones, molecular hydrogen of abiotic origin is considered
to be the main source of energy (Takai et al., 2004; Nealson
et al., 2005; Pedersen, 2012), while, in the latter, the buried
and completely or partly altered organic matter (kerogen or
crude oil) provides energy substrates that fuel deep subsurface
microbial communities. These communities have been sampled
through drilled boreholes penetrating deep strata. In majority,
the drilling activity was related to hydrocarbon exploration.
Subsurface microbial communities have been sampled from the
high-temperature hydrocarbon reservoirs of Western Siberia,
Kazakhstan (Nazina et al., 1995; Bonch-Osmolovskaya et al.,
2003; Frank et al., 2016), California (Orphan et al., 2003),
North Sea (Dahle et al., 2008), China (Li et al., 2006; Nazina
et al., 2006), etcetera. Microbes from borehole water samples
represent the planktonic community, while microorganisms on
mineral surfaces and in biofilms in subsurface environments
remain elusive as they only appear in the borehole fluid

sporadically (Edwards et al., 2005; Wanger et al., 2006). In
some cases, this sporadic distribution of the immobilized
microorganisms could lead to erroneous interpretation of
subsurface community compositions judged by singular or
irregularly repeated molecular fingerprints. To date, only a few
research projects have concentrated on the long-term dynamics
of deep subsurface communities (e.g., Wu et al., 2016).

Our work is part of a long-term study of microbial
communities inhabiting deep thermal aquifers in the Mesozoic
and Palaeozoic sedimentary sequences of the Western Siberian
megabasin. During the 1950s, many hydrocarbon exploration
wells drilled in this region penetrated deep aquifers rather than
significant hydrocarbon reservoirs. The borehole depths typically
varied from 500 to 4000m, with water temperatures ranging from
20 to 140◦C. In this study, we have characterized the microbial
community of the borehole 3P (alternative designations in other
publications: P3, P-3, 3-R or “Goryachii Istochnik”) situated on
the west bank of the River Ob’, between the ports of Parabel’ and
Narym, and in the Parabel’ District, Tomsk Region of the Russian
Federation. The borehole was drilled in 1957–1958 and was
left unsealed. The thermal water overflowing from the borehole
has subsequently been tapped for a spa resort: it discharges
uncontaminated to the surface of a wooden conduit above the
ground level. On the conduit, non-photosyntheticmicrobial mats
develop downstream of the outflow (Figure S1). The goal of this
work was to study the composition of microbial community in
water during several years in order to find how stable it is and
what the functional roles of its components are. Both borehole
water and microbial mats were sampled in this study over a five-
year period, from August 2009 to August 2013. Changes in the
composition of planktonic microbial communities were traced
by PCR-DGGE analysis of the 16S rRNA gene fragments. High-
throughput sequencing of variable 16S rRNA gene fragments
was additionally performed for a comprehensive analysis of the
prokaryotic communities. Previous studies of deep subsurface
aquifers showed that only 0.022–1% of all cells are present in
water in an unattached state (McMahon and Parnell, 2014).
We assumed that hydrolytic microorganisms attached to the
organic-rich ore would be present in water as minor components
and could be revealed in specific enrichment cultures. Thus,
an attempt was made to study the hydrolytic part of a deep
subsurface population by batch enrichment cultures further
analyzed by PCR-DGGE of 16S rRNA gene fragments. A
continuous microaerophilic acetate-utilizing enrichment from
a water sample was also established. It was supposed to
reproduce the microbial mat developing at the outflow of the
3P well. Therefore, the combination of different approaches
allowed us to reveal stable planktonic and variable immobilized
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parts of the deep subsurface microbial community as well
as provide insight into the origin and diversity of microbial
mats consuming organic molecules present in deep subsurface
water.

MATERIALS AND METHODS

Site Description and Samples Collection
Borehole 3P is located on the west bank of the River Ob’
(N58◦50′, E81◦30′) in the Tomsk Region, Western Siberia,
Russia. According to different sources, the depth of the borehole
is 2609 or 2775m. It was drilled as an oil exploration well in 1957–
1958 and then abandoned and harnessed by the local population
as a source of thermal water. The borehole penetrated almost
30m of Quaternary sediments, followed by 182m of Palaeogene
sediments. This was succeeded by a Cretaceous sedimentary
sequence down to 2250m and a Jurassic sequence to 2600 m.
At 2600 m, the borehole reached the Palaeozoic basement, thus
comprising the monzonite and granite (Ulmishek, 2003; Banks
et al., 2011, 2014).Water discharges at approximately 9m3 day−1,
has a moderate mineralization (total dissolved solids 13–14 g
l−1) and contains dissolved H2S and CH4. Methane exsolves as
bubbles on the surface. The stratigraphic location from which
the water is derived is not known with certainty. Given a water
temperature of around 50◦C and a typical geothermal gradient in
tectonically stable areas of 20–30◦C per km, and allowing for the
fact that the water may cool during its ascent along the borehole,
it seems likely that the water is derived from near the base of the
borehole.

Samples of water were collected seven times: in August 2009,
February 2010, March 2010, June 2011, July 2012, September
2012, and August 2013. Temperature, pH, and redox potential of
water were measured on-site (HI 8314 Hanna pH/redox-meter
and corresponding electrodes). Samples for chemical, molecular,
and microbiological analyses were taken from the wellhead into
sterile 500 ml serum bottles sealed with rubber stoppers. Stoppers
of sample containers for analysis of organic compounds were
covered with Teflon films. All samples were kept at +4◦C for
24 h before analysis. Gas samples were collected four times:
in August 2009, March 2010, June 2011, and July 2012. For
the samples with the highest hydrocarbon content (2011), the
carbon isotopic composition of the gas phase was determined.
Gas bubbles exsolving from thermal water were collected by
a method modified from those described by Giggenbach and
Goguel (1989). We used a glass gas sampler (Savannah River
National Laboratory) connected with a sterile 60ml bottle by a
Norprene tubing and submerged into the tankwith thermal water
inflow. The gas accumulating in the sampler was collected into a
bottle by displacement of 50 ml thermal water from it, and 10ml
of water were left as a hydroseal. The filled bottles, being held
under water, were sealed with butyl rubber stoppers and then
capped and transferred to the laboratory upside down to prevent
post-sampling atmospheric contamination. Samples of microbial
mats growing along the water flow were collected three times (in
August 2009, February 2010, and March 2010) in 50ml Falcon
tubes and were stored at 4◦C until used.

Hydrochemical Analyses
Water samples were filtered (0.22 µm) using Millex-GS filter
units (Merck Millipore) before analysis. Organic compounds
were extracted with chloroform from the water samples. Liquid
chromatography–mass spectrometry (LC-MS) was performed in
the Institute of Petroleum Chemistry, Siberian branch of Russian
Academy of Sciences (Tomsk, Russia). Determination of selected
organic compounds was carried out using a Thermo Scientific
DFS mass spectrometer. Major ions and chemical oxygen
demand (COD) were determined by the Scientific Educational
Production Center Voda of Tomsk Polytechnic University by
titration (bicarbonate and chloride) or spectrophotometry
(sulfate), and H2S was measured colorimetrically with
N,N-dimethyl-p-phenylenediamine (dihydrochloride salt)
as the chromophore (Cline, 1969). For COD measurements,
the sample was refluxed with potassium dichromate in the
sulfuric acid medium and the excess potassium dichromate
was determined by titration against ferrous ammonium sulfate
using ferroin as an indicator. Other ions were determined
at the Chemical Analytical Center Plasma (Tomsk) using an
ICP mass-spectrometer ELAN model DRC-e (PerkinElmer
Instruments).

In 2010, parallel samples (0.45µmfiltration) were analyzed by
ICP-AES and ion chromatography at the Geological Survey of
Norway (Banks et al., 2011). In 2013, parallel samples (0.45µm
filtration) were analyzed by ICP-MS and ion chromatography at
the British Geological Survey.

Gas samples were analyzed using the Crystal 5000.1 gas
chromatograph (Chromatek) equipped with a HayeSepN 80–100
mesh Supelco column (Sigma-Aldrich), methanator, FID, and
TCD detectors, which were conditioned at 40◦, 350◦, 200◦, and
150◦C, respectively. The carrier gas was argon (25 ml min−1).
Volatile fatty acids in the water samples were analyzed using
the same equipment with a FID detector and Porapak column
conditioned at 180◦C. The isotopic composition of methane
and ethane (δ13C) was determined on a Thermo Electron gas
chromatograph coupled with a Delta plus mass spectrometer
(Thermo Fisher Scientific).

DNA Extraction
DNA was extracted from water and mat samples, enrichment
cultures, and isolates. Cells from 1.5 l aliquots of borehole
groundwater were retained on cellulose nitrate filters (0.2µm)
using a Sartorius filtration unit. Filters were pestled in liquid
nitrogen at −70◦C and then used for DNA extraction with a
Power Soil DNA isolation kit (MO BIO Laboratories) according
to the manufacturer’s instructions. Cells from enrichment culture
broths and pure cultures were collected by centrifugation (9000 g
for 15min). Extraction of DNA from approximately 5 ml of
enrichments or pure cultures was performed as described by Tsai
and Olson (1991), with minor modifications (i.e., proteinase K
(10µg ml−1) was added after three cycles of freezing the sample
in liquid nitrogen at−70◦C and thawing in a 65◦C water bath).

PCR Amplification
Nested PCR (Vissers et al., 2009) was used for the amplification
of bacterial and archaeal 16S rRNA genes with the primers listed
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in Table S2. Domain-specific primers were used separately for
Bacteria andArchaea for both the first and second rounds of PCR.
The products obtained in the reaction with outer primers were
diluted with nuclease-free water (Fermentas) to a concentration
of ca. 100mg l−1 and then used as a template for the reaction with
inner primers. 16S rRNA gene fragments of Bacteria were first
amplified using outer primer pair 27F–1492R (DeLong, 1992)
and then with Bacteria-specific inner primer pair GC-Bacv3f
and 907r (Lane, 1991; Muyzer et al., 1996). The first round of
amplification of the 16S rRNA gene fragments of Archaea was
conducted with the primer pair 21F-958R (Weisburg et al., 1991;
DeLong, 1992) and the second round with the Archaea-specific
pair GC-Arch915r and Parch519f (Coolen et al., 2004). We
have successfully used these primer sets in our previous studies
to amplify bacterial and archaeal 16S rRNA gene fragments
separately (Karnachuk et al., 2009; Frank et al., 2016).

Table S2 shows the details of the PCR conditions used in
this study. The amounts of MgCl2, dNTPs, primers, and Taq
DNA-polymerase were altered depending on the primer set.
The reagents used were 25 mM MgCl2, 2 M dNTPs, 5 U µl−1

Taq DNA polymerase, 10x Taq buffer, and nuclease-free water
(Fermentas). 100µM stock solutions of oligonucleotide primers
synthesized by Syntol (Moscow) were applied. 400mg l−1 of BSA
(Fermentas) were added to the reaction mixture for archaeal
16S rRNA gene amplification. Reactions with outer primers were
conducted in a volume of 50 µl. PCR with inner primers was
performed in a volume of 100 µl. Each mixture contained 50–
100mg l−1 of the DNA matrix. All PCRs were conducted in the
MyCycler thermal cycler (Bio-Rad Laboratories).

Denaturing Gradient Gel Electrophoresis
(DGGE)
The DGGE used for the separation of amplified fragments
(Muyzer et al., 1993) was performed with the DCode System
(Bio-Rad). Polyacrylamide gel (8%) with a 30–70% denaturing
gradient was used for 16S rRNA fragments separation (100%
denaturing solution contained 7 M urea and 40% formamide).
Electrophoresis was performed for 17 h at 60◦C and 120
V. For separation of archaeal 16S rRNA gene fragments, 8%
polyacrylamide gel with 20 to 80% denaturing gradient was
used. Electrophoresis was performed for 19.5 h at 60◦C and
100 V, as described by Vissers et al. (2009). DGGE gel was
stained with 0.5mg l−1 ethidium bromide (Bio-Rad) in a
TAE buffer for 15 min and then washed in TAE for 20
min. The stained gel was visualized in UV light (320 nm)
using a GelDoc-It imaging system (UVP, UK). Separate bands
were cut from the gel in UV (320 nm) using transilluminator
ECX-26MX (Vilber Lourmat). Then DNA was extracted to
20 µl of nuclease-free water (Fermentas) for 12 h at 4◦C.
Amplification of 16S rRNA gene fragments was performed
as described above, but the primers did not contain GC-
clamps. DGGE analysis of each PCR product was performed in
duplicate.

Phylogenetic Analysis
Commercial sequencing of 16S rRNA (585 bp and ca. 400 bp)
gene fragments was performed by Syntol. The sequences

were analyzed against the GenBank nucleotide collection
database (http://www.ncbi.nlm.nih.gov/blast) by the BLASTN
algorithm with standard parameters (Altschul et al., 1997).
The sequences were aligned using BioEdit sequence alignment
editor (Hall, 1999), Version 7.2.5. Maximum likelihood and
neighbor-joining phylogenetic trees based on the comparison
of 16S rRNA gene sequences were constructed using MEGA
6 (Tamura et al., 2013). All the sequences were uploaded
to the GenBank nucleotide collection database under
the accession numbers KT897597 – 651, KY010808, and
KY010809.

Pyrosequencing of 16S rRNA Gene
Fragments
Pyrosequencing analyses were performed for water samples
obtained from the borehole in June 2011. Cells from 30 L of water
were collected on 0.2 µm nitrate cellulose filters. The filters were
frozen in liquid nitrogen and then ground and melted with TE
buffer in a water bath at 37◦C. The total DNA was extracted by
the CTAB/NaCl method (Wilson, 2001).

Universal primers were used for amplification of the V3–
V4 variable regions of the 16S rRNA gene, U341F (5′-CCT
ACG GGR SGC AGC AG-3′), and PRK806R (5′-GGA CTA
CYV GGG TAT CTA AT-3′). The primer check with SILVA
TestPrime confirmed that they target most of Archaea and
Bacteria except only a few lineages, notably Planctomycetes and
some Crenarchaeota. The PCR fragment was pyrosequenced
on GS FLX (Roche) using titanium chemistry. A total of
39,276 sequence reads were obtained. Most of the reads
covered the full length of the PCR fragment. The reads with
mismatches to primer sequences, those containing ambiguous
nucleotides, and those shorter than 400 bp were excluded
from the analysis. Then 16S rRNA data were analyzed by
the RDP Classifier program package (Cole et al., 2009).
Initially, the sequences obtained with universal primers were
distributed between Bacteria and Archaea using the online
RDP Naive Bayesian rRNA Classifier Version 2.0 (http://rdp.
cme.msu.edu/classifier/classifier.jsp). Subsequently, bacterial and
archaeal 16S rRNA gene datasets were analyzed separately and
subjected to additional filters. First, AmpliconNoise (Quince
et al., 2011) was used to account for homopolymer-derived and
PCR errors. Then all remaining singletons (unique sequences
occurring only once) were removed, as suggested by Behnke
et al. (2011). The final datasets consisted of 21,608 bacterial
and 6965 archaeal 16S reads. Complete linkage clustering
and selection of representative sequences for operational
taxonomic units (OTUs) were performed using the RDP
Classifier (Cole et al., 2009). OTUs were assigned to taxonomic
groups (i.e., bacterial and archaeal divisions) on the basis of
BLASTN sequence similarity searches against the NCBI database.
Taxonomic assignments were refined following the construction
of phylogenetic trees consisting of representative sequences
of the clusters and a set of 16S rRNA gene sequences from
the representatives of different archaeal and bacterial lineages.
The sequences were aligned using CLUSTALX (Thompson
et al., 1997), and the neighbor-joining tree was computed by
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TREECON (Van de Peer and De Wachter, 1994). Shannon
and equitability indices based on 16S rRNA gene sequence
data were calculated at the 97 and 95% cutoff levels using the
RDP Pipeline (Cole et al., 2009). Pyrosequencing read data
has been deposited in the NCBI SRA database under accession
SRR4450631.

Enrichment of Deep Subsurface
Microorganisms in Batch and Continuous
Cultures and Isolation of Pure Cultures
Microorganisms of different metabolic groups were enriched
using aerobic and anaerobic conditions as previously described
(Podosokorskaya et al., 2013a). Microcrystalline cellulose (Avicel;
2 g l−1), cellobiose (2 g l−1), lactate (Na salt; 20 mM), peptone
(Sigma; 10 g l−1), gelatin (Sigma; 20 g l−1), and H2 (80 or
100%) were used as the energy substrates. Sulfate (Na salt, 10
mM), arsenate (Na salt, 5 mM), and glauconite (final Fe(III)
concentration ca. 20 mM) were employed as the electron
acceptors. Yeast extract (0.05–0.1 g l−1) was added as the source
of growth factors. For batch enrichments, 10 ml portions of the
media were dispensed in 18mlHungate tubes, and the head space
was filled with an oxygen-free N2(100%) or N2/CO2 mixture
(80:20%). When the medium was prepared aerobically or H2 was
used as the substrate, the volume of the medium was 5 ml, and
the head space was filled with either air or H2 (100%) or H2/CO2

mixture (80:20%), respectively. Incubation temperatures were 47,
50, 54, or 70◦C. The growth of all cultures was monitored by
direct cell counting under a phase contrast microscope at 1000
×magnification.

Continuous enrichments were initiated in a 1.3 l BioFlo
110 bioreactor (New Brunswick Scientific) under microaerobic
conditions (4.5% O2 in the gas phase) with Na-acetate (10
mM) as the substrate. The mineral salts solution was modified
according to the chemical analysis results of the borehole water
as follows. The mineral salts solution contained (per liter) 7.0 g
NaCl, 0.19 g MgCl2, 0.25 g NH4Cl, 0.5 g KCl, 0.2 g KH2PO4,
0.15 g NaHCO3, 0.013 g Na2S, and 1.0 g CaCl2. The medium was
prepared as described previously (Podosokorskaya et al., 2013a).
Trace element solutions A (10 ml l−1) and B (1 ml l−1) (Table S3)
were used to provide for minor and trace elements corresponding
to the elemental composition of the borehole water. Spherical
glass beads (av. diameter 2 mm) were spread at the bottom of
the reactor before autoclaving to model the mineral surface of
the wallrock in the aquifer. The medium was autoclaved in the
bioreactor and feed bottles at 121◦C for 20 min. The pH (7.0–
7.5), temperature (50–70◦C), and dissolved O2 of the medium
were adjusted before inoculation and automatically sustained
during the incubation. The bioreactor was inoculated with 0.5
l of borehole water sampled in February 2010 and started in a
batch mode. At the commencement of the exponential growth
phase, the bioreactor was switched to continuous mode at a
gradually increasing dilution rate of 0.5–1.17 ml min−1. Mixing
was adjusted with Rushton impellers to 160ml min−1 (coefficient
of turbulent diffusion 178.2 cm2 s−1), which ensured a perfect
mixing model. The composition of enrichment cultures was
studied using PCR-DGGE analyses as described above.

RESULTS

Inorganic Hydrochemistry of the Borehole
Water
The chemical analysis results of the borehole water, sampled at
three different time points in 2009–2010, have been reviewed by
Banks et al. (2011), and the sampling in August 2013 has also
been summarized (Banks et al., 2014). Briefly, the water is of Na-
(Ca)-Cl composition. The molar ratio of Na/Cl is between 0.78
and 0.86, which is almost identical to modern sea water (0.86).
Bromide occurs at 28–33mg l−1 in the water, while the Cl−/Br−

mass ratio of around 262–275 is very close to 288 of standard
seawater. The water contains ca. 1.1 g l−1 of Ca but only about
5mg l−1 of Mg. It is supersaturated with respect to calcite and
saturated with respect to dolomite; the Sr concentration is high
at ca. 86mg l−1.

A significant variation in temperature was observed, from
50.2◦C in February 2010 to 45.2◦C in August 2010 (Table 1),
while the temperature was around 50◦C in August 2013. The
water pH was circumneutral and also varied somewhat from 7.52
in August 2009 to 6.91 in August 2010. The redox potential of
about−250 to−300mV (vs. standard hydrogen electrode [SHE])
was indicative of strongly reducing conditions, also evidenced
by the presence of dissolved H2S, CH4, near absence of sulfate,
and elevated barium (17mg l−1 in 2013) due to the lack of
a barite solubility ceiling. The H2S concentrations varied from
2.46mg l−1 in August 2009 to 7.42mg l−1 in August 2010.
Concentrations of most heavy metals (except Ba) measured in
2013 were low and were presumed to be suppressed by the high
pH and sulfide concentrations. Arsenic concentrations were ca.
130 µg l−1 (Table S1).

Organic Hydrochemistry of the Borehole
Water
The concentration of total carbon, including organics (as judged
by COD measurements), varied significantly from ca. 103 mg

TABLE 1 | Characteristics of 3P borehole water determined at four

different sampling times.

Parameter August

2009

February

2010

August

2010

August

2013

T◦C 46.9 50.2 45.2 50.0

pH 7.5 7.4 6.9 7.3

Eh, mV (vs SHE) −248 −299 −284 −283

Salinity, mg l−1 15000 15000 13500 n.m.

COD, mg O2 l−1 4400 201 177 n.m.

SO2−
4 , mg l−1 4.2 <2.0 <2.0 25.0

NH+

4 , mg l−1 12.9 6.6 5.7 n.m.

HCO3−, mg l−1 182.0 140.3 135.0 183.0

H2S, mg l−1 2.4 3.2 7.4 n.m.

Alkanes C10-C20, µg l−1 5.0 2.5 12.7 n.m.

Alkanes C21-C35, µg l−1 3.1 6.4 7.5 n.m.

C6-C16 carboxylic acids, µg l−1 3.8 0.4 7.5 n.m.

n.m., not measured.
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l−1 in August 2009 to ca. 102 mg l−1 in 2010 sampling
rounds. Modest concentrations of alkanes and non-volatile C6–
C16 carboxylic acids were detected in all samples (Table 1).
Acetate (160mg l−1) and propionate (7.5mg l−1) were present
in significant concentrations, which underwent minor changes
in the scope of 18% from August 2009 to March 2010. No other
volatile fatty acids were detected in water samples.

Gas Composition of the Borehole Water
The composition of the exsolved gas bubbles collected from the
water varied with time. CH4 was the main constituent, varying
from 57.5% (v/v) (June 2011) to 86.3% (March 2010). The N2

content reached up to 21.6% of the gas in June 2011 (Table 2). O2

was detected in almost all gas samples, probably originating from
nonequilibrium degassing of admixed meteoric recharge upon
contact with deep hot sedimentary water. Theminor components
detected in almost all the samples were CO2 and H2 with
concentrations not exceeding 0.3%. An ethane concentration of
16.3% was recorded in the June 2011 sample when methane
was at its lowest fraction, but it decreased to 0.8% in the July
2012 sample (Table 2). The isotopic composition (δ13C) of CH4

and CH3CH3 in the June 2011 sample was −53‰ (indicative of
thermogenic with minor admixture of biogenic CH4 as described
by Schoell, 1984) and−40‰, respectively.

Microbial Cell Numbers and Morphotypes
in the Borehole Water
Cell numbers assessed by direct cell counting varied significantly
from one sample to another, being maximal in the first water
sample taken in August 2009 (ca. 108 cells ml−1) and minimal
in the February 2010 sample (3 × 104 cells ml−1). In other water
samples, the cell content analyzed on-site varied from 105 to 107

cells ml−1. In the sample, taken in June 2011 for 16S rRNA-
profiling with the pyrosequencing technique, the cell number
comprised ca. 2× 105 cells ml−1. In all the samples, various short
rod-shaped morphotypes (less than 1 µm in length) prevailed
and two different coccoid morphotypes were also detected.

TABLE 2 | Composition of gas mixture of 3P borehole.

Component Concentration, % (v/v) in the samples by month/year

August 2009 March 2010 June 2011 July 2012

CH4 74.7 86.3 57.5b 75.8

N2 21.0 13.3 21.6 13.5

Ethane with

admixturesa
Nd Nd 16.3b 0.8

O2 4.0 0.2 4.5 1.8

CO2 0.3 Nd 0.1 0.2

H2 0.01 0.09 Nd Nd

aFor the June 2011sample, ethane comprised up to 90% of gaseous hydrocarbons

(excluding methane), and other components of this mixture have not been analyzed; in

July 2012, the mixture of gaseous hydrocarbons comprised 83% ethane, 13% propane,

and 4% n- and iso-butane (total).
bThe isotopic composition (δ13C) has been determined (refer to the text).

Nd, not detected.

PCR-DGGE Analysis of Archaeal and
Bacterial Diversity in the Borehole Water
Some members of the prokaryotic community matched
with bacterial genera (95–100% similarity), namely Delftia,
Desulfovirgula, Thermoacetogenium, Desulfotomaculum,
Symbiobacterium, Ignavibacterium, and archaea in the genus
Methanothermobacter. Many phylotypes in the borehole water
were uncultured Firmicutes (88–89% 16S rRNA gene similarity
with closest cultured relatives). The majority of phylotypes were
detected only once or, occasionally, twice. Among these, there
were phylotypes matched withDelftia tsuruhatensis (only August
2009) and Ignavibacterium album (March 2010 and August
2013). Three phylotypes from the August 2009 sample were
consistent with Thermoacetogenium phaeum (99% similarity),
Symbiobacterium turbinis (97%), andDesulfotomaculum salinum
(99%). Two Firmicutes were present in four out of the five
DNA samples: a sulfate-reducing thermophile Desulfovirgula
thermocuniculi (98–99%) and an uncultured bacterium that
had 86% similarity with Thermanaerovibrio acidaminovorans
(Table 3, Figure 1).

Pyrosequencing Analysis of 16S rRNA
Gene Fragments in the Borehole Water
Pyrosequencing analysis of 16S rRNA gene fragments was
performed for the total DNA isolated from the borehole
water sample of June 2011. Bacteria accounted for 76% of all
16S rRNA reads and were mostly represented by Firmicutes
(Figure 2). Bacteria closely related to the sulfate-reducing
thermophile Desulfovirgula thermocuniculi were the dominant
component of the community (46.9% of the total). The
second most abundant bacterial group (16.7%) comprised
several lineages related to the genus Thermoacetogenium.
Sulfate-reducer Desulfotomaculum kuznetsovii (Nazina
et al., 1988) accounted for 1.3% of prokaryotes. Other
Firmicutes of uncultured genera comprised 6.9% of the
whole community. Members of the candidate division
OP9 (Hugenholtz et al., 1998) accounted for 2.4% of the
community. This group includes organotrophic bacteria
proposed to ferment polysaccharides (Dodsworth et al., 2013).
Other bacteria were about 1.3% of the total. Among them
were Bellilinea caldifistulae from the phylum Chloroflexi
(0.15%) and Ignavibacterium album (0.13%) from the phylum
Ignavibacteriae.

Archaeal sequences comprised about 24% of all 16S rRNA
gene fragments. Most of them could be assigned to the
hydrogenotrophic Methanothermobacter thermautotrophicus
frequently found in aquifers. Among the other archaeal 16S
rRNA sequences, members of the genera Methanobacterium
and Methanosaeta were identified in minor amounts
(<0.3%).

Overall, the microbial community diversity and richness,
characterized by Shannon and equitability indices, is rather low
(Table 4) in comparison with values reported for subsurface
sediments and oil reservoirs, where Shannon indexes from
2 to 4 are typically reported (for example, Biddle et al.,
2011; Gao et al., 2016). This is especially evident for the
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TABLE 3 | Prokaryotic diversity in 3P borehole water and the microbial mat developing at the borehole outflow according to PCR-DGGE analyses of 16S

rRNA genes.

Designation of 16S

rRNA sequence

Closest cultured relative, % of 16S rRNA

gene identity

August 2009 February 2010 March 2010 September 2012 August 2013

WATER SAMPLES

3Pw-A2009-1.1bac Delftia tsuruhatensis, 99% +

3Pw-A2009-7bac +

3Pw-A2009-1.7bac +

3Pw-A2013-1bac Desulfovirgula thermocuniculi, 98–99% +

3Pw-S2012-1bac +

3Pw-F2010-1.2bac +

3Pw-F2010-1.3bac +

3Pw-A2009-8.1bac +

3Pw-A-2009-3bac +

3Pw-A2013-4bac Thermanaerovibrio acidaminovorans, 87% +

3Pw-A2009-4bac +

3Pw-F2010-4bac +

3Pw-S2012-2bac +

3Pw-M2010-1bac +

3Pw-M2010-2bac Thermaeromonas toyohensis, 88% +

3Pw-A2013-2bac

+

3Pw-A2009-5bac Thermoacetogenium phaeum, 99% +

3Pw-A2009-6bac Desulfotomaculum salinum, 99% +

3Pw-A2009-8bac Symbiobacterium turbinis, 97% +

3Pw-S2012-3bac Moorella thermoacetica, 88% +

3Pw-S2012-4bac Thermaerobacter marianensis, 88% +

3Pw-S2012-5bac Thermaerobacter subterraneous, 89% +

3Pw-A2013-3bac

+

3Pw-M2010-3bac Ignavibacterium album, 98% +

3Pw-A2013-6bac

+

3Pw-A2013-5bac Sphaerobacter thermophilus, 83% +

3Pw-A2009-2arc Methanothermobacter marburgensis, 95–99% +

3Pw-F2010-2arc +

3Pw-S2012-6arc +

3Pw-A2009-6arc +

3Pw-A2013-7arc +

MICROBIAL MAT SAMPLES

3Pm-A2009-1bac Flavobacterium kamogawaensis, 94% +

3Pm-A2009-2bac Flavobacterium cucumis, 94% +

3Pm-A2009-3bac Flavobacterium gelidilacus, 94% +

3Pm-A2009-4bac Hydrogenophaga pseudoflava, 95% +

3Pm-F2010-2bac +

3Pm-F2010-3bac Hydrogenophilus thermoluteolus, 96-99% +

archaeal part of the community characterized by the presence
of just a few species. Thus, in the pyrosequenced DNA
sample, the two groups represented by the highest number
of sequences—Desulfovirgula and Methanothermobacter spp.—
were those consistently detected by DGGE as the components of
the deep subsurface prokaryotic community.

PCR-DGGE Analysis of Bacterial Diversity
in Microbial Mats
Microbial mats on the wooden conduit construction on the
outflow pathway of the borehole water were about 1–2 mm thick
and gelatinous and had a colorless, light pink, or pink-grayish
hue (Figure S1). Based on the PCR-DGGE results (Table 3),
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FIGURE 1 | Phylogenetic position of Bacteria and Archaea detected in water, mats, and enrichments of 3P well by PCR-DGGE analysis. 3P, general

designation; w, water; m, mat; e, enrichment; M2010, month and year of sampling; N, number of sequence; bac, bacteria; arc, archaea. Bootstrap values based on

1000 replications are shown at branch nodes.
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FIGURE 2 | Composition of 3P well microbial community as

characterized by the pyrosequencing of 16S rRNA gene variable

fragments.

TABLE 4 | Observed bacterial and archaeal diversity estimates based on

97 and 95% OTU levels.

Observed OTUs Shannon’s index Equitability

97% 95% 97% 95% 97% 95%

Bacteria 451 305 1.95 1.90 0.32 0.33

Archaea 17 7 0.13 0.11 0.05 0.06

completely different bacteria dominated mat communities in
the two samplings in August 2009 and February 2010. Various
Bacteroidetes (Flavobacterium and Hydrogenophaga spp.) were
present in August 2009 (colorless and light pink mats),
while Hydrogenophilus spp. and uncultured Deferribacteres were
detected in February 2010 (mainly grayish mats).

Batch and Continuous Enrichments from
Borehole Water and Microbial Mats
Batch enrichment cultures were obtained on the media,
containing diverse organic substrates in either the presence or
absence of external electron acceptors, which were inoculated
with borehole water samples (Table 5). PCR-DGGE analyses of
the enrichment cultures showed the presence of phylogenetically
diverse prokaryotes, most of them belonging to Bacteria.

Phylum Firmicutes was represented by numerous phylotypes,
including both cultured and uncultured members of this group.
Among other phylotypes, Bellilinea caldifistulae (99% similarity)
and Melioribacter roseus (100% similarity with the type strain;
Podosokorskaya et al., 2013a), representing Chloroflexi and
Ignavibacteriae phyla, respectively, should be mentioned as
well as Hydrogenophilus thermoluteolous (99% identity), a
member of Betaproteobacteria and a representative of the

candidate division OP9 (98% similarity) (Hugenholtz et al.,
1998).

Several enrichment cultures were obtained in the presence of
insoluble Fe(III) forms and As(V) as the electron acceptors.

The only enrichment culture that contained prevailing
phylotypes of the consortium, which has also been identified
directly by PCR-DGGE and pyrosequencing of the borehole
water, was that incubated at 50◦C with gelatin and sulfate.
It comprised of Desulfovirgula thermocuniculi (99% similarity)
andMethanothermobacter thermautotrophicus (100% similarity),
accompanied by Delftia tsuruhatensis (99% similarity) and two
uncultured Deferribacteres.

The enrichment culture obtained from a 3P microbial mat
sample on the medium with microcrystalline cellulose contained
three novel genera of hydrolytic bacteria that were subsequently
isolated and described asMelioribacter roseus gen. nov., sp. nov.,
Ornatilinea apprima gen. nov., sp. nov., and Mobilitalea sibirica
gen. nov., sp. nov. (Podosokorskaya et al., 2013a,b, 2014). They
were able to grow on various polysaccharides, including cellulose,
as well as on sugars and peptides.

Two continuous enrichments from the borehole water
developed in the bioreactor under microaerobic conditions
(4% O2). The enrichments were obtained with an incremental
temperature increase from 50 to 70◦C, with acetate as the
sole carbon source and electron donor. The cell density in the
bioreactor started at 1 × 104 cells ml−1 at 50◦C and reached 3
× 107 cells ml−1 after 144 h of batch cultivation, thus indicating
the beginning of the exponential growth phase. The exponential
phase was sustained for 50 h of continuous cultivation under
a perfect mixing regimen. Subsequently, the cultivation mode
was switched back to batch culture, and the cell density reached
its maximum of 7 × 109 cells ml−1 within 96 h. The high cell
density was accompanied by the formation of biofilms on the
interior glass walls, rotating impellers of the bioreactor, and the
glass beads used to model the wallrock. When the cells started to
lyse, the temperature was increased to 70◦C, and the bioreactor
was switched again to continuous mode. The growth ensued for
about 100 h but to a lesser cell density (2·108 cells ml−1). Acetate
consumption correlated well with the growth curve of the culture
(Figure S2). DGGE analysis throughout the enrichments at 50
and 70◦C showed only one phylotype, which is a close relative
of Hydrogenophylus thermoluteolus (99% similarity).

DISCUSSION

The oil exploration well 3P near Parabel’ in Tomsk Region
was drilled to the recorded depth of 2775m 60 years ago
and has never been an oil production well. For this study,
the continuous outflow of deep saline thermal water provided
an easy and reliable access to the deep subsurface biosphere.
Assuming an annual average surface temperature close to 0◦C,
the 50◦C temperature of water emerging from the borehole
is compatible or slightly lower than calculated according to
the typical geothermal gradient of 2–3◦C/100m (Banks, 2012;
Slobodkin and Slobodkina, 2014). Considering the fact that the
water has potentially cooled during passage up the borehole,
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TABLE 5 | Prokaryotic diversity in enrichment cultures obtained from 3P samples according to PCR-DGGE analyses of 16S rRNA genes.

Source, date Designation Substrate, acceptor, temperature Closest cultured/uncultured relative, % of 16S rRNA identity

Water, Aug 2009 3Pe-A2009-1bac Microcrystalline cellulose, SO2
4, 47

◦C Thermoanaerobacterium thermosaccharolyticum, 90%

3Pe-A2009-2bac Bellilinea caldifistulae, 99%

3Pe-A2009-3bac Sulfurihydrogenibium azorense, 89%

3Pe-A2009-4bac Cellobiose, SO2−
4 , 60◦C Desulfotomaculum thermosubterraneum, 99%

Water, Feb 2010 3Pe-F2010-1bac Acetate, O2 (4,5 %), 50◦Ca Hydrogenophilus thermoluteolus, 99%

3Pe-F2010-2bac Acetate, O2 (4,5 %), 70◦Ca

3Pe-F2010-3bac

Water, March 2010 3Pe-M2010-1bac Lactate, 50◦C Gracilibacter thermotolerans, 90%

3Pe-M2010-2bac Proteiniphilum acetatigenes, 93%

3Pe-M2010-3bac Lactate, 70◦C Caloribacterium cisternae, 97%

3Pe-M2010-4bac

3Pe-M2010-5bac Candidate division OP9 bacterium SCG 091030-14, 98%

Mat, March 2010 3Pe-M2010-6bac Lactate, Fe(III), 50◦C Hydrogenophilus thermoluteolus, 99%

3Pe-M2010-7bac Syntrophobotulus glycolicus, 97%

3Pe-M2010-8bac Peptone, Fe(III), 70◦C Brassicibacter mesophilus, 99%

Water, July 2012 3Pe-J2012-1bac H2 (100 %), As(V), 54◦C Thauera butanivorans, 98%

3Pe-J2012-2bac Glucose+yeast extract, O2, 54
◦C Thauera butanivorans, 98%

3Pe-J2012-3bac Microcrystalline cellulose, 50◦C Melioribacter roseus, 100%

Water, Sept 2012 3Pe-S2012-1bac Gelatine, SO2−
4 , 50◦C Delftia tsuruhatensis, 99%

3Pe-S2012-2bac Desulfovirgula thermocuniculi, 99%

3Pe-S2012-3bac Calditerrivibrio nitroreducens, 90%

3Pe-S2012-4bac Deferribacter desulfuricans, 90%

3Pe-S2012-1arc Methanothermobacter thermautotrophicus, 100%

Mat, Aug 2009 NR_074796.1 Microcrystalline celluloseb, SO4, 47
◦C Melioribacter roseus gen. nov., sp. nov.

JQ292916.1 Ornatilinea apprima gen. nov., sp. nov.

KF931641.1 Mobilitalea sibirica gen. nov., sp. nov.

aContinuous culture.
bThe components of this enrichment represent novel taxa (Podosokorskaya et al., 2013a,b, 2014).

it seems likely that the majority of the overflowing water is
derived from close to the base of the borehole. Analyses of water
performed three times during one year (2009–2010) showed
that the borehole water is neutral and highly reduced, with
salinity around 1.4% and a moderate concentration of dissolved
organic carbon. The Na content of 4.1–4.3 g l−1 and the Cl−

content of 7.5–8.6 g l−1 (2013 data) suggest that the water could
represent a mixture of fresh meteoric recharge water with around
40% marine water, which could be original connate marine
sedimentary water or be derived from a subsequent marine
inundation of the terrain. Extremely low Mg/Sr mass ratios
(∼ 0.06) suggest that Sr has accumulated strongly during a
prolonged residence time, while Mg has been depleted, possibly
by dolomitization.Water temperature and chemical composition
were not completely constant. These changes could not be
explained as seasonal, as the samples from February and August
2010 were more similar than those of August 2009 and 2010. One
hypothesis is that atmospheric pressure or tidal effects may affect
the flow rate and, thus, the temperature and the dissolved gases
(the slower the upflow rate in the borehole, the more heat is lost
to the surrounding rocks). The possibility of mixing with variable
fractions of shallow groundwater (e.g., via leaks in the borehole
casing) also exists. However, our previous data show that stable

isotope composition of the borehole water, when plotted on an
18O vs. 2H plot, falls to the right of the global meteoric water
line (GMWL). This suggests that the water may partly be derived
from meteoric recharge but with the isotopic signature, modified
by 18O exchange with the aquifer matrix in a mildly geothermal
environment, i.e., with a greater component of connate marine
water in the 3P well (Banks et al., 2014).

The 5 years monitoring the same site with the same
molecular technique reliably demonstrates that the groundwater
planktonic microbial community consists of permanent major
part and variable minor components. The revealed constant
components are sulfate-reducers of the genus Desulfovirgula and
methanogens of the familyMethanobacteraceae. Pyrosequencing
of 16S rRNA gene fragments showed that these two groups of
prokaryotes comprise the majority of sequences (71% of the
total amount) in the samples. This fact is in good correlation
with repeated PCR-DGGE results. Regarding bacterial part of the
community, these results are in contrast with some studies of
deep subsurface bedrock-related terrestrial environments where
the representatives of Comamonadaceae and Acholeplasmataceae
(Nyyssönen et al., 2014) or Alicyclobacillaceae (Miettinen et al.,
2015) dominated. However the representatives of the family
Methanobacteraceae are fairly common for deep subsurface
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microbial communities in oil and gas bearing environments
formed in sedimentary sequences (Ng et al., 1989; Nazina et al.,
1995, 2006; Bonch-Osmolovskaya et al., 2003; Mochimaru et al.,
2007; Yamane et al., 2011; Frank et al., 2016).

The minor components of the studied community appeared
to be highly variable. It is plausible that some of the variability
in the community composition could be related to variations
in the water chemistry. PCR-DGGE analyses of the August
2009 water samples showed the highest diversity of bacteria.
The initial presence of the representatives of the genus Delftia
has not been observed in subsequent samples. Delftia spp.
are mesophilic, organotrophic facultative anaerobes capable
of degrading organic substrates, including hydrocarbons via
aerobic or nitrate respiration. The presence of Delftia spp.
corresponds to the lowest temperature, the highest ammonia
concentration, and significant amounts of organics in August
2009 (Table 1). It was recently found that Delftia isolates
originating from a deep subsurface aquifer are able to grow
anaerobically with insoluble electron acceptors mimicked by
electrodes (Jangir et al., 2016). It could be assumed that
bacteria of this genus are present in the attached part of the
microbial community growing organotrophically with minerals
as the electron acceptors and are spread in the water at
favorable conditions, as in August 2009, when an easily accessible
electron acceptor nitrate was abundant. Noteworthily, sequences
related to Delftia comprised the majority of RNA library
from a borehole in Pyhäsalmi mine (Finland) representing
the main active part of the microbial community (Miettinen
et al., 2015). Similar sequences have been recovered from
saline hydrothermal water in a Mexican mine (Ragon et al.,
2013). Another minor component of the 3P well community—
bacteria of the genus Desulfotomaculum—appeared in August
2009, both in water samples and in the enrichment culture
with cellobiose and sulfate; they were also detected in June
2011 by 16S rRNA gene fragments pyrosequencing analysis.
Their presence in the water could be attributed to the
elevated concentration of sulfate (4.2mg l−1 in August 2009
in comparison with that of <2.0mg l−1 in February and
August 2010). However, most of the detected Firmicutes had
a very low level of 16S rRNA gene similarity with cultured
taxa (83–89%; Table 3). Thus, their presence is unlikely to be
directly connected with the water characteristics and chemical
composition.

Both the planktonic community and the batch enrichment
cultures contained many previously uncultured prokaryotes
that belong in majority to the phylum Firmicutes. Many
authors consider Firmicutes an important component of
subsurface microbial communities (Davidson et al., 2011;
Itävaara et al., 2011; Miettinen et al., 2015; Frank et al., 2016).
Enrichments with microcrystalline cellulose and sulfate at 47◦C
contained three types of anaerobic organisms: (i) unidentified
Clostridia (90% similarity with Thermoanaerobacterium
thermosaccharolyticum), (ii) unidentified Aquificae (89%
similarity with Sulfurihydrogenibium azorense), and (iii)
Bellilinea caldifistulae (99%). Many Clostridia are known to
hydrolyze cellulose and ferment glucose to volatile fatty acids. B.
caldifistulae can utilize some short chain volatile fatty acids and a

range of carbohydrates and was also identified in the planktonic
community by pyrosequencing.

Another culture under comparable enrichment conditions but
from microbial mat samples yielded three hydrolytic bacteria
that were subsequently isolated in pure cultures and described
as (i) Melioribacter roseus gen. nov., sp. nov., (ii) Ornatilinea
apprima gen. nov., sp. nov., and (iii)Mobilitalea sibirica gen. nov.,
sp. nov. (Podosokorskaya et al., 2013a,b, 2014). Their combined
spectrum of substrates includes cellulose as well as various di-
and polysaccharides and proteinaceous substrates. M. roseus is
a facultative anaerobe and can use arsenate, insoluble Fe(III)
oxide ferrihydrite, and nitrite as external electron acceptors.
This bacterium was also found in the enrichment culture
from a borehole water sample (Table 5). It belongs to the
new phylum Ignavibacteriae (Podosokorskaya et al., 2013a);
another representative of which was also detected by PCR-DGGE
analysis in the borehole water sample of March 2010 (Table 3).
Thus,M. roseus and two other polysaccharide-degrading isolates
represent, most probably, immobilized organotrophic bacteria
that perform anaerobic degradation of buried organic matter in
the 3P well community. Moreover,M. roseus is capable of oxygen
respiration, and, being brought to the surface with the borehole
outflow, it could proliferate in periodically aerated microbial
mats fed with organic-rich thermal water.

The gelatin-utilizing enrichment culture contained all
components of the planktonic prokaryotic consortium: Delftia,
Desulfovirgula and Methanothermobacter spp., together with
uncultured representatives of Deferribacteres. This suggests
that gelatin may successfully substitute for natural polymeric
substrates for cultural recoveries of prokaryotes from the
subsurface.

Fe(III), in the form of glauconite (a mica group phyllosilicate),
was added as an external electron acceptor in some enrichment
cultures. It is an insoluble electron acceptor candidate in
geothermal systems (others include ferrihydrite, Fe(III)-
oxyhydroxides, and iron-containing aluminosilicates), as it is
widely present in marine sedimentary depositional sequences of
the deep West Siberian basin (Nikitenko, 2009). Previous studies
have demonstrated a broad ability for ferric iron reduction of
microorganisms inhabiting the deep subsurface biosphere and
oil wells in particular (Slobodkin et al., 1999; Li et al., 2006).
Direct enrichments using glauconite as an electron acceptor
were obtained only from the mat samples and contained bacteria
of Brassicibacter, Hydrogenophilus, and Syntrophobotulus
genera. Representatives of these taxa have not been previously
shown to reduce Fe(III), although Hydrogenophilus can grow
chemolithoautotrophically with molecular H2 as the electron
donor, CO2 as the carbon source, and oxygen or nitrate as
external electron acceptors. As the reduction of nitrate may
involve multiheme c-type cytochromes, which are also the major
determinants of Fe(III) reduction (Sharma et al., 2010), one
might expect the iron-reducing activity in a Hydrogenophilus
strain enriched with glauconite in our experiments.

Two major components of the planktonic community in
the borehole water were consistently present: sulfate-reducers
assigned to Desulfovirgula thermocuniculi and methanogens of
the genus Methanothermobacter. Thermophilic sulfate-reducing
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bacteria in oil formation water have been documented in many
studies (e.g., Magot et al., 2000; Slobodkin and Slobodkina,
2014) and are especially characteristic for submarine oil
deposits where sulfates are easily available. Thermophilic
sulfate-reducers of the genera Desulfotomaculum, Desulfacinum,
Thermodesulfobacterium, and Thermodesulforhabdus, as well as
hyperthermophilic archaea of the genus Archaeoglobus, have
been either isolated or detected by molecular methods in oil
wells of the North Sea (Beeder et al., 1994; Rees et al., 1995;
Nilsen et al., 1996). In terrestrial high-temperature oil reservoirs
where the concentration of sulfates is much lower, sulfate-
reducers or their activity have also been detected (Nazina
et al., 1995, 2006; Bonch-Osmolovskaya et al., 2003; Frank
et al., 2016). The most commonly mentioned sulfate-reducers
in high-temperature oil reservoirs are thermophilic members
of the genus Desulfotomaculum. However, quantitative data on
their presence in microbial communities of organic-rich deep
subsurface habitats have not been presented to date. In this study,
sulfate-reducing Desulfotomaculum spp. was only detected in
borehole water as a minor component. Another sulfate-reducing
Firmicute—Desulfovirgula thermocuniculi—was found to be a
key constituent of the planktonic microbial community of the
borehole water. The type strain of D. thermocuniculi was isolated
from a geothermally influenced underground mine sample in
Japan (Kaksonen et al., 2007).D. thermocuniculi is able to oxidize
H2 and organic acids with sulfate as the electron acceptor or
perform organic acid fermentation. Considering the extremely
low concentration of sulfates in the borehole water (from <2
to 4.23mg l−1), we assume that in the borehole community
D. thermocuniculi grows by the oxidation of carboxylic acids
present in the water, and the produced hydrogen is scavenged
by hydrogenotrophic methanogens via interspecies hydrogen
transfer, which takes place at the low availability of sulfates.

Methanogens of the family Methanobacteraceae are common
members of deep subsurface microbial communities, especially
of those associated with oil deposits (Ng et al., 1989; Nazina et al.,
1995, 2006; Bonch-Osmolovskaya et al., 2003; Mochimaru et al.,
2007; Yamane et al., 2011; Frank et al., 2016).Methanobacteraceae
were found to be consistent components of the borehole water.
According to pyrosequencing analysis, Methanobacteraceae
comprised 24% of the total amount of sequences. In contrast,
representatives of Methanosaeta were only detected in 2011
by 16S rRNA pyrosequencing and in only minor quantities.
Methanosarcinales were not detected in the borehole water,
while these methanogens were reported to dominate a high-
temperature oil reservoir in California (Orphan et al., 2003).

A syntrophic mechanism of acetate conversion to methane
occurring in high-temperature oil reservoirs has been proposed
by Nazina et al. (2006), whereby Thermoacetogenium phaeum
(Hattori et al., 2000) degrades acetate to hydrogen and CO2, and
Methanothermobacter spp. converts these products to CH4. The
presence of bacteria related to T. phaeum in the formation water
of oil reservoirs has been previously noted in Japan (Yamane et al.,
2011). Firmicutes related to T. phaeum were detected in the 3P
borehole water by PCR-DGGE in 2009 and by pyrosequencing
in 2011; in the latter sampling, they represented a significant
part (16%) of the microbial community. Thus, acetate-utilizing
syntrophs may participate in methanogenesis in the borehole

microbial community. In the absence of T. phaeum, syntrophy
with methanogens may involve other members of uncultured
Firmicutes detected in five borehole water samples.

Another point is that the prevalence of sulfate-reducers
and methanogens may indicate reverse methanogenesis by
an anaerobic, methane-oxidizing consortium, with sulfate
as the electron acceptor (Knittel and Boetius, 2009). The
reversibility of methyl-coenzyme M reductase, the key enzyme
of methanogenesis, is supported by thermodynamic and kinetic
considerations (Thauer, 2011) and by the activity assays
with purified enzymes from Methanothermobacter marburgensis
(Scheller et al., 2010) and M. thermautotrophicus (Chen et al.,
2012). The thermogenic nature of methane in the borehole
water, as indicated by the carbon isotopic composition, suggests
conditions favorable for methanotrophy coupled to sulfate
reduction rather than methanogenesis.

When the reduced water containing energy-rich substrates,
but lacking easily available electron acceptors, flows out of the
well, microbial mats develop on the wooden conduit along
the flow pathway of the borehole water. These were found to
consist of either Hydrogenophilus thermoluteolus and uncultured
Deferribacteres or Flavobacterium and Hydrogenophaga-related
organisms (Table 3). None of these prokaryotes were detected
in the borehole water by PCR-DGGE or pyrosequencing.
H. thermoluteolus was present in lactate-utilizing enrichment
cultures amended with glauconite from the microbial mat, and
it appeared to be the only phylotype in the continuous-flow
microaerophilic enrichment obtained from the borehole water.
This continuous enrichment may be regarded as a laboratory
model of a microbial mat fed with the thermal borehole water,
which brings H. thermoluteolus from its subsurface habitats. The
ability of the enriched H. thermoluteolus to form thick biofilms,
even at turbulent mixing, indicates that this microorganism
could thrive at intermediate layers of the borehole, where
oxygen, putatively released from extrinsic shallow groundwater,
is mixed with intensive connate hot borehole outflow. While
H. thermoluteolus could be a minor component in the borehole
water community, it becomes dominant in the microbial mats as
a result of more favorable conditions.

It should be emphasized that the deep subsurface, we were able
to access via borehole water sampling, has two (planktonic and
immobilized) microbial components that are both supported by
organic matter contained in the Mesozoic sedimentary deposits.
Biopolymers from that source could be degraded by anaerobes
able to attach to various surfaces and possessing multiple
hydrolytic catabolic pathways, such as the representatives of the
phylum Ignavibacteriae (Podosokorskaya et al., 2013a). Aqueous
organic solutes produced by hydrolytic microorganisms
can potentially be completely oxidized by sulfate-reducers
in the planktonic community (e.g., Desulfovirgula and
Desulfotomaculum spp.) or by syntrophic methanogenic
associations, such as sulfate-reducers or Thermacetogenium and
Methanothermobacter spp. Another option could be reverse
methanogenesis in syntrophy with sulfate-reducers, recycling
methane to the biomass or yielding CO2 and H2S. However,
considering the thermogenic nature of methane (i.e., the
mixture of biogenic and abiogenic CH4) in the borehole, neither
methanogenesis nor methanotrophy prevalence can be reliably
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inferred from our data. At the artesian outflow of the borehole,
aerobic or microaerobic processes can drive the oxidation of
soluble organics supporting the growth of microbial mats formed
by minor or immobilized components of the subsurface water
ecosystem. The presence of many “uncultured” microorganisms
in enrichment cultures provides hope for their successful
cultivation and, thus, to the understanding of their metabolic
function in the deep subsurface environment.
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