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Sponges have a significant impact on marine benthic communities, they are of
biotechnological interest owing to their production of bioactive natural compounds,
and they promise to provide insights into conserved mechanisms of host–microbe
interactions in basal metazoans. The natural variability of sponge-microbe associations
across species and environments provides a meaningful ecological and evolutionary
framework to investigate animal-microbial symbiosis through experimentation in the field
and also in aquaria. In addition, next-generation sequencing technologies have shed
light on the genomic repertoire of the sponge host and revealed metabolic capacities
and symbiotic lifestyle features of their microbiota. However, our understanding of
symbiotic mechanisms is still in its infancy. Here, we discuss the potential and limitations
of the sponge-microbe symbiosis as emerging models for animal-associated microbiota.
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INTRODUCTION

Each model of animal-associated microbiota offers unique opportunities to address questions
related to symbiosis (Ruby, 2008; Bosch and McFall-Ngai, 2011; Kostic et al., 2013). Existing
laboratory models, such as fly (Drosophila melanogaster), worm (Caenorhabditis elegans), zebra fish
or mice, enable to test the influence of genetic or environmental factors on symbioses. However, it
remains unclear to which extent the findings in lab models apply to natural systems and to other
taxa. Natural models provide a relevant ecological and evolutionary framework, but are frequently
restricted to systems in which the number of players and interactions is reduced (e.g., the squid
Euprymna scolopes and the bacterium Vibrio fischeri, or the mussels Bathymodiolus spp. and their
microbiota). However, owing to deep-sequencing technologies, it has become clear that many
animals are associated with complex microbial consortia and the implications of such symbioses
are just beginning to be unraveled (McFall-Ngai et al., 2013). The study of complex consortia is
challenging because multiple interactions take place simultaneously, making it difficult to decipher
the specific roles of each symbiont. Additionally, methodologies are limiting and microbes are
frequently recalcitrant to cultivation. Enhancing the tractability of the symbiosis within different
animal phyla would contribute to our understanding on animal–microbe interactions.

Marine sponges (phylum Porifera) represent prominent examples for such complex symbioses.
Many sponge species contain diverse microbial consortia within their mesohyl matrix that can
reach densities of up to 109 microbial cells/cm3 of sponge (Hentschel et al., 2006). Sponges
belong to a phylum that originated ca. 600 million years ago (Li et al., 1998). Their porous
body plan contains a highly ramified aquiferous canal system through which seawater is pumped.
Specific cells lining the choanocyte chambers (termed “choanocytes”) take up particles, such as
bacterioplankton, from the seawater and transfer them into the mesohyl interior where these
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are digested by phagocytosis. Sponges lack organs, muscles, and
a nervous system. In spite of their simple anatomy, recent studies
have revealed an unexpected genomic complexity in sponges
(Srivastava et al., 2010; Riesgo et al., 2014a). For example, they
express homologs of genes involved in the animal nervous
system (Ludeman et al., 2014) and possess central elements of
the Toll-like receptor signaling cascade, potentially involved in
innate immunity (Hentschel et al., 2012; Riesgo et al., 2014a).
In addition, sponges and their associated microorganisms yield
secondary metabolites that are of relevance to biotechnological
and medical applications (Mehbub et al., 2014; Indraningrat et al.,
2016).

The sponge-associated microbiota is exceedingly complex
with thousands of symbiont lineages reported per sponge
individual (Thomas et al., 2016). The most abundant phyla
are Proteobacteria, Chloroflexi, and Crenarchaeota, among
others. Altogether, more than 40 microbial phyla, including
several candidate phyla (e.g., Tectomicrobia, Poribacteria) were
recovered from sponges. In contrast, most animal-associated
microbiota belong within 3–5 phyla and diversification is found
at species and strain level (Kostic et al., 2013). Some members
of the sponge-associated consortia are vertically transmitted to
the next generation by larval stages (De Caralt et al., 2007b;
Schmitt et al., 2008), but horizontal acquisition also appears
likely (Taylor et al., 2007). Sponge symbiont OTUs have also
been recovered from seawater, albeit at very low abundances,
and their activity in the free-living state still needs to be
explored (Webster et al., 2010). The diversity patterns, metabolic
repertoire and genomic features of sponge-associated microbiota
have been reviewed in detail elsewhere (Taylor et al., 2007;
Hentschel et al., 2012; Webster and Thomas, 2016). Despite a
species-specific composition, similar functions are detected in
the microbiomes of distantly related sponge species, suggesting
convergent evolution (Fan et al., 2012; Ribes et al., 2012; Thomas
et al., 2016; Horn et al., 2016). These functions relate to
nutritional interactions (e.g., nitrification, vitamin B synthesis),
host–microbe recognition [e.g., eukaryotic-like proteins (ELPs)]
and adaptation to host’s internal environment (e.g., CRISPR-Cas
defense system).

A significant body of information has been accrued from
analyzing the natural variability of sponge microbiomes in
different host species and environments. Host species appears to
be the main factor driving microbial diversity (Erwin et al., 2012;
Easson and Thacker, 2014), although environmental factors (e.g.,
intertidal vs. subtidal habitat, Weigel and Erwin, 2016; depth,
Steinert et al., 2016; location, Pita et al., 2013b) can also cause
intraspecific variability. Also, differences in symbiont density
within the mesohyl (i.e., high microbial abundance HMA sponges
vs. low microbial abundance LMA sponges; Gloeckner et al.,
2014) have an impact on microbial community composition as
well as on the host pumping rate and other metabolic parameters
(Weisz et al., 2008; Ribes et al., 2012). Monitoring microbiota
changes over seasons, bleaching episodes, natural gradients, or
upon transplantation showed the plasticity of the symbiosis at
scales that are difficult to mimic in laboratory (Steindler et al.,
2007; López-Legentil et al., 2010; Erwin et al., 2015; Morrow
et al., 2015). As similar past and present environment has

been also faced by other benthic invertebrates, the features and
mechanisms of sponge-microbe symbioses contribute to a more
comprehensive view of marine symbiotic systems.

The need for sponge models for symbiosis has been debated
within the sponge microbiology community (i.e., at the 1st
International Symposium of Sponge Microbiology, Taylor et al.,
2011). While the benefits of pooling resources, developing
standardized protocols and limiting redundancy were clearly
acknowledged, the dangers of developing too narrow a view of the
natural diversity were also voiced (Taylor et al., 2011; Webster and
Taylor, 2012). An experimental sponge model would, however,
be immensely useful to put the large amount of sequence data
into functional context. Even though some advances toward
an experimental sponge model have been made, such as the
generation of protocols and procedures for sponge aquaculture
(Schippers et al., 2012) as well as the silencing of sponge genes
for functional studies (Rivera et al., 2011), the overall efforts are
still in its infancy. Here we discuss the current status and future
directions toward establishing an experimental sponge model for
symbiosis.

DESIRED PROPERTIES FOR AN
EXPERIMENTAL SPONGE MODEL

Disclosing the mechanistic bases of sponge–microbe interactions
requires experimental tractability. The desired features of an
experimental sponge model are depicted in Table 1. First,
species that are accessible to as many laboratories as possible
would be useful candidates. Most studied sponge species
thrive in shallow temperate or tropical waters, where they
are easily collected by snorkeling or scuba diving. Sponges
from remote or deep environments in need of ocean-going
equipment, expertise, and resources are naturally less amenable
to experimental manipulation. Sponge species inhabiting
a wide geographic range should be prioritized; however,
many species are limited to distinct geographic regions.
Consequently, most research groups have focused on the
abundant species at their local sites (e.g., the Great Barrier
Reef species Amphimedon queenslandica, Rhopaloides odorabile,
Cymbastela concentrica, the West-Atlantic/Caribbean/East-
Pacific sponges Xestospongia muta, Mycale laxissima, Axinella
mexicana, or the Mediterranean/East-Atlantic species Aplysina
aerophoba, Petrosia ficiformis, Dysidea avara, Ircinia spp.), thus
making an overall comparison across geographic boundaries
difficult. On the genus level, some sponges show an almost
global distribution within temperate and/or tropical latitudes
(e.g., Aplysina, Halichondria, Ircinia, and Xestospongia) and
laboratories in different geographic areas would benefit from
protocols applicable to these sponges. In addition, when
choosing a model system, the parameters of morphology and
size should be taken into account. Smaller, compact species are
easier to collect and maintain than massive or fragile species.
For example, while Xestospongia muta satisfies the criteria of
wide distribution and ecological relevance, it will hardly be
amenable to aquarium maintenance owing to its large size and
fragility.
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TABLE 1 | Desired properties for an experimental sponge model for
symbiosis (adapted after Ruby, 2008).

• Ease of collection, wide geographic distribution

• Simple morphology, small size

• Maintenance in aquaculture

• Closed life cycle

• Establishment of a gnotobiotic/aposymbiotic host

• Availability of omic-data

• Amenability to genetic manipulation (RNAi, CRISPR-Cas)

• Culturability of symbionts

An experimental model requires the long-term controlled
maintenance of the holobiont (here defined as the host plus
its symbionts, Margulis, 1991). Different laboratories have kept
sponges in aquaria for days/weeks (e.g., Fan et al., 2013; Pita
et al., 2013a), several months (e.g., Aplysina aerophoba, Gerçe
et al., 2009; Sacristán-Soriano et al., 2016), and up to 2 years
(Ircinia strobilina, Mohamed et al., 2008b; Mycale laxissima,
Mohamed et al., 2008a). The aquaculture setups vary from
closed systems with external food supply (i.e., bacteria or algae)
to open flow-through systems with direct seawater uptake,
which are closer to in situ conditions but demand advanced
infrastructure. Depending on the sponge species and/or the
aquaculture system, the microbiota changes upon transfer and
long-term maintenance in aquaria with respect to community
composition and abundance, although the core microbiome
seems to persist (e.g., Mohamed et al., 2008a; Webster et al., 2011;
Ribes et al., 2016). This plasticity requires careful monitoring of
the microbial diversity during aquaculture by use of standardized
protocols (Earth Microbiome Project, Thomas et al., 2016).

Thus far, sponge experimentation in aquaria depends on
the collection of specimens from the field and their transfer
to the lab. The limitations to in vitro reproduction of sponges
are mainly due to their life cycle as the reproductive period
typically occurs once a year, because reproductive cues vary
among species (Riesgo and Maldonado, 2008), and because
juveniles have higher mortality rates in aquaria (De Caralt
et al., 2007a). It is therefore noteworthy, that the life cycles of
the Mediterranean sponges Dysidea avara and Crambe crambe
and of the Australian sponge Amphimedon queenslandica were
successfully closed in vitro (De Caralt et al., 2007a; Conaco
et al., 2012). In addition to field collections, clonal populations
of sponges can be generated and maintained owing to sponge
reproduction by gemmulation or budding (Adams et al., 2010;
Di Bari et al., 2015). The quick regeneration capacity after
fragmentation can be used to generate “explants,” which are
clonal pieces of sponge that will continue to be metabolically
active in aquaria. Such efforts were undertaken with the species
Halichondria panicea (Barthel and Theede, 1986), Corticium
candelabrum (De Caralt et al., 2003), Geodia barretti (Hoffmann
et al., 2003), and Rhopaloides odorabile (Webster et al., 2011)
and have provided new insights into primary metabolism of the
sponge holobiont. The generation of sponge fragments may be
useful in the future to rear sponge individuals of similar/identical
genetic background at small sizes and with a high number of
replicates.

Aposymbiotic states (i.e., deprivation of a particular group
of symbionts) and germ-free hosts are crucial tools to dissect
the animal-microbiota crosstalk. The most common method
to rear germ-free animals is the application of antibiotics.
However, the sponge microbiota appears to be resistant to
antibiotics (Friedrich et al., 2001; De Caralt et al., 2003),
even when applied to sponge cell aggregates (Richardson
et al., 2012). Interestingly, aposymbiotic sponges occur in the
field. The Mediterranean sponge Petrosia ficiformis harbors the
cyanobacterium Synechococcus feldmannii; however, individuals
in caves appear photosymbiont-free (Burgsdorf et al., 2014).
Also, the Caribbean sponge Xestospongia muta undergoes cyclic
bleaching – density loss of symbiont Synechococcus spp. –, from
which the sponge can recover (López-Legentil et al., 2008). If
the cue for aposymbiosis is discerned, it could potentially be
simulated in the lab. In a different approach, Riesgo et al. (2014b)
created dinoflagellate-free Cliona varians specimens by removing
the outer layer of the sponges, where the photosymbionts thrive.
Aposymbiotic Cliona varians sponges were able to recapture
photosymbionts. Unfortunately, the available examples are still
restricted to few species and the photosynthetic symbionts.
Alternative approaches based on phage therapy, a clinical strategy
to clean infections and tumoral cells (e.g., Cattaneo et al., 2008;
Nobrega et al., 2015), remain unexplored but are promising tools
to selectively remove symbionts.

In the last 5 years, the amount of genetic information
available on sponge hosts in the context of symbiosis has
increased exponentially (Table 2). The first published genome –
from A. queenslandica, with a size of 166.7 Mb and mean
GC percentage of 37.5% (Srivastava et al., 2010)– is still the
reference for Porifera. Recently, the enhanced annotation of
this genome raised the total number of genes from 28898
(first version, Srivastava et al., 2010) to 40122 (Fernandez-
Valverde et al., 2015). This finding suggests a more compacted
genome than previous thought, but also reflects the difficulties of
identifying the structure and function of genes in species that are
phylogenetically distant from traditional model organisms. Even
the role of genes with known homologs in other phyla needs to
be confirmed in experimental studies in this group. As Porifera is
a highly diversified phylum, the genetic information of different
species is necessary to gain a more comprehensive view of the
sponge genetic toolkit (Riesgo et al., 2014a).

Despite the increase of genetic data on sponge holobionts,
functional studies are missing. Research on gene expression
(e.g., transcriptomics) is helpful to fill this gap, especially if
applied from an experimental approach (e.g., Riesgo et al.,
2014b). Also, RNA interference (RNAi) provides a valuable tool
to temporary silence specific genes (e.g., Timmons et al., 2001;
Franzenburg et al., 2012). In sponges, promising results from
RNAi have been obtained in the freshwater sponge Ephydatia
muelleri and the marine sponge Tethya wilhelma, for genes
involved in animal development (Rivera et al., 2011). The
authors performed RNAi in marine sponges by feeding them
with bacteria expressing the double-stranded RNA of the target
gene. Emerging methods to generate targeted genome editing
-e.g., clustered regularly interspaced short palindromic repeat
associated proteins (CRISPR)/Cas9 mediated genome editing
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TABLE 2 | A compilation of sponge species for which published omic-data in the context of the sponge symbiosis are available.

Sponge Species General properties Existing omic data

Amphimedon queenslandica Collection: Australia
Microbial association: LMA

Sponge genome (Srivastava et al., 2010)
Sponge transcriptome (Conaco et al., 2012; Fernandez-Valverde et al., 2015)

Aplysina aerophoba Collection: Mediterranean Sea
Microbial association: HMA

Microbial metagenome (Horn et al., 2016)
Symbiont genomes: Poribacteria (Siegl et al., 2011; Kamke et al., 2014); Synechococcus
spongiarum (Burgsdorf et al., 2015)

Carteriospongia foliascens Collection: Red Sea
Microbial association: LMA

Symbiont genome: S. spongiarum (Gao et al., 2014)

Cliona varians Collection: Atlantic Ocean
Microbial association: LMA

Sponge transcriptome (Riesgo et al., 2014b)

Cymbastela concentrica Collection: Australia
Microbial association: LMA

Microbial metagenome/metaproteome (Thomas et al., 2010; Fan et al., 2012; Liu et al., 2012)
Symbiont genome: δ-proteobacterium (Liu et al., 2011)

Geodia barretti Collection: North Sea
Microbial association: HMA

Microbial metatranscriptome (Radax et al., 2012)

Haliclona cymaeformis Collection: Pacific Ocean
Microbial association: LMA

Symbiont genomes: sulfur-oxidizing bacterium (Tian et al., 2014)

Petrosia ficiformis Collection: Mediterranean Sea
Microbial association: HMA

Sponge transcriptome (Riesgo et al., 2012, 2014a)

Rhopaloides odorabile Collection: Australia
Microbial association: HMA

Microbial metagenome (Fan et al., 2012, 2013)

Stylissa carteri Collection: Red Sea
Microbial association: LMA

Sponge genome and transcriptome (Ryu et al., 2016)
Microbial metatranscriptome (Moitinho-Silva et al., 2014; Ryu et al., 2016)

Xestospongia spp. Collection: Red Sea, Caribbean Sea
Microbial association: HMA

Sponge genome and transcriptome (Fiore et al., 2015; Ryu et al., 2016)
Microbial metatranscriptome (Fiore et al., 2015; Ryu et al., 2016)

HMA, high-microbial-abundance sponges; LMA, low-microbial-abundance sponges.

(Gaj et al., 2013)- could allow sponge genome modification.
CRISPR, together with Cas proteins, is a nucleic-acid based
adaptive immunity found in prokaryotes (Wiedenheft et al., 2012)
leading to sequence-specific cleavage of viral invading nucleic
acids (Barrangou, 2015) by Cas endonucleases (Jinek et al., 2012).
The sequence-specific cleavage of invading DNA by CRISPR-
associated endonuclease Cas9 has been adopted to edit genomes
in bilaterian model systems (Friedland et al., 2013; Gratz et al.,
2013; Hwang et al., 2013; Wang et al., 2013). Since then, this
method has revolutionized the possibilities to alter the genome of
non-model organisms with unprecedented ease and specificity.
Recently, CRISPR/Cas9 genome editing was established in two
marine organisms: the cnidaria Nematostella vectensis (Ikmi et al.,
2014) and the echinoderm Strongylocentrotus purpuratus (Lin
and Su, 2016). Thus, CRISPR/Cas9 mediated genome-editing
presents a promising tool to study mechanisms of symbiosis in
sponges, but further effort and investment are required.

The availability of genetically tractable sponges would further
contribute to revealing host mechanisms of symbiosis. In
other models, host immunity seems to mediate microbial
interactions. In particular, pattern-recognition receptors (PRRs)
sense microbes (both pathogens and symbionts) and either
initiate the defense against pathogenic infection or promote
microbiota homeostasis (reviewed in Chu and Mazmanian,
2013). Studies in sponge genomic repertoires have identified
a collection of extracellular (i.e., scavenger receptor cysteine-
rich, SRCR, domain), membrane-bounded (immunoglobulin-
like domains), and intracellular (NOD-like receptor, NLR,
domains) PRRs (Hentschel et al., 2012). Some results suggest
that immunity may mediate microbial recognition in sponges: (i)

high expansion of NLR (in A. queenslandica, Degnan, 2015), and
SRCR (in Stylissa carteri, Ryu et al., 2016) in sponge genomes
may correspond to the need for a diverse array of PRRs for
effective discrimination upon microbial encounter; (ii) a gene
codifying for a SRCR-containing protein was overexpressed in
individuals of Petrosia ficiformis in symbiosis with cyanobacteria
vs. aposymbiotic individuals (Steindler et al., 2007); (iii) Ryu
et al. (2016) detected different enrichment in immune domains
depending on symbiont densities within the mesohyl (i.e., the
genomes of LMA sponges A. queenslandica and S. carteri vs. the
HMA sponge, X. testudinaria). The picture of sponge immunity
is still incomplete and the development of experimental sponge
models would allow validating the function of the predicted genes
and the role of immunity in mediating symbiosis.

As for the host, the ability to culture and manipulate
symbionts is necessary to further understand the mechanisms
of host–microbe interactions. But sponge-associated symbionts,
revealed by molecular techniques, remain recalcitrant to culture
(Schippers et al., 2012; Hardoim et al., 2014). Alternative
cultivation efforts are based on diffusion growth chambers
(Steinert et al., 2014), longer incubations, and/or on adjusting
culture conditions to match the symbiotic metabolic properties
revealed from genomic data (Lavy et al., 2014). In recent years,
genomic features of the microbiota from several sponge species
have been published (Table 2). Also, state-of-the-art sequencing
and bioinformatics methods allowed the characterization of
the genomes of key sponge-associated symbionts: Cenarchaeum
symbiosum (Hallam et al., 2006), representatives of the Candidate
phylum Poribacteria (Siegl et al., 2011), a sponge-associated
sulfur-oxidizing bacterium (Tian et al., 2014), and different
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clades of Ca. Synechococcus spongiarum (Gao et al., 2014;
Burgsdorf et al., 2015). Sponge symbionts show a wide variety
of metabolisms, and some hint at physiological interactions
with the sponge host (reviewed in Webster and Thomas, 2016).
Metagenomes of sponge-associated microbiota also showed an
enrichment on ELPs, suggested to be involved in avoiding host
consumption (Thomas et al., 2010). In the absence of tractable
models, researchers tested their hypothesis by feeding amoebas
with recombinant E. coli cells expressing sponge-symbiont-
derived ELPs; as a result, the recombinant cells escaped digestion
(Nguyen et al., 2014). Further sequencing efforts and cultivation
of target symbionts will allow further insight into environment-
regulated response, chemical characterization or colonization
mechanisms and may become a system amenable to genetic
manipulation.

SUMMARY AND CONCLUSION

Research on sponge-associated microbiota adds valuable insights
to our understanding of animal-microbiota symbiosis, mainly
because of the natural range of symbiosis within this early-
divergent phylum. However, the field needs to move from
exploratory to mechanistic projects, where state-of-the-art
techniques are applied to meaningful experimental design and
the symbiosis is manipulated. Although certain infrastructure is
required, aquaculture conditions are described for several species
and the regeneration capacity of sponges could serve for keeping
clone lines in laboratory. Further research and resources should
focus on the physiology and microbiology of cultured sponges
over the long term. The new techniques for targeted genome
editing appear to be the most promising method for investigating
the sponge-microbiota symbiosis through host manipulation.

Finally, the most suitable sponge species for experimental
models will depend on the specific focus of the study. In terms of
host manipulation, Tethya wilhelma and Ephydatia muelleri seem
the most advanced model species, together with Amphimedon
queenslandica, with a well annotated genome and possibility

of aquaria maintenance. Based on adequate performance in
aquaculture, Clathria prolifera, Dysidea avara, Halichondria
panicea, Ianthella basta, Ircinia spp., or Mycale laxissima are
valuable candidates but they still require comprehensive genomic
data on the symbiosis. The cumulative genomic information
on their symbiotic communities and possibilities for in situ
manipulation or aquaculture of other species such as Aplysina
aerophoba, R. odorabile, or Xestospongia sp., (Table 2), necessitate
further studies to enhance their tractability. Developing more
than one model species will produce a more comprehensive view
of the mechanisms of symbiosis. The amenability of laboratory
sponge models to manipulation would certainly help to identify
key players and key functions of the interaction, and their
relevance can be further validate by in situ studies in different
species and environmental conditions. Thus, researchers take
advantage of the insights from an experimentally tractable model
in combination with the holistic view of the sponge symbiosis in
its natural ecological context.
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