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Transparent Exopolymer Particles (TEP) are relevant in particle and carbon fluxes in the
ocean, and have economic impact in the desalination industry affecting reverse osmosis
membrane fouling. However, general models of their occurrence and dynamics are not
yet possible because of the poorly known co-variations with other physical and biological
variables. Here, we describe TEP distributions in the NW Mediterranean Sea during
late spring 2012, along perpendicular and parallel transects to the Catalan coast. The
stations in the parallel transect were sampled at the surface, while the stations in the
perpendicular transect were sampled from the surface to the bathypelagic, including the
bottom nepheloid layers. We also followed the short-term TEP dynamics along a 2-day
cycle in offshore waters. TEP concentrations in the area ranged from 4.9 to 122.8 and
averaged 31.4 + 12.0 ug XG eq L~". The distribution of TEP measured in transects
parallel to the Catalan Coast correlated those of chlorophyll a (Chla) in May but not
in June, when higher TEP-values with respect to Chla were observed. TEP horizontal
variability in epipelagic waters from the coast to the open sea also correlated to that of
Chla, O» (that we interpret as a proxy of primary production) and bacterial production
(BP). In contrast, the TEP vertical distributions in epipelagic waters were uncoupled
from those of Chla, as TEP maxima were located above the deep chlorophyll maxima.
The vertical distribution of TEP in the epipelagic zone was correlated with O, and BP,
suggesting combined phytoplankton (through primary production) and bacterial (through
carbon reprocessing) TEP sources. However, no clear temporal patterns arose during
the 2-day cycle. In meso- and bathypelagic waters, where phytoplanktonic sources are
minor, TEP concentrations (10.1 & 4.3 wg XG eq =) were half those in the epipelagic, but
we observed relative TEP increments coinciding with the presence of nepheloid layers.
These TEP increases were not paralleled by increases in particulate organic carbon,
indicating that TEP are likely to act as aggregating agents of the mostly inorganic particles
present in these bottom nepheloid layers.
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INTRODUCTION

Transparent Exopolymer Particles (TEP) are defined as a
subclass of gel-like organic particles, mainly composed by acidic
polysaccharides, that are stainable with Alcian Blue (Alldredge
etal., 1993). These particles are widespread in aquatic ecosystems,
and their study in the ocean has biogeochemical and applied
interests. Due to their high stickiness, TEP act as gluing agents
for other particles to form larger aggregates susceptible to sink
in the water column, hence stimulating the biological carbon
pump (Passow et al., 2001; Burd and Jackson, 2009). However,
TEP themselves have low density, and when unballasted, they
can ascend through the water column (Azetsu-Scott and Passow,
2004) and accumulate in the sea surface microlayer (Wurl et al.,
2011) where they can constitute a major source of primary
aerosols (Orellana et al., 2011). The study of TEP has also gained
interest in the water desalination industry since they are major
agents of reverse osmosis membrane fouling (Berman, 2013).
Given the ecological and economic relevance of TEP, there is a
need to improve the knowledge about how these substances are
distributed in the field and what factors affect their dynamics.

TEP were first observed, and have mostly been described,
associated with phytoplankton blooms, in the field (Alldredge
et al., 1993; Van Oostende et al., 2012) or in mesocosms and
controlled chambers (Engel et al, 2015). From these studies
we know that phytoplankton are a major source of TEP and
TEP precursors in the sea. However, the relationship between
phytoplankton and TEP varies depending on phytoplankton
composition and physiology (Passow, 2002; Klein et al,
2011), and environmental variables such as nutrient availability
(Mari et al., 2001), turbulence (Pedrotti et al., 2010), or UV
irradiation (Ortega-Retuerta et al., 2009a). Therefore, even when
phytoplankton are the likely main source for TEP, this is not
necessarily translated into predictable relationships in the field
between TEP and chlorophyll a (Chla), the most used proxy for
phytoplankton biomass or production. Elucidating the sources of
variability in the TEP-Chla relationships would help predicting
the occurrence and dynamics of TEP in the ocean.

In addition to the role of phytoplankton, there are other
sources of TEP in the sea, such as macroalgae (Thornton,
2004) or zooplankton (Prieto et al., 2001). Also bacteria are
known to modify TEP distributions in the sea in various ways:
They colonize and degrade TEP that are released by other
organisms (Bar-Zeev et al., 2011; Taylor et al., 2014), thus acting
as TEP sinks. Bacteria can also directly release TEP (Ortega-
Retuerta et al., 2010) so they constitute TEP sources themselves.
Finally, bacterial interactions with phytoplankton mediate TEP
release (Van Oostende et al., 2013) and induce changes on their
formation rates and properties such as their stickiness (Rochelle-
Newall et al., 2010). The relative importance of these mechanisms
governing the TEP dynamics in aquatic habitats, specifically in
the Mediterranean Sea, remains unexplored.

The published information on TEP distributions in the
Mediterranean Sea is particularly scarce (Prieto et al., 2006;
Ortega-Retuerta et al., 2010; Bar-Zeev et al., 2011). The few
published studies, however, concur in that TEP stocks are
high when compared to other oceans. For instance, maximum

TEP concentrations (up to 11,000 pg Xeq. L~ in surface
waters) were observed in Adriatic Sea samples (Passow, 2002).
Exceptionally high in the Mediterranean Sea are the relative
TEP concentrations with respect to Chla concentrations; higher
TEP/Chla ratios than in other ocean basins have been taken to
suggest that TEP are an important fraction of the particulate
organic matter pool, and likely important drivers of carbon and
particle fluxes in this oligotrophic sea.

Here, we report for the first time TEP distributions in the
Catalan Sea (NW Mediterranean). Our specific goals were: (1)
to determine the potential drivers of TEP from a wide range of
physicochemical and biological variables and (2) to examine the
variability in the TEP-Chla relationship across multiple spatial
and temporal scales.

MATERIALS AND METHODS

Study Site and Sampling

Samples were taken during the cruises NEMO1, NEMO2, and
SUMMER?2 in Mediterranean waters between the Catalan Coast
and north of Majorca Island on board the Spanish RV “Garcia del
Cid” (Figure 1). Transects parallel to the Catalan coast (following
the bathymetry line at 40 m bottom depth) between Barcelona
and Blanes were conducted in May 10th (transect 1) and June
11th (transect 2, Figure 1). During these transects, surface (2 m)
samples were taken every hour from the underway continuous
flow with the ship moving at ~7 knots, so that each sample
was taken approximately at every 12 km. A coast-to-offshore
transect was performed during NEMO1, from May 11th to 20th’
including stations located in the shelf (Stations 1 and 2), slope
(stations 3, 4, and 5) and basin (stations 6, 8, and 9). Station 7
was sampled during NEMO2, 1 month later (June 12th). Water
samples in these transects were collected using a rosette (12
Niskin bottles with external spring, 12 L each) coupled to a Sea-
Bird Conductivity-Temperature-Depth profiler, a WET Labs C-
Star transmissometer and a SeaPoint optical backscatter sensor.
Up to six depths were sampled from each station, from surface
to bottom (down to 2300 m) waters including the surface, the
O, maximum, the deep chlorophyll maximum (DCM) when
present, mesopelagic waters, and bottom nepheloid layers.

The 2-day lagrangian study (SUMMER2 cruise) was
conducted aboard R/V “Garcia del Cid” from 22nd to 24th
May at ca. 45 nautical miles from the coast, within the core of
a cyclonic eddy over a water-column depth of ca. 2000 m. A
Lagrangian drifter was deployed to track the movement of the
upper 15-m water layer. Each drifter consisted of a spherical
floatable enclosure that contained a GPS and an emitter, from
which 10m cylindrical drogues hanged 5m below the sphere.
The drifters sent their position every 30 min, and all ship
operations were conducted next to them. Samples were taken
with the rosette every 4 h at six depths from surface to 200 m.

Chemical and Biological Analyses

TEP were analyzed following the colorimetric method proposed
by Passow and Alldredge (1995). Samples (250-500 mL) were
filtered through 25 mm diameter 0.4 pm pore size Polycarbonate
filters (DHI) at low pressure (100 mm Hg). The filters were
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FIGURE 1 | Study area. Blue symbols, Coastal transects. symbols,
Coast-to-open sea transect. Green symbol, 2-day cycle.

stained with 500 LL of Alcian Blue (0.02%, pH 2.5) for 5s and
rinsed with MilliQ water. The filters were soaked in 80% sulfuric
acid for 3 h and the absorbance of the extract was determined
at 787 nm in a Varian Cary spectrophotometer. Duplicates were
taken for each sample. Previous analyses have shown a CV of 13%
between TEP replicated measurements with this method (details
not shown). We have calculated an average range of £30.9%
between duplicates in our dataset. Duplicate blanks (empty filters
stained with alcian blue) were also taken at every station. The
Alcian Blue dye solution was calibrated just before the cruise
using a standard solution of xanthan gum processed with a tissue
grinder and subsequently filtered through two sets of filters (five
points in triplicate).

Chla concentration was determined by filtering 150 mL of
seawater on GF/F filters (Whatman), extracting the pigment in
acetone (90% v:v) in the dark at 4°C for 24 h, and measuring
fluorescence with a Turner Designs fluorometer.

Analyses of dissolved inorganic nutrient concentrations
[nitrate (NOs), nitrite (NO;), phosphate (POy4), and silicate
(SiO,)], were done by standard segmented flow analyses with
colorimetric detection (Hansen and Grasshoff, 1983) using an
Seal Analytical AA3 High Resolution AutoAnalyzer.

Particulate organic carbon (POC) was measured by filtering
1000 mL of seawater on pre-combusted GF/F glass fiber filters
(4 h, 450°C). The filters were frozen in liquid nitrogen and kept
at —80°C until analysis. Prior to analysis, the filters were dried at
60°C for 24 h. Then the filters were dried again and analyzed with
a C:H:N autoanalyser (Perkin-Elmer 240).

For bacterial abundance samples, 1.8 ml were preserved with
1% paraformaldehyde + 0.05% glutaraldehyde (final conc.) and
frozen in liquid nitrogen until processed in the lab. Bacterial
abundance (BA) was analyzed by flow cytometry (FACSCalibur
cytometer, Becton and Dickinson) after staining with SYBRGreen
I (Molecular probes). Bacteria were detected by their signature in
a plot of side scatter vs. FL1 (green fluorescence) as explained in
Gasol and del Giorgio (2000).

Bacterial Production (BP) was estimated using the 3H-leucine
incorporation method described by Kirchman et al. (1985).
Three 1.2-mL aliquots and two trichloroacetic acid (TCA)-
killed controls (5% final concentration) of each sample were
incubated with 40 nmol L™"*H-leucine (epipelagic samples) or
80 nmol L~3H-leucine (meso- and bathy-pelagic samples). The
incubations were carried out in a water bath at in situ temperature
in the dark. The incorporation was stopped by adding cold
TCA (5% final concentration) to the vials, and samples were
kept at —20°C until processing as described by Smith and
Azam (1992). Radioactivity was then counted on a Beckman
scintillation counter. Leucine incorporation rates were converted
into carbon production using the conversion factor of 1.55kg C
produced per mole of leucine incorporated and considering no
isotope dilution (Simon and Azam, 1989).

Given that TEP are frequently enriched in fucose (Zhou et al.,
1998), we determined fucosidase activity using a fluorogenic
substrate, as in Sala et al. (2016). Each sample (350 pl) was
pipetted in quadriplicates into 96 black well-plates, with 50
pl of the substrate 4-methylumbelliferyl B-D-fucoside (Sigma-
Aldrich) at a final concentration of 125 (WM. Fluorescence was
measured immediately after addition of the substrate and after
incubations, at in situ temperature and in the dark, for 15,
30 min, 1, 3, and 5 h. The measurements were done with a
Modulus Microplate (DISMED, Turner BioSystems) at 450 nm
excitation and 365 nm emission wavelengths. The increase of
fluorescence units during the period of incubation was converted
into enzymatic activity with a standard curve prepared with
4-methylumbelliferone (MUF, Sigma-Aldrich).

Statistical Analyses

We used the Statistica 7.0 software package to test the
potential drivers of TEP distributions across the different spatial
and timescales. We performed pairwise Pearson correlations
between TEP concentrations and the following physico-chemical
and biological variables: Temperature, salinity, turbidity, O,
nutrients (NO3, POy, SiOy4), particulate organic carbon (POC)
and nitrogen (PON), chlorophyll a (Chla), bacterial abundance
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(BA), bacterial production (BP), and extracellular fucosidase
activity. Data were log;o-transformed and Bonferroni-corrected
when needed.

RESULTS

Horizontal TEP Distribution along the

Catalan Coast

In the coastal transects, TEP concentrations ranged from 27.4 to
122.8 pgXGeq L1, and were overall higher in June (average 83.7
+23.9 ug XG eq L™!) than in May (average 56.1 £ 25.8 ug XG
eq L™ Table 1). In contrast, Chla concentrations were overall
higher in May (0.65 &£ 0.55 jLg L™!) than in June (0.24 £ 0.14 ng
L~1) and BP rates were similar in the two transects (0.18 & 0.16
g C L7! h™!, ranging from 0.91 to 10.97, in May, 0.14 4 0.21
pg C L7! h™1, ranging from 0.50 to 14.79 in June). Dissolved
inorganic nitrogen (DIN, nitrate+nitrite-ammonia) averaged
0.65 LM in May, ranging from 0.19 to 1.28 .M, and averaged 0.41
WM in June, ranging from 0.21 to 1.02 wM. Dissolved phosphate
concentrations averaged 0.07 pM in May, ranging from 0.05
to 0.10 wM, and averaged 0.06 M in June, ranging from 0.05
to 0.10 pM (Supplementary Figure 2). In May, TEP showed
maxima in waters near Barcelona and north of the outflow of the
Tordera River (Figure 2A). In these locations DIN concentration
was 1.2 M and phosphate concentration was 0.093 pM, two
to eight-fold higher than in the rest of the stations. TEP-values
were significantly correlated to Chla concentration (r = 0.93, p
= 0.0003, n = 7) and marginally correlated to BP (r = 0.72,
p = 0.06, n = 7, Figure 3). In June, TEP distributions showed
maxima south of the outflow of the Tordera River, and were
uncorrelated to Chla (Figure 2B) nor to BP. The TEP/Chla ratios
were markedly higher in June (434.0 &= 197.5) than in May (136.7
4 91.0, Table 1).

Horizontal TEP Distribution from Coastal
to Open Sea Waters

The concentration of TEP in the studied coast-to-open sea
transect ranged from 4.9 to 54.2 g XG eq L™! with a mean
concentration of 18.7 + 11.4 pg XG eq L.

We calculated depth-averaged TEP concentrations in
epipelagic waters (0-200 m) in an attempt to look at horizontal
distribution patterns. Depth-averaged epipelagic TEP ranged
from 9.9 to 24.9 jug XG eq L™! (Figure 4A). TEP concentrations
were highest near the coast and 60 km offshore, at the slope

TABLE 1 | Ranges of TEP concentration and TEP/Chla ratios in the
different transects, depth profiles and diel cycles presented here.

to basin transition (station 6, Figure 4A). The same horizontal
patterns were observed for Chla, O, BP (Figure 4B), rendering
significant correlations with TEP (r = 0.7, p < 0.05, n = 9).
TEP were likewise related to POC (r = 0.9, p < 0.01, n = 9)
and to the ratio between BP and O,(r = 0.7, p < 0.05, n = 9),
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FIGURE 2 | Variations of TEP (blue symbols) and chlorophyll a (green
symbols) concentration in the coastal transects performed in May
(A) and June (B).
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FIGURE 3 | Scatterplot between Chla and TEP concentrations in the
coastal transects performed in May (filled symbols) and June (open
symbols). TEP were related to Chla in May (- = 0.93, p < 0.001,n = 7).
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which can be considered a proxy of bacterial reprocessing of
photosynthetically fixed carbon.

TEP Vertical Distribution in Epipelagic

Waters

TEP vertical distribution patterns were variable among stations.
Shelf waters exhibited mixed temperature and salinity profiles
(Figure 5) and other chemical and biological variables were also
quite uniform in the vertical profile. In these stations, Chla
ranged from 0.10 to 0.38 pug L™!, BP ranged from 0.012 to
0.078 ug C L~ h™!, and POC ranged from 3.7 to 7.2 WM. TEP
vertical distributions were also quite homogenous from surface
to the bottom, averaging 24.9 £ 3.0 and 19.7 £+ 2.5 ng XG
eq L7! in stations 1 and 2, respectively (Figure 5). Conversely,
well-developed DCM were detected in slope and basin waters
between 50 and 60 m, with Chla concentrations ranging from
0.41 (station 5, slope) to 1.73 (station 6, basin) pg L7, The
TEP/Chla ratios ranged from 16.8 (station 6, DCM) to 316.0
(station 3, surface). They were generally higher at the surface
and lower at the DCM. Bacterial production ranged from 0.005
to 0.065 g C L7! h™! and the vertical distribution varied
between stations: at the slope stations, BP was highest at the
surface and subsurface, while in basin stations BP showed a
bimodal profile, with peaks at the surface and at the DCM.
POC concentrations, that ranged from 2.9 to 11.5 uM, showed
similar distributions than TEP in the slope stations (with surface
or subsurface peaks) but covaried with Chla, with maxima
at the DCM, in the basin stations. TEP also showed marked
vertical changes in slope and basin waters (Figure5): they

A
T_.I
o 2
@ 5
g =
o [(=}
3 LS
o ~
w
'_
0 Shelff  Slope  Basin | ) ) 0
0 25 50 75 100 125 150
B Transect Distance (km)
0.07 T T T T T 5.5
0.06
T_ 005 f
& (o]
— 004 F =
o 3
o [l=]
2 003 | [
a 5
@ 0.02
0.01 |
o | Shelf siope , Basin . . i
0 25 50 75 100 125 150
Transect Distance (km)
FIGURE 4 | Depth-averaged TEP concentration (g XG eq L-") and
Chla (ng L=1) (A) and BP (ug C L1 h=") and Oy (mg L) (B) in epipelagic
waters of the coast to open sea transect.

generally peaked at the surface (slope stations 3 and 5) or at the
subsurface (slope station 4 and basin stations). These subsurface
maxima were located between 25 and 55 m and showed values
from 33.0 to 54.2 pg XG eq L' (mean concentration 39.6
+ 103 pug XG eq L7!). TEP maxima were always located
shallower than the DCM and coincided with O, maxima, and
nutrient minima (Figure 5). At the slope, TEP maxima were also
coincident with BP and POC maxima, while the Chla maximum
was always deeper. By contrast, in the basin, BP and POC
coincided with Chla while TEP and O, peaked at shallower
depths.

Drivers of TEP Vertical Distribution

We assessed which were the environmental drivers of TEP
vertical distributions in epipelagic waters performing Pearson
correlation tests between TEP concentrations and a number of
physical (temperature, salinity, turbulence), chemical (nutrients,
03), and biological (Chla, BP, bacterial abundance, bacterial
fucosidase activity) variables (Table 2). Since vertical distribution
patterns of TEP and biological variables such as Chla and BP
differed among shelf, slope and basin stations, we separated
shelf stations from the others for the analysis. TEP was
never significantly correlated to Chla. In shelf waters, TEP
was not related to any other physicochemical or biological
parameter. In slope and basin waters, TEP was significantly
and positively correlated to O,, BP and the ratio BP/O;, and
significantly negatively correlated to nutrients and N/P ratios
(Table 2).

TEP Vertical Distribution in Mesopelagic
and Bathypelagic Waters

TEP concentrations were half lower in meso- and bathypelagic
waters with respect to the epipelagic, showing minima between

TABLE 2 | Results of Pearson correlations between TEP concentration
and different physical, chemical, and biological variables measured in
epipelagic waters during the NEMO cruises at the slope and basin
stations.

Dependent variable Independent variable r P

SLOPE AND BASIN STATIONS (n = 25)

TEP Temperature 0.55 0.004
Turbidity 0.68 0.000
(7} 0.83 0.000
NO3 -0.82 0.000
PO4 —0.58 0.005
N/P -0.56 0.008
SiOy4 -0.73 0.003
POC 0.79 0.000
Chla ns
Bact. Ab. ns
Bact. Prod. 0.70 0.000
Bact. Fuc. ns
BP/Oo 0.68 0.000

1, correlation coefficient; p, level of significance.
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FIGURE 5 | Vertical profiles of Temperature (°C), salinity (practical salinity units), turbidity (FTU) and NO3 (M) (left panels) and O, (mg L“), TEP
concentration (ng XG eq L“), Chla (ng L“) and BP (ng C L1 h“) (right panels) in epipelagic waters of station 2 (shelf, upper panels), station 4
(slope, middle panels), and station 8 (basin, bottom panels).

TEP in meso- and bathypelagic waters were only significantly
related to turbidity (r = 0.54, p < 0.01 n = 23), indicative of
the relevance of bottom nepheloid layers (BNL). Remarkably,
TEP were uncorrelated with POC in these layers. No significant

4.9 and 11.2 ug XG eq L™!. By contrast, relative TEP increases
were observed in waters near the bottom in all slope and basin
stations, parallel to increases in turbidity (proxy of total particle
concentration).
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correlation was found between TEP and BP, but a correlation with
bacterial fucosidase activity (r = 0.45, p < 0.05 n = 23) could be
observed.

Diel TEP Variations

The same surface water mass was sampled over time during the
2-day lagrangian study in the SUMMER?2 cruise, as confirmed by
plotting depth-averaged temperature and salinity values of each
CTD cast (Supplementary Figure 1), except for the last two casts
were a warmer water mass was likely sampled. We did not detect
arecurrent diel pattern of TEP or of any other biological variables
such as Chla or BP (Figure 6), even though these variables varied
highly during the cycle. Chla showed subsurface maxima of
0.75-1.33 g L™! between 40 and 54 m. TEP concentrations
ranged ten-fold, from 5.7 to 55.9 pg XG eq L™! (average 34.1
+ 5.7 ug XG eq L7!). TEP maxima were situated between 25
and 47 m with highest values during the night (10 p.m. and
2 a.m.). These maxima were always shallower than the DCM,
and were again vertically coincident with O, and BP maxima.
TEP concentrations were not significantly correlated to Chla,
but a significant correlation was observed with O, (r = 0.70,
p = 0.000, n = 78), BP (r = 0.48 p = 0.000, n = 78), and
the ratio BP/O, (r = 0.44, p = 0.0001, n = 78). We looked
at temporal variations of TEP, Chla, O, and BP using depth-
averaged values for all the epipelagic depths. Diel dynamics of
TEP, Chla, O;, and BP were not coupled, but we detected Chla
and O, increases that were followed by a TEP increase after
4-12 h (Figure 6). However, lagged correlations between these
variables, using either maxima or integrated values, were not
significant.

DISCUSSION

TEP dynamics can affect particle aggregation rates because of
stickiness, and particle sinking rates due to their low density.
Thus, determining and predicting TEP dynamics is crucial if
we want to accurately estimate carbon and particle fluxes. The
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FIGURE 6 | Diel variations of depth-averaged TEP (blue circles),
Chlorophyll a (green triangles), O» (purple triangles) concentration.

TEP-values observed in this study are within the range of data
published for Mediterranean Sea waters (Prieto et al., 2006;
Ortega-Retuerta et al., 2010; Bar-Zeev et al., 2011) and at the
lower range of other coastal ocean areas (Klein et al., 2011; Van
Oostende et al., 2012). By contrast, the TEP/Chla ratios were in
the upper range of those previously published for other ocean
basins (Prieto et al., 2006), except for those measured in the
Mediterranean Sea (Ortega-Retuerta et al., 2010; Bar-Zeev et al.,
2011).

TEP Variation in the Coastal Transects

TEP maxima were observed near the city of Barcelona and near
the outflow of the Tordera River, areas with higher nutrient
concentrations. Coincidentally, there are two desalination plants
located at the mouth of the Llobregat (next to Barcelona) and
Tordera Rivers, whose feedwater intake pipes are located between
800 and 2200m from the coast and at 30 m depth, although
they are not always operative. Given that TEP are directly linked
to membrane fouling, it is important to be able to predict
TEP occurrence in these locations. In May, TEP variations in
these coastal waters could be explained by variations in Chla,
suggesting a direct linkage between phytoplankton and TEP at
this geographical scale. However, this relationship was absent in
June (Figure 2). The higher TEP/Chla ratios in June were due
to both higher TEP concentrations than in May and lower Chla
concentrations than in May. Indeed, primary productivity (PP)
is on average two-fold higher in May than in June in coastal
NW Mediterranean Sea waters (Gasol et al., 2016). Bacteria did
not seem to be a significant TEP source in June as no significant
correlations between TEP and BP or TEP and the BP/Chla ratios
were observed. Hence, TEP may accumulate in the sea surface
at the beginning of the stratification period, similar to other
phytoplankton-derived organic matter (Avril, 2002; Vila-Reixach
et al., 2012; Romera-Castillo et al., 2013). These substances may
be not taken up immediately by bacterioplankton due to nutrient
defficiency, which is common in summer (Sala et al., 2002;
Pinhassi et al., 2006). What we could resolve in this analysis was
that the distribution of TEP in coastal waters could be predicted
from Chla, a variable that is frequently monitored, but only at
certain periods of the year.

TEP Horizontal Distribution from Coastal

to Offshore Waters
Our dataset also allowed concluding that Chla is a good predictor
of TEP concentrations at the horizontal scale from the coast
to the open sea, since significant positive relationships were
observed between these two variables. This information is
important because it would allow estimating TEP concentrations,
for instance, using remote sensing Chla values. It is worthy to
mention that, if we restrict the analysis to surface values only
instead of depth-averaged values, TEP and Chla were also related
(r =0.63 p = 0.06, n = 9), while not remarkable covariations
were found between TEP and other biological variables. This
reinforces the possibility of using remote sensing Chla data to
estimate the geographical distributions of TEP in the area.

At the horizontal scale, TEP was also positively related to
O,, POC, and BP. The covariance between all these variables
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at the horizontal scale suggests physical forces that drive them
all. We observed maxima of TEP in epipelagic waters near
the coast and at the interface between slope and basin waters.
In this area, which is located next to the Catalan front, a
salinity doming is frequently observed (Font et al., 1988; Estrada
and Salat, 1989), and relatively high Chla and PP values are
found due to increased deep ocean nutrient availability at
shallower depths (Estrada, 1996; Pedros-Alid et al., 1999). This
is, however, not evident in our dataset since some basin stations
(i.e., stations 8 and 9) were sampled during stormy conditions
that rendered more mixed temperature and salinity profiles,
while the rest were sampled in sunny days and well-stratified
profiles.

TEP Vertical Distribution in Epipelagic

Waters
In contrast to horizontal TEP distributions, vertical TEP
distributions could not be predicted from Chla at the vertical
scale. In this case, TEP maxima were always located shallower
than the DCM. TEP maxima above the DCM and near the
surface have been reported in previous studies in the Alboran
Sea (Garcia et al., 2002), the Eastern Mediterranean Sea (Bar-
Zeev et al, 2011), and along a West to East transect in the
Mediterranean Sea (Ortega-Retuerta et al., 2010). Furthermore,
in a recent study (Kodama et al, 2014), TEP maxima were
associated to layers of maximum O; and nutrient minima, similar
to what we observed in our study. Correlation analyses confirmed
the Chla-TEP decoupling. From the whole set of variables, those
that explained TEP distribution in both slope and basin waters
were O; (positively related to TEP) and nitrate (negatively related
to TEP, Table 2). This suggests that TEP are a direct product
of PP, which is frequently decoupled from Chla concentration
and whose highest rates are located at depths shallower than
the DCM (Estrada et al., 1993). This suggests that Chla is not
the best proxy of phytoplankton biomass or PP at the vertical
scale. Indeed, increases in Chla concentration at the DCM
reflect photoacclimation to low light levels through increases
in the Chla/carbon ratio, and do not necessarily match highest
phytoplankton biomass (Delgado et al., 1992; Gernez et al., 2011).

Given that we lacked direct PP estimates, in this study we
consider O, as a proxy of PP in this area. We are aware,
however, that O, concentration in the ocean is a result of
biological processes as well as physical processes, such as
ventilation in the upper mixed layer. But a non-significant
correlation between O, and temperature indicates that O,
distribution in the area majorly reflects biological processes.
Furthermore, in surface waters of our study, TEP and O,
were not significantly correlated, which supports our view that
the O,-TEP correlation is through PP with O, being a proxy
of the latter. Similarly, the absence of negative correlations
between O, and bacterial abundance or production suggests
that respiration by heterotrophs is not the main driver of O,
distributions.

The observed significant positive correlation with bacterial
production would suggest one of the following mechanisms:
(1) bacteria act as a source of TEP, (2) bacterial colonization

and utilization of TEP, or (3) dependence of both TEP and
bacteria on other factors, namely organic compounds released
by phytoplankton during primary production. We performed
multiple regression analyses with TEP as the dependent variable
and O, and BP as independent variables. Both variables
significantly explained TEP variability (r> = 0.71, p = 0.000,
n = 25), with partial coefficients of 0.72 for O, and 0.46 for
BP, respectively. Additionally, we correlated the raw residuals
of the O,-TEP regression against BP, resulting significant and
positive (r = 0.38, p < 0.05, n = 25). Both analyses lead us
to conclude that both PP (with O, as surrogate) and bacterial
activity (with BP as surrogate) has a significant influence on
vertical TEP distributions. Finally, the correlation between TEP
and the BP/O; ratio was significant and positive. The positive
correlation indicates that the higher the bacterial processing of
organic matter originated in primary production, the higher TEP
concentrations we observed, suggesting then a synergy between
carbon fixation and bacterial reutilization of this fixed C to
generate TEP.

Nutrients may also have an impact on TEP distributions as
suggested by the negative correlations with NO3, POy, and SiO4.
TEP are enriched in carbon respect to N and P (Mari et al,
2001), and different experimental studies have demonstrated
a higher TEP release rate when nutrients are limiting (Mari
et al., 2005; Pedrotti et al., 2010). Also, the N/P ratios are likely
important in determining TEP production and degradation, as
suggested by a significant correlation between the N/P ratio
and TEP concentration in epipelagic waters. Although how
nutrient stoichiometry affects TEP dynamics is unclear and
probably dependent on the composition of the initial microbial
community (Gérdes et al, 2012); our negative correlation
suggests that the lower the relative proportion of P, the higher
the TEP; which contrasts with previous experimental results
(Engel et al., 2015). However, the likely limitation by phosphorus
in our system (e.g., Sala et al., 2002; Pinhassi et al.,, 2006) in
contrast to the Atlantic area studied by Engel et al. (2015) could
differently affect TEP production. Indeed, it has been proposed
that extracellular organic carbon production is highest under
P limitation (Mauriac et al., 2011). TEP properties also vary
depending on whether they are released during active growth or
during bloom senescence (Mari et al., 2001), with implications
for the fate of these particles in seawater (degradation vs. export).
In the NW Mediterranean, PP usually peaks at the end of
winter and spring (Gasol et al., 2016), so we sampled during
the transition of spring to summer, which coincides with the
beginning of nutrient depletion and associated decreases in PP.
Thus, we expected TEP to accumulate and be prone to further
export.

TEP Vertical Distribution in Meso- and
Bathy-Pelagic Waters

In meso- and bathypelagic waters TEP distributions were only
explained by turbidity changes. Specifically, we could detect
TEP increases associated with near-bottom particle-rich layers
(BNL). Surprisingly, these TEP increases were not paralleled by
increases in POC. This suggests that these BNL were composed
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mostly of mineral particles that could be coated or aggregated by
TEP. A previous study in the NW Mediterranean (Puig et al.,
2013) observed the presence of fine particles in the BNL. Via
microscope visualizations, they showed that organic matter in
the BNL was mainly composed by “amorphous aggregates,” and
suggested that these aggregates had lower sinking rates than
phytoplankton cells or other solid organic particles. This is in
line with our findings, where TEP, which are low density particles,
may have a longer residence time in the BNL than the rest of POC
compounds. In bathypelagic waters, TEP cannot have a direct
phytoplanktonic source as light is absent. However, a bacterial
source was not evident either since no significant correlations
were observed between TEP and BA or BP. Interestingly, TEP
concentrations in that layer were positively correlated to bacterial
fucosidase activity. Since TEP are enriched in fucose (Zhou
et al.,, 1998), this may reflect bacterial degradation of TEP in
deep waters. Therefore, bacteria would act as a sink instead of a
source for TEP, and a probable non-local TEP source must exist,
material either sunk from epipelagic waters, resuspended from
the sediment, or advected off the shelf.

TEP Diel Variations

To our knowledge this is the first time that high frequency
(every 4 h) and short-term (i.e., 2-day) TEP changes have been
monitored in the field during a lagrangian study. However, we
did not find a recurrent pattern of any of the variables measured.
In our case, this lack of diel patterns of microbial biomass/activity
likely explained the absence of recurrent TEP diurnal or
nocturnal maxima. Additionally, although we confirmed in
this study the vertical decoupling between Chla and TEP and
the better coincidence with O, concentrations, the results of
short-term variations of these variables were less conclusive.
We got some hints about short-term temporal decoupling,
where TEP peaks followed Chla and O, peaks, but further
work, with longer diel sampling, is needed to explore this
issue.

CONCLUSIONS

We showed that the TEP-Chla relationship in the ocean is
variable and mainly depends on the time and spatial scale
studied. TEP can be predicted from Chla distributions at the
horizontal scale, which opens the possibility to estimate surface
TEP using remote sensing Chla; but this relationship is not
evident at the vertical scale, nor at a short timescale, and
also likely varies seasonally. Since our dataset is limited, in an
attempt to compare our results to other areas, we compiled
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