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Within the limited antifungal armamentarium, the azole antifungals are the most frequent

class used to treat Candida infections. Azole antifungals such as fluconazole are

often preferred treatment for many Candida infections as they are inexpensive, exhibit

limited toxicity, and are available for oral administration. There is, however, extensive

documentation of intrinsic and developed resistance to azole antifungals among several

Candida species. As the frequency of azole resistant Candida isolates in the clinical

setting increases, it is essential to elucidate the mechanisms of such resistance in order

to both preserve and improve upon the azole class of antifungals for the treatment

of Candida infections. This review examines azole resistance in infections caused by

C. albicans as well as the emerging non-albicans Candida species C. parapsilosis,

C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current

understanding of molecular basis of azole resistance in these fungal species.

Keywords: antifungal, azole, resistance, Candida albicans, Candida parapsilosis, Candida glabrata, Candida

tropicalis, Candida krusei

INTRODUCTION

Candida albicans and emerging non-albicans Candida (NAC) species such as C. glabrata,
C. parapsilosis, C. tropicalis, and C. krusei can cause superficial infections of the oral and vaginal
mucosa as well as disseminated bloodstream and deep-tissue infections. Species involvement
varies by infection site and by geography. Candida infections are most often caused by C.
albicans as evidenced by epidemiological studies in the United States (Cleveland et al., 2015),
Europe (Klingspor et al., 2015), and the Middle East (Sharifzadeh et al., 2013). Of all the
NAC species, C. glabrata is the most commonly isolated from patients with candidemia in
North America (Sobel, 2010; Azie et al., 2012; Pfaller et al., 2014b), and Northern Europe
(Lortholary et al., 2014; Milazzo et al., 2014), as well as other geographic areas studied with
the exception of Latin America (Pfaller et al., 2010). C. glabrata is also the most common
NAC species found to be the causative agent in vulvovaginal candidiasis (VVC) (Corsello et al.,
2003; Holland et al., 2003; Richter et al., 2005; Vermitsky et al., 2008; Mahmoudi Rad et al.,
2012) and candiduria (Sobel et al., 2000; Kauffman, 2005). In some patient populations, for
example, candidemia in patients with hematologic malignancy and VVC in diabetic patients,
C. glabrata is even more common than C. albicans (Goswami et al., 2006; Ray et al., 2007;
Hachem et al., 2008). C. parapsilosis is well known for its threat to the pediatric population,
as it is responsible for 17–50% of all fungemia in infants and neonates (Abi-Said et al.,
1997; Krcmery et al., 1999). C. parapsilosis is also second only to C. albicans in incidence
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as a cause of Candida endocarditis with mortality rates between
42 and 65% (Weems, 1992; Garzoni et al., 2007). In the Asia-
Pacific region, C. tropicalis has been reported to constitute
20–45% of Candida isolates (Kothari and Sagar, 2009; Pfaller
et al., 2010). C. tropicalis infections are commonly associated
with malignancy, with some studies reporting higher prevalence
among patients with hematologic diseases such as acute myeloid
leukemia (Weinberger et al., 2005; Nucci and Colombo, 2007;
Tang et al., 2014, 2015; Cornely et al., 2015). Mortality associated
with C. tropicalis candidemia in these populations unfortunately
remains high, ranging from 30 to 70%, with the highest rates
most commonly observed among the elderly (Weinberger et al.,
2005; Nucci and Colombo, 2007; Morii et al., 2014; Cornely
et al., 2015; Wang et al., 2015). C. krusei is the fourth most
common NAC species associated with invasive candidiasis and
candidemia, accounting for approximately 2.7% of NAC species
isolated across the United States (Pfaller et al., 2014b). Moreover,
the number of C. krusei isolates implicated in these types of
infections has increased over time (Pfaller et al., 2014a,b). In
particular, patients with hematologic malignancies and bone
marrow transplants have been shown to be at increased risk of
C. krusei infection (Merz et al., 1986; Wingard et al., 1991; Pfaller
et al., 2008).

AZOLE RESISTANCE IN CANDIDA

INFECTIONS

There are several classes of compounds that comprise the
arsenal used to treat Candida infections. The polyenes, azoles,
echinocandins, nucleoside analogs, and allylamines are used with
varying efficacy depending on the type and site of infection
and the sensitivity of the Candida species (Pfaller et al., 2010;
Pfaller and Diekema, 2012b; Pfaller et al., 2013; Pappas et al.,
2016). The most commonly prescribed antifungal used for most
C. albicans infections is fluconazole, a member of the azole
class of antifungals (Pfaller et al., 2010). Azoles inhibit 14-
α-sterol demethylase, encoded by the ERG11 gene, which is
an enzyme involved in the biosynthesis of the fungal-specific
membrane sterol ergosterol. As some NAC species exhibit
intrinsic resistance to azoles, their use is likely a contributing
factor to the more frequent incidence of infections caused by
these NAC species (Oxman et al., 2010; Lortholary et al., 2011;
Fothergill et al., 2014). Moreover, many studies have documented
the ability of Candida to develop high-level resistance to azole
antifungals (Oxman et al., 2010; Lortholary et al., 2011). A
compilation of fluconazole MIC ranges and epidemiological
cutoff values for Candida species is presented in Table 1.

Infections caused by C. albicans are associated with varying
levels of fluconazole resistance depending on the type of
infection. C. albicans isolates from candidemic patients have the
lowest incidence of azole resistance (0–5%) (Diekema et al., 2012;
Pfaller et al., 2015; Ying et al., 2015). The incidence of fluconazole
resistance in C. albicans isolates from oropharyngeal candidiasis
(OPC) is higher and depends upon previous fluconazole
treatment and prior OPC infections (Enwuru et al., 2008; Berberi
et al., 2015). C. glabrata has the highest incidence of azole

resistance among Candida clinical isolates and exhibits intrinsic
decreased susceptibility to the azole class of antifungals (Oxman
et al., 2010; Pfaller et al., 2014b), including the newest addition
to the class, isavuconazole (Castanheira et al., 2014). C. glabrata
is also able to develop high-level resistance after exposure to
azole antifungals (Fidel et al., 1999; Lee et al., 2009) and is one
of the most frequent species isolated in breakthrough infections
from patients receiving azole prophylaxis (Bennett et al., 2004;
Imhof et al., 2004; Hachem et al., 2008). Of increasing concern
are the number of multidrug resistant isolates of C. glabrata that
are being recovered clinically (Manzano-Gayosso et al., 2003;
Chapeland-Leclerc et al., 2010; Hull et al., 2012; Pfaller et al.,
2012a; Cho et al., 2015). In the Asia-Pacific region, fluconazole
resistance in C. tropicalis ranges from 0 to as high as 83% (Yang
et al., 2004, 2008; Yoo et al., 2009). The worldwide incidence of
fluconazole resistance in C. parapsilosis disseminated infections
ranges between 2 and 5% (Chen et al., 2006; Martí-Carrizosa
et al., 2014; Pfaller et al., 2015). As C. krusei exhibits intrinsic
resistance to fluconazole, there is some controversy whether its
increased infection rate is related to fluconazole prophylaxis or
previous treatment (Hope et al., 2002; Lin et al., 2005; Blot et al.,
2006; Gong et al., 2016). Clearly, an understanding of molecular
mechanisms driving intrinsic and development of high-level
azole resistance is warranted.

AZOLE ANTIFUNGAL RESISTANCE
MECHANISMS

Candida albicans
Resistance to azole antifungals in Candida (summarized in
Figure 1) has been most extensively studied in C. albicans.
One mechanism of resistance identified in this species is the
presence of point mutations in ERG11. Previous studies have
identified amino acid substitutions that result in decreased
fluconazole susceptibility and have noted that several of these
critical allelic variations cluster in three “hot spot” regions within
Erg11p (Marichal et al., 1999). Recently, 63 fluconazole-resistant
C. albicans clinical isolates were examined for mutations within
their ERG11 alleles, and 55 were found to carry at least one
mutation that resulted in amino acid substitutions, with nine
such predicted amino acid substitutions being novel (Flowers
et al., 2015).Molecularmodeling of the substitutions that resulted

TABLE 1 | Fluconazole MIC ranges and epidemiological cutoff values for

Candida species.

Candida species MIC range1 Percent of

(# of isolates tested) (mode) resistant isolates

C. albicans (5265) 0.06 – ≥128 (0.12) 3.5

C. glabrata (7538) 0.12 – ≥128 (4) 7.8

C. krusei (1075) 0.25 – ≥128 (16) 96.6

C. parapsilosis (6023) 0.06 – ≥128 (0.5) 3.4

C. tropicalis (3748) 0.06 – ≥128 (0.25) 2.3

All values are in mg/L.

(Clinical and Laboratory Standards Institute, 2012; Espinel-Ingroff et al., 2014).
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FIGURE 1 | Comparison of documented fluconazole resistance mechanisms in Candida species. (A) Erg3 inactivation results in utilization of alternative

sterols in the yeast membrane. (B) Uptake of exogenous sterols helps circumvent endogenous sterol production inhibition by fluconazole. Increased production of

both (C) ATP-binding cassette efflux pumps and (D) major facilitator superfamily transporters reduces intracellular accumulation of azoles. (E) Inherently low affinity of

fluconazole binding to species-specific Erg11 may decrease fluconazole’s potential to inhibit the protein. (F) Increased expression of Erg11 protein can help overcome

azole activity and (G) aneuploidy may promote genetic adaptation to azole exposure. (H) Mutations in ERG11 can also result in proteins with reduced affinity for

fluconazole binding.

in decreased fluconazole susceptibility when expressed in a
susceptible background revealed that the mutations clustered in
either the predicted catalytic site, the fungus-specific external
loop, or on the proximal surface potentially interacting with
the loop or near the heme. Additionally, a study involving site-
directed mutagenesis of wild-type ERG11 to introduce mutations
identified in 23 C. albicans clinical isolates demonstrated nine of
these mutations result in increased fluconazole resistance (Xiang
et al., 2013). Five of the amino acid substitutions were predicted
to be at or near the active site of Erg11p.

Another mechanism of fluconazole resistance in C. albicans is
the increased expression of ERG11 due to activating mutations
in the gene encoding the zinc-cluster transcriptional regulator
Upc2p. C. albicans Upc2 is a homolog of the Saccharomyces
cerevisiae ERG gene regulator pair Upc2/Ecm22. Initially,

Upc2 involvement in fluconazole resistance in C. albicans was
demonstrated when ∆upc2 C. albicans strains were shown
to be highly susceptible to azoles while those over-expressing
Upc2 had increased fluconazole resistance (MacPherson et al.,
2005). Further studies examining a matched set of fluconazole-
susceptible and—resistant C. albicans clinical isolates in which
fluconazole resistance was not associated with overexpression
of drug efflux pumps revealed SNPs in one UPC2 allele
and overexpression of several ERG genes and UPC2 in the
resistant isolate (Dunkel et al., 2008a). Expression of UPC2
alleles in fluconazole-susceptible strains resulted in increased
fluconazole resistance (Dunkel et al., 2008a; Heilmann et al.,
2010; Hoot et al., 2011). Interestingly, three additional matched
sets of ERG11-overexpressing clinical C. albicans isolates have
been described which have no sequence differences in UPC2
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between the susceptible and resistant isolates in each pair
(Heilmann et al., 2010), indicating that other mechanisms of
ERG11 upregulation exist. While these studies were important
in establishing Upc2p as a regulator of ERG11 expression in the
context of fluconazole resistance, it was assumed that UPC2-
mediated fluconazole resistance is a rare occurrence. However, a
large study involving 63 fluconazole-resistant C. albicans clinical
isolates demonstrated 47 of these isolates overexpressed ERG11
by at least 2-fold (Flowers et al., 2012). Twenty-nine of these
ERG11-overexpressing isolates contained a missense mutation in
UPC2, and eight single amino acid substitutions were elucidated
from their UPC2 alleles. Seven of these alleles were found to be
associated with increased ERG11 expression, increased ergosterol
production, and decreased fluconazole susceptibility.

Two other mechanisms of fluconazole resistance inC. albicans
involve the overexpression of drug efflux pumps Mdr1p and
Cdr1p/Cdr2p. TAC1 (transcriptional activator of CDR genes) is
a zinc-cluster transcription factor whose regulon is hallmarked
by the ATP-binding cassette (ABC) transporter-encoding genes
CDR1 and CDR2 (Coste et al., 2004). Activation of expression
of the TAC1 regulon is through binding of TAC1 to the DRE
(drug response element) present in the promoters of TAC1-
regulated genes (Coste et al., 2004; Liu et al., 2007). At least nine
hyperactive TAC1 alleles have been identified (Coste et al., 2007),
and fluconazole minimum inhibitory concentrations (MIC)
associated with the isolates from which these alleles have been
discovered have revealed that TAC1 demonstrates codominance
resulting in intermediate fluconazole MIC in TAC1-heterologous
strains and high fluconazole MIC upon loss of heterozygosity
(Coste et al., 2006, 2007). Because TAC1 resides on the left arm of
Chr5 with ERG11, such loss of heterozygosity in the presence of
hyperactive TAC1 and mutated ERG11 results in high-level azole
resistance (Coste et al., 2007; Selmecki et al., 2008).

Mdr1p is a major facilitator superfamily (MFS) efflux pump
usually expressed at non-detectable levels in wildtype C. albicans
strains, induced in the presence of benomyl, diamide, and
hydrogen peroxide, and constitutively overexpressed in some
fluconazole-resistant C. albicans isolates (Alarco and Raymond,
1999). MRR1, multidrug resistance regulator 1, was identified
by comparing the transcriptomes of sets of matched isolates
in which the fluconazole-resistant isolates overexpressed MDR1
(Morschhäuser et al., 2007). Disruption of MRR1 in these
resistant isolates led to a decrease in fluconazole MIC, while
introduction of each of the mutant alleles individually into a
wildtype fluconazole-susceptible background in the nativeMRR1
locus conferred fluconazole resistance to the constructed strain.
Another study examined additional MRR1 allelic variations in
MDR1-mediated fluconazole resistance (Dunkel et al., 2008b). In
most cases the resistant isolates/strains were homozygous for the
MRR1 allele containing the gain-of-function mutations due to
mitotic recombination and chromosome loss.

A less common mechanism of azole resistance in C.
albicans is inactivation of the ERG3 gene, which encodes
the ergosterol biosynthesis enzyme sterol 1

5,6 desaturase.
Erg3p catalyzes one of the final steps in the pathway and
also converts nontoxic 14α-methylated sterol intermediates,
that accumulate during azole treatment, into the toxic sterol

14α-methylergosta-8,24(28)-dien-3β,6α-diol. Inactivation or
deletion of the ERG3 gene, therefore, prevents such toxic
sterols from being synthesized. Only a handful of clinical C.
albicans isolates have documented azole resistance due to ERG3
inactivation (Kelly et al., 1997; Nolte et al., 1997; Miyazaki et al.,
1999; Chau et al., 2005; Martel et al., 2010; Morio et al., 2012).

Aneuploidy plays a role in azole resistance in C. albicans as
demonstrated by comparative genome hybridization (Selmecki
et al., 2006). As alluded to earlier, a common aneuploidy
found in azole-resistant strains involves Chr5. Similarly, loss
of heterozygosity (LOH) has been shown to occur in azole-
resistant C. albicans (Coste et al., 2006). Examination of TAC1
in a matched set of azole-susceptible and—resistant C. albicans
isolates revealed that the susceptible isolate harbored two
wildtype alleles ofTAC1, while the resistant isolate contained only
one of those alleles in which a single nucleotide polymorphism
(SNP) translated into an activating amino acid substitution
(N977D).

Candida parapsilosis
Because azole resistance has been extensively studied in
C. albicans, attempts to elucidate mechanisms of azole resistance
in C. parapsilosis have involved examining orthologous genes
and yielded mixed results. A study of a series of six isolates
from a single patient found a single SNP in MRR1 present in
the two fluconazole-resistant isolates (Zhang et al., 2015). Nine
fluconazole-resistant isolates were obtained from candidemia
patients in a Brazilian hospital and examined for CDR1, MDR1,
and ERG11 overexpression as well as the presence of SNPs in the
ERG11 gene (Souza et al., 2015). Each of the resistant isolates
possessed a single homozygous SNP (A395T) which corresponds
to a Y132F amino acid substitution. In addition, while none of the
isolates overexpressed MDR1 as compared to the C. parapsilosis
reference strain ATCC22019, CDR1 expression was between 3.3-
and 9.2-fold higher in these isolates as compared to the reference
strain, and ERG11 was overexpressed between 1.5- and 7.4-fold.
While this study indicated an association between CDR1 and
ERG11 and fluconazole resistance in C. parapsilosis, a causal link
was not definitively proven.

In a larger-scale study, 30 resistant isolates, 37 susceptible-
dose-dependent isolates, and 55 susceptible isolates were
collected from hospitals in four U.S. cities, and their ERG11
genes were sequenced (Grossman et al., 2015). Five SNPs were
identified in 54 of the isolates; amino acid substitution Y132F,
found in 17 resistant isolates, was the only one found exclusively
in resistant isolates. Twenty-three isolates harbored SNPs in
MRR1. Of the nine SNPs identified, only three were found
exclusively in resistant isolates. Quantitative PCR measuring
relative MDR1 expression revealed nine isolates (six with a SNP
in MRR1, three without) with at least 5-fold increase in MDR1
expression compared to a composite expression level from a
subset of susceptible isolates. However, the expression levels
were a fraction of the levels achieved by MDR1-mediated azole
resistance inC. albicans. Without definitive experiments in which
introduction of amutated ERG11 allele confers azole resistance in
a susceptible isolate, these results remain suggestive.
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In an effort to identify potential mechanisms of azole
resistance on a genome-wide scale inC. parapsilosis, fluconazole-,
voriconazole-, and posaconazole-resistant strains were developed
experimentally by serial passage in liquid culture containing
either fluconazole, voriconazole, or posaconazole (Silva et al.,
2011). The fluconazole- and voriconazole-resistant strains
were cross-resistant to both fluconazole and voriconazole
and possessed similar transcriptional profiles as assessed by
microarray analysis; however, the posaconazole-resistant strain
was not cross-resistant to the other azoles and had a distinct
transcriptional profile. Among the genes differentially expressed
in fluconazole- and voriconazole-resistant strains were the stress
response gene GRP2, as well as MDR1 and MRR1. ERG11 was
not differentially expressed in these strains. However, in the
posaconazole-resistant strain, the ergosterol biosynthesis genes
ERG11 and ERG6, as well as ERG gene regulator UPC2 were
among the genes differentially expressed.

In a study using laboratory strains of C. parapsilosis in which
previously-determined gain-of-function alleles of CpMRR1 were
introduced into the native locus, strains containing Mrr1p
with a G583R amino acid substitution from a fluconazole-
resistant C. parapsilosis isolate led to resistant fluconazole and
voriconazole MIC compared to strains harboring the wildtype
allele (Branco et al., 2015). Similarly, strains with single SNP-
containing MRR1 alleles had a ∼5-fold increase in MRR1 gene
expression and∼70-fold increase inMDR1 gene expression.

In another study, 35 unrelated fluconazole-resistant and
four unrelated susceptible isolates of C. parapsilosis were
examined to elucidate mechanisms of fluconazole resistance in
C. parapsilosis (Berkow et al., 2015). Sixteen resistant isolates
overexpressed CDR1, three other resistant isolates exhibited
MDR1 overexpression, and eight resistant isolates demonstrated
overexpression of ERG11 as compared to the susceptible isolates.
When sequencing orthologues of UPC2, MRR1, and TAC1 in
order to identify putative gain-of-function mutations that would
lead to overexpression of ERG11, MDR1, and CDR1, only one
heterozygous mutation in UPC2 was recovered from one isolate,
suggesting that ERG11 overexpression in fluconazole-resistant C.
parapsilosis is not mediated by UPC2. TAC1mutations that were
recovered did not fully correspond with CDR1 overexpression
and those recovered were not analogous to those found in
gain-of-function CaTAC1 alleles. Similarly, MRR1 mutations
recovered did not correspond to any mutations found in gain-
of-function alleles of CaMRR1. Subsequently, CDR1 was deleted
from three of the CDR1-overexpressing isolates which only
resulted in a one-dilution decrease in fluconazole MIC. MDR1
deletion in three MDR1-overexpressing isolates revealed a one-
dilution decrease in fluconazole MIC in two isolates and no
change in fluconazole MIC in the third. To address the role
of alterations in the ergosterol biosynthesis pathway in azole
resistance in C. parapsilosis, ERG11, and ERG3 were sequenced.
No ERG3mutations were recovered, which was supported by the
sterol profiles of the isolates. A single ERG11 mutation (Y132F)
was recovered in one resistant isolate and a combination of
Y132F and R398I mutations was found in an additional ten
isolates. In nine of these eleven isolates there was a change in the
sterol profile indicative of a change in Erg11 functionality. This

study indicates that while differential expression of efflux pumps
is commonly found in azole-resistant C. parapsilosis isolates, the
resistant phenotype is not solely due to their overexpression but
instead is multifactorial and involves ERG11 mutation and/or
overexpression.

Candida tropicalis
As compared with other species of Candida, relatively little is
known about the mechanisms of azole resistance in C. tropicalis.
An analysis of 52 clinical C. tropicalis isolates from China
found the average ERG11 expression level more than 4-fold
higher among fluconazole-resistant isolates than -susceptible
isolates (Jiang et al., 2013). Moreover, ERG11 expression was
even higher among a subset of fluconazole-resistant isolates
also resistant to itraconazole and voriconazole. These results
were recently echoed by a similar study characterizing 35
C. tropicalis isolates from Korean university hospitals, nine
of which were fluconazole-non-susceptible (Choi et al., 2016).
While considerable variability in ERG11 expression (∼150-fold)
was observed in the highly fluconazole-susceptible group, ERG11
expression was significantly higher among both less fluconazole-
susceptible (MIC 1–2 µg/ml) and fluconazole-non-susceptible
(MIC ≥ 4 µg/ml) isolates. This study also sequenced the
C. tropicalis UPC2 gene and found several heterozygous and
homozygous mutations. However, many of these mutations have
been observed in fluconazole-susceptible isolates not found to
overexpress ERG11, and further characterization of their impact
on the regulatory function of UPC2 is needed.

Molecular characterization of azole-resistant clinical
C. tropicalis isolates has also revealed alterations in the ergosterol
biosynthetic pathway (Vandeputte et al., 2005; Eddouzi et al.,
2013; Jiang et al., 2013; Choi et al., 2016). A fluconazole-resistant
C. tropicalis isolate recovered from a clinical blood specimen
from Tunisia was found to have mutations in both ERG3 and
ERG11 which were individually observed to be detrimental to
ergosterol biosynthesis when heterologously expressed in S.
cerevisiae (Eddouzi et al., 2013). Notably, the ERG11mutation in
this isolate consisted of a deletion of 132 nucleotides resulting in
a D275V amino acid substitution and the loss of 44 amino acids
near the N-terminus of Erg11p. Homozygous replacement of the
wild-type C. tropicalis ERG11 with the truncated clinical variant,
with or without the associated clinical ERG3 mutation, resulted
in high-level fluconazole resistance in a fluconazole-susceptible
reference strain of C. tropicalis. Additionally, an ERG11mutation
resulting in decreased fluconazole susceptibility due to the
amino acid substitution Y132F, has been well characterized in
C. albicans and was recently observed in a fluconazole-resistant
C. tropicalis isolate from a patient with candidemia (Tan et al.,
2015).

One of the first studies to associate the overexpression of
efflux pumps with azole resistance in C. tropicalis utilized serial
passaging of a reference C. tropicalis isolate on media containing
various concentrations of fluconazole to produce genetically-
related isolates with reduced fluconazole susceptibility (Barchiesi
et al., 2000). After passaging, all isolates with reduced
susceptibility to fluconazole demonstrated increased expression
of both C. tropicalis MDR1 and a gene with high homology

Frontiers in Microbiology | www.frontiersin.org 5 January 2017 | Volume 7 | Article 2173

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Whaley et al. Antifungal Resistance in Candida Species

to C. albicans CDR1. In both cases, the increased expression
was found to then be diminished in fluconazole-susceptible
revertants obtained from further passaging on fluconazole-
free media. The role of efflux pump overexpression in azole
resistance among clinical C. tropicalis isolates has been less
clearly defined. When the expression of MDR1 and CDR1 was
examined in the aforementioned 52 clinical C. tropicalis isolates
from China, no significant difference was observed between
fluconazole-susceptible and -resistant isolates (Jiang et al., 2013).
In contrast, among the 35 clinical isolates from Korean university
hospitals, expression of bothMDR1 andCDR1was observed to be
significantly higher among both less-fluconazole-susceptible and
fluconazole-non-susceptible isolates. However, it is important to
note the large degree of variability in the expression of MDR1
and CDR1 observed in the highly fluconazole-susceptible control
group, ∼50-fold and ∼30-fold respectively (Wang et al., 2015).
To date, experiments to directly delineate the potential role of
these efflux pumps has yet to be performed in C. tropicalis, and
the homologs of C. albicans MRR1 and TAC1 have not been
examined.

Candida krusei
C. krusei is intrinsically resistant to fluconazole, though the
precise mechanism is not completely understood. Several studies
have attributed C. krusei’s innate azole resistance to efflux pump
activity, namely through the ATP-binding cassette transporter
Abc1p, and reduced drug accumulation (Marichal et al., 1995;
Katiyar and Edlind, 2001; Lamping et al., 2009) in combination
with reduced azole affinity for Erg11p (Marichal et al., 1995;
Venkateswarlu et al., 1997; Orozco et al., 1998; Guinea et al.,
2006; Lamping et al., 2009). Changes in the cell membrane
affecting membrane fluidity may be implicated in azole resistance
as well since there is evidence to suggest that intracellular
azole accumulation occurs through one or possibly both
mechanisms of passive and facilitated diffusion (Mansfield et al.,
2010; Kolaczkowska and Kolaczkowski, 2016). Additionally, the
discovery of a trisomy in the ERG11-containing chromosome in
a C. krusei strain suggests aneuploidy may not be uncommon in
this species, though the effects as it relates to azole resistance are
not yet known (Lamping et al., 2009).

Resistance mechanisms against other azoles are also not
clearly defined. For example, analysis of itraconazole-resistant
C. krusei isolates revealed that reduced intracellular content of
the drug and not altered affinity for the drug target likely drives
itraconazole resistance (Marichal et al., 1995; Venkateswarlu
et al., 1996). However, more recently it has been suggested that
overexpression of genes encoding both Erg11p and the efflux
pump Abc2p may also play a role with itraconazole resistance
(Tavakoli et al., 2010; He et al., 2015). Despite its fungicidal
activity inC. krusei (Rubio et al., 2005), resistance to voriconazole
has also emerged, and current research supports a theory
where overexpression of the genes encoding the efflux pump
Abc2 and Erg11 impart more transient resistance properties,
while increased expression of Abc1p and point mutations
in ERG11 predominate as time progresses to yield a stably
resistant pathogen in the prolonged presence of voriconazole
(Ricardo et al., 2014). Erg11p amino acid substitutions have

been observed in azole-resistant C. krusei and, in the case of
Y166S, have been predicted to interfere with Erg11p function
(Ricardo et al., 2014; Silva et al., 2016). While the newer
antifungal agents posaconazole and isavuconazole have shown
good activity againstC. krusei (Lee et al., 2000; Rybak et al., 2015),
reports of resistance against these agents are relatively sparse
(Espinel-Ingroff et al., 2014; Pfaller et al., 2015). However, in a
recent analysis examining NAC strains in the U.S. by region,
Candida krusei resistance to posaconazole was highest in the
eastern United States, with posaconazole resistance occurring
in 13–16.7% of isolates (Pfaller et al., 2014b). Nevertheless, the
mechanisms of resistance in C. krusei against these agents remain
to be investigated.

Candida glabrata
C. glabrata is unique among the Candida species discussed here
as it is a haploid yeast more closely related to S. cerevisiae.
Development of azole resistance in clinical isolates of C.
glabrata has been almost exclusively linked to the presence of
activating mutations in the zinc cluster transcription factor Pdr1
(Vermitsky and Edlind, 2004) that lead to differential expression
of downstream targets. Nearly all clinical isolates have been
found to have PDR1 mutations, with such mutations found
in the inhibitory domain, activating domain, middle homology
region, and xenobiotic binding region. The rapid acquisition
of PDR1 mutations could be due to the high incidence of
mutations in the mismatch repair gene MSH2, which results in
a hypermutable phenotype (Healey et al., 2016). The activating
mutations exhibit distinct expression patterns of the downstream
effector genes, with the exception of increased expression of
CDR1 and PUP1, and no correlation has been found between
location of the mutation and altered gene expression (Tsai
et al., 2006, 2010; Ferrari et al., 2009; Caudle et al., 2011; Paul
et al., 2011). Among the genes whose pleiotropic drug response
element (PDRE) is directly bound by Pdr1 (Paul et al., 2014),
only three, the ABC transporters CDR1 (Sanglard et al., 1999),
PDH1 (CDR2) (Miyazaki et al., 1998; Sanglard et al., 2001),
and SNQ2 (Sanguinetti et al., 2005; Torelli et al., 2008), have
been linked directly to azole resistance. Recent work has shown
increased expression of four MFS transporters in clotrimazole
resistant isolates compared to clotrimazole susceptible clinical
isolates. Disruption of one of these, TPO3, moderately increased
susceptibility to clotrimazole and fluconazole (Costa et al., 2016).
These findings suggest MFS transporters may have a minor role
in azole resistance in C. glabrata.

Surprisingly, ERG11 does not appear to play an important role
in clinical azole resistance in C. glabrata (Sanglard et al., 1999;
Vermitsky and Edlind, 2004; Sanguinetti et al., 2005). Increased
expression of ERG11 has been observed in only two clinical
isolates of C. glabrata (vanden Bossche et al., 1992; Redding et al.,
2003). The upregulation in one isolate was later found to be due
to duplication of the entire chromosome containing ERG11 and
the phenotype was lost with subsequent passaging in azole-free
media (Marichal et al., 1997). A single resistant clinical isolate of
C. glabrata has been shown to have a nonfunctional 14-α-sterol
demethylase due to a missense mutation in ERG11, which led to
the complete absence of ergosterol in the cell membrane (Hull
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et al., 2012). No additional clinical isolates have been identified to
have resistance mechanisms related to the azole target.

C. glabrata has the ability to grow with altered cell membrane
sterols, which allows for evasion of azole treatment. C. glabrata is
able to take up exogenous sterols (Nakayama et al., 2000), both
when the ergosterol biosynthesis pathway is blocked and under
normal conditions in wild type strains (Tsai et al., 2004; Bard
et al., 2005). Aus1p has been identified as the sterol transporter
responsible for tolerance to azoles in the presence of exogenous
sterols (Nakayama et al., 2007). C. albicans has recently been
shown to take up sterols under aerobic conditions; however,
C. glabrata is more liberal in its ability to take up sterols
and does so in both aerobic and anaerobic conditions and, in
the presence of serum and fluconazole, enhances uptake under
aerobic conditions (Zavrel et al., 2013).

Azole resistance in C. glabrata has also been attributed to
the formation of petite mutants, which are cells that have
lost mitochondrial function resulting in respiratory deficiency
(Defontaine et al., 1999; Brun et al., 2003). Petite mutants can be
generated in the laboratory by treatment with azoles or ethidium
bromide. This mutant phenotype has been recovered clinically
(Bouchara et al., 2000; Ferrari et al., 2011), but is not common
among clinical isolates. Azole resistance in petite mutants has
been attributed to upregulation of the ABC transporters CDR1,
CDR2, and SNQ2 (Sanglard et al., 2001; Ferrari et al., 2011),
which is dependent on Pdr1 (Tsai et al., 2006). Petite mutants
exhibit altered sterol profiles with a disproportionate amount of
ergosterol and very little of ergosterol intermediates; however, no
changes in the sequence of ERG11 or its expression have been
detected (Brun et al., 2004).

CONCLUSIONS

Candida species are responsible for a majority of superficial
and disseminated fungal infections in humans. While azole
antifungals have long provided effective treatment for such
infections, recent epidemiological studies indicate that intrinsic
azole resistance in some Candida species as well as development
of high-level azole resistance is a problem of critical importance
in the clinical setting. While extensive studies to elucidate
molecular mechanisms of high-level azole resistance in C.

albicans has uncovered the role of ergosterol biosynthesis gene
mutation and ERG gene and drug efflux pump upregulation as
key mediators of azole resistance, there are clearly other factors
at play that contribute significantly to such resistance. Similarly,
while NAC are closely related to C. albicans, that does not
necessarily translate to analogous molecular mechanisms of azole
resistance.

Of the NAC species highlighted in this review, C. parapsilosis,
C. tropicalis, C. krusei, and C. glabrata all express ABC
transporter and/or MFS genes orthologous to CaCDR1 and
CaMDR1. However, as discussed, the altered expression of these
genes in azole-resistant NAC appear to contribute differently
to resistance in different species. Moreover, the transcriptional
regulators and genetic mutations governing azole efflux and
sterol biosynthesis in C. tropicalis, C. parapsilosis, and C. krusei

have not been fully examined. Finally, there exist clear differences
in the mutations in ERG11 that are found to influence azole
resistance in clinical isolates among these species. As azole
resistance continues to emerge in these species, a more complete
understanding of the important differences among resistance
mechanisms employed by these species will be needed in order
to circumvent this important clinical problem.
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