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Editorial on the Research Topic

Antibiotic Resistance in Aquatic Systems

The spread of antibiotic-resistant pathogens and their resistance traits is an epic global challenge,
as recognized by various international bodies, including the G8 Science Ministry in 2013 and the
Elmau summit in 2015 (https://www.g7germany.de/Webs/G7/EN/Home_en/home_node.html).
While most attention continues to be devoted to the clinic and the need to develop new drugs,
there is growing recognition of the need to understand the origin and ecology of antibiotic
resistance in order to slow its spread and maximize the lifespan of our antibiotic arsenal (Wright,
2010). In particular, the aquatic environment can serve both as a natural reservoir of antibiotic
resistance and a conduit for the spread of clinical resistance traits of major concern (Michael et al.,
2013). Aquatic bodies, including lakes, rivers, streams and even coastlines, receive effluent from
wastewater treatment plants (WWTP), runoff from agricultural activity, and other human inputs
and influences that may either serve to elevate natural background levels of antibiotic resistance
genes (ARGs) and stimulate their transfer into pathogens or other organisms, or as a conduit for
the propagation of antibiotic resistant pathogens and clinical ARGs of concern (Michael et al.,
2013). Current pathogen risk models are not equipped to factor in unique challenges that antibiotic
resistance poses, including the potential that non-pathogenic antibiotic resistant bacteria (ARB)
can serve as a reservoir to transfer their ARGs to pathogens or the role of selective agents, such
as antibiotics and metals, in amplifying this potential. The challenge of controlling the spread of
antibiotic resistance can have a different face in developed or developing countries, depending on
local policies, practices, technologies and constraints.

The articles in this e-book include new evidences of the origin, spread, and fate of ARB and
ARGs in aquatic systems, focusing on water systems fromwastewater, freshwater to seawater. These
various media have gained attention as potential sources, sinks, or conduits in the potential to
spread antibiotic resistance.

It is well-known that heavy use of antibiotics and synthetic antimicrobial agents contribute
to the selection pressure. The fate and impact of antibiotics used both in humans and livestock
are of particular concern. Municipal and on-farm wastewater treatment is critical for controlling
pollution and pathogens, but is not tailored specifically to the control of antibiotic resistance.
WWTPs are mainly aimed at reducing solid and nutrient loads to surface waters, but this
does not guarantee biodegradation of trace chemical pollutants or genetic elements. Although
advanced disinfection facilities can greatly reduce the danger of waterborne diseases (United States
Environmental Protection and Agency, 2004), antibiotics and ARGs can still be released to the
environment in disinfected effluents (Michael et al., 2013; Rizzo et al., 2013; Berkner et al., 2014;
Carey and McNamara). Recent works report the improvement of disinfection in terms of ARG
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removal (Munir et al., 2011; McKinney and Pruden, 2012; Guo
et al., 2013; Yuan et al., 2015; Zhuang et al., 2015).

The potential for horizontal gene transfer (HGT) in WWTPs
is a matter of importance, and there is debate regarding the
favorable conditions and the actual HGT rates. In this e-
book, Miller et al. explore the extent to which influent ARB
and ARG composition in raw sludge influences the fate of
ARB in the digested sludge community and potential for ARG
transfer. Enhancement of HGT by the ionic liquid (IL) 1-
butyl-3-methylimidazolium hexafluorophosphate showed that
longer carbon chain enhanced HGT (Wang et al.). IL has been
thought as an environmentally-friendly solvent, but recently
water solubility, environmental toxicity and stability of IL are
considered to be risk (Pham et al., 2010). The enhancement
of HGT is a new effect of IL. Vanadium is also reported
to have enhancement effect of HGT in environment (Suzuki
et al., 2012). Such studies demonstrate that, besides antibiotics,
other chemicals enhancing HGT could play a role to spread
ARGs in water environments, including between pathogenic
bacteria and environmental bacteria. In case of coastal sea,
although the contaminated waters are significantly diluted, fecal-
derived bacteria, such as E. coli, remain viable ARG reservoirs
of concern (Alves et al.; Kappell et al.; Ghaderpour et al.).
ARB and ARGs are known to occur in aquatic environments
without antibiotic contaminations (Port et al., 2014). ARBs and
ARGs flow into rivers, groundwater and marine environments
by influx of WWTP effluent as mentioned above. Additionally,
there is marked potential aquaculture practices (Tamminen et al.,
2011) and open ocean conditions (Rahman et al., 2008) to
contribute to the selection and spread of ARBs and ARGs.Mobile
genetic elements (MGEs) of aquatic species conveying multidrug
resistance genes are reported in this book (Nonaka et al.). These
elements might pose a risk to human health if the MGEs transfer
to other bacteria (Piotrowska and Popowska), especially human
pathogens. Thus, this topic highlights insight obtained from
various water environments and their interfaces.

The role of antibiotics and antimicrobials in ARB selection
is of keen interest and evidence suggests that even very low
concentration of antibiotics can be effective to select and
maintain resistance traits in bacteria (Gullberg et al., 2011).
Marine bacterial plasmids pAQUs (Nonaka et al.) appear to
disseminate ARGs among marine organisms, which can be stably
retained in the bacterial community, even after the antibiotics
are removed (Bien et al., 2015). Exogenous ARGs retained in the
environment can potentially be horizontally transferred among
the native bacterial community.

It is well-known that the majority of aquatic environmental
bacteria are unculturable or yet-to-be cultured (Amann et al.,
1995; Takami et al., 1997; Bloomfield et al., 1998). This

characteristic is distinct from that of human and animal
pathogens, which have been the subject of the development of
standard methods for isolation and monitoring. Consequently,
conventional culture-dependent methods for monitoring ARBs
and ARGs only reveal 0.1% or less of the true aquatic bacterial
community (Amann et al., 1995; Takami et al., 1997; Bloomfield
et al., 1998). Suzuki et al. (2013) and Suzuki et al. found that
the defining features of ARGs tend to be distinct between
culturable and yet-to-be cultured bacteria. The recent advent
of next-generation DNA sequencing and metagenomics poises
the scientific community on the verge of a major advance
in understanding the behavior of ARGs in the environment
(D’Costa et al., 2006; Port et al., 2014). However, deep sequencing
and the capacity to perform high-throughput bioinformatics
analyses are required to match ARGs with their bacterial hosts.
Thus, there is still a long way to go before we have full
understanding of the factors driving the behavior of ARGs in
aquatic realm.

Articles in this e-book provide new insight into the dynamics
of ARGs in a diverse range of aquatic environments and their
interfaces, including distribution and diversity of ARGs in
various countries, horizontal gene transfer, and the dynamic
processes involved in governing ARB and ARG fate. These papers
should expand our knowledge and understanding of connections
between resistance traits in human- and animal-related bacteria
and aquatic ecosystems.

Although this e-book does not include, gene flux among
various aquatic compartments, such as sediments, biofilms and
periphyton, should be paid attention. ARGs are exchanged
between organisms, but it does not drive mass movement and
local exposures. As an example, movement of ARGs is reported
between water column and biofilms (Engemann et al., 2008).
The geological wide flux of ARGs is occurred by natural water
movement (Knapp et al., 2012), and water use and food are
suspected also as ARGs transport factors (Suzuki and Hoa, 2012).
The study from global ecological viewpoint is needed to reveal the
ARGs fate and dynamics in environments.
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