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The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006–2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
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INTRODUCTION

Toxoplasma gondii (T. gondii), an obligate intracellular, parasitic protozoan, is the etiologic agent of toxoplasmosis. About 30–50% of the world population is infected with the parasite, and it is the most prevalent infection among humans (Tenter et al., 2000; Flegr et al., 2014). Worldwide, over 1 billion people are estimated to be infected with T. gondii (Hoffmann et al., 2012). Its prevalence in some countries is high (e.g., Brazil, 77.5%; Sao Tome and Principe, 75.2%; Iran, 63.9%; Colombia, 63.5%; and Cuba, 61.8%) (Pappas et al., 2009). The annual incidence of congenital toxoplasmosis was estimated to be 190,100 cases globally (Torgerson and Mastroiacovo, 2013).

In the United States, the Centers for Disease Control and Prevention (CDC) reported that 22.5% of the population 12 years and older have been infected with Toxoplasma with 1.1 million new infections each year, making it the second most common cause of deaths due to foodborne diseases (an estimated 327 deaths) and the fourth leading cause of hospitalizations attributable to foodborne illness (an estimated 4428 hospitalizations). Also, an estimated 400–4000 infants are born with congenital toxoplasmosis in the United States each year (Jones et al., 2014).

T. gondii has three infectious stages of sporozoites (in oocysts), tachyzoites (rapidly multiplying form), and bradyzoites (tissue cyst form). Among them, tachyzoites are responsible for clinical manifestations and the acute phase of the disease. They are susceptible to the immune response of the host and to drug action. The resistant cyst form of the parasite is resistant to both the immune system and drugs (Hill and Dubey, 2002).

Acute toxoplasmosis in healthy individuals is usually subclinical and asymptomatic, but may lead to chronic infection. However, toxoplasmosis can lead to great morbidity and mortality rates in imunocompromised or congenitally infected individuals (Dubey and Jones, 2008; Ahmadpour et al., 2014). In AIDS patients, presence of the parasite causes necrotizing encephalitis and focal cerebral lesions in the central nervous system (CNS) from primary or recrudescent infection. In immunocompetent patients, latent toxoplasmosis occurs with the formation of cysts principally in the CNS (Martins-Duarte et al., 2006).

In the recent years, the development of well-tolerated and safe specific immunoprophylaxis against toxoplasmosis is a highly valuable goal for global disease control (Lim and Othman, 2014). Immunotherapeutics strategies for improving toxoplasmosis control could either be a vaccine which would induce strong protective immunity against toxoplasmosis, or passive immunization in cases of disease recrudescence. In the last few years, much progress has been made in vaccine research on DNA vaccination, protein vaccination, live attenuated vaccinations, and heterologous vaccination; while there were few candidates on passive immunization. New vaccine candidates have been tested, including in particular proteins from T. gondii ROP, MIC, and GRA organelles, multi-antigen vaccines, novel adjuvants but until now the researches could not access to a proper vaccine for prevention of toxoplasmosis in human (Zhang et al., 2013, 2015).

The recommended drugs for treatment or prophylaxis of toxoplasmosis are pyrimethamine and sulfadiazine. Unfortunately, these drugs have side effects such as neutropenia, severe drop of platelet count, thrombocytopenia, leucopenia, elevation in serum creatinine and serum liver enzymes, hematological abnormalities, and hypersensitivity reactions (Bosch-Driessen et al., 2002; Silveira et al., 2002; Schmidt et al., 2006). In addition, other drugs, such as azithromycin, clarithromycin, spiramycin, atovaquone, dapsone, and cotrimoxazole (trimethoprim-sulfamethoxazole), have been used for clinical toxoplasmosis. However, these drugs are poorly tolerated and have no effect on the bradyzoite form (Araujo and Remington, 1992; Petersen and Schmidt, 2003; Serranti et al., 2011).

In a clinical trial, 24% of sera positive women treated with spiramycin and pyrimethamine plus sulfadoxine combination delivered Toxoplasma infected infants in France (Bessières et al., 2009). Spiramycin monotherapy can be effective during the early stage of pregnancy to prevent prenatal transmission (Julliac et al., 2010). More than 50% of patients treated with spiramycin retained T. gondii DNA in blood and remained infected (Habib, 2008).

In recent years, studies have focused on finding safe drugs with novel mechanisms of action against T. gondii. Accordingly, there is an urgent need to evaluate new drugs based on novel and innovative therapeutic strategies against T. gondii that are both efficacious and nontoxic for humans (Rodriguez and Szajnman, 2012; Vanagas et al., 2012; Angel et al., 2013). Therefore, the goal of the present systematic review was to retrieve published studies related to in vitro and in vivo evaluation of drugs and compounds for the treatment of toxoplasmosis (2006–2016) in order to prepare comprehensive data for designing more accurate investigations in future.

METHODOLOGY

This review followed the preferred reporting items for systematic reviews (PRISMA) guidelines (Moher et al., 2009).

Literature Search, Study Selection, and Data Extraction

English databases, including PubMed, Science Direct, Scopus, Google Scholar, ISI Web of Science, and EBSCO, were systematically searched for papers on in vitro and in vivo evaluation of anti-Toxoplasma activities of drugs and compounds, published worldwide, from 2006 to 2016. The keywords included were: “Toxoplasmosis,” “T. gondii,” “Anti-Toxoplasma,” “Drug,” “Anticoccidial,” “Treatment,” “In vitro,” “In vivo,” and “Compound.”

Papers written in English were selected. Gray literature and abstracts of articles which were published in congresses were not explored. In addition, in order to avoid missing any articles, whole references of the papers were meticulously hand-searched. Among English articles found with the mentioned strategies, full text papers that used laboratory method both in vitro and in vivo were included.

Also, studies with at least one of the following criteria were excluded: (1) studies that were not relevant; (2) articles not available in English; (3) studies on treatments for ocular infection; (4) articles that were of review or descriptive study type; (5) articles which contained no eligible data; (6) case series reports; (7) the data were duplicated from other studies or we were unable to obtain them; (8) those that were on efficacy of anti-T. gondii medicines in humans; and (9) any drug with an IC50 value > 10 μM.

Data Collection

All the experimental studies that were carried out to evaluate the efficacy of either drugs or compounds against T. gondii both in vitro and in vivo were included, and replicates were excluded. The inclusion criteria for selection of in vitro studies were important information about medication used for the experiments, type of cells used for culture, identification of the Toxoplasma strain, laboratory methods used for assessing drug activities, and main results comprising of the 50% inhibitory concentration (IC50). We reported in vivo studies used animal models, Toxoplasma strain, route of infection, the treatment schedule (dosage, route of administration, duration of treatment), the criteria for assessing drug activity (mainly survival for acute toxoplasmosis, histology, and brain cyst burdens for chronic infection), and the main results.

RESULTS

Analysis of the Included Literature

A total of 118 papers (83 studies in vitro, 59 in vivo, 27 both in vitro and in vivo) published from 2006 to 2016, were included in the systematic review. Figure 1 briefly shows the search process in this systematic review article.
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FIGURE 1. The PRISMA flow diagram of the search strategy, study selection, and data management procedure of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006–2016).



Mechanisms of Action

In the current systematic review, 80 clinically available drugs (Table 1) and several new compounds with more than 39 pathways/ mechanisms of action were evaluated against T. gondii in both in vitro and in vivo studies. Several target based drug screens were also identified against T. gondii include mitochondrial electron transport chain, calcium-dependent protein kinase 1, type II fatty acid synthesis, DNA synthesis, DNA replication, etc. (Table 2). Also, drugs/compounds with known mechanisms of action on life stages of T. gondii are shown in Figure 2. Our collective data indicated that many of the drugs/ compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy.


Table 1. Clinically available drugs/compounds evaluated against T. gondii in vitro and in vivo studies.
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Table 2. Drugs/compounds with pathways/ mechanisms of action against T. gondii.
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FIGURE 2. Drugs/compounds with known mechanisms of action on life stages of T. gondii, tachyzoites (T), and bradyzoites (B). 1, apical end; 2, Cell membrane; 3, microneme; 4, cytosol; 5, endoplasmic reticulum; 6, core; 7, mitochondria; 8, apicoplast.



The Investigated Strains

T. gondii has three main clonal lineages in population structure; type I (including a highly virulent RH strain), Type II (including ME49 and PRU, avirulent strains), and Type III (including avirulent strains like NED), which is correlated with virulence expression in mice (Howe and Sibley, 1995).

In vitro and in vivo screening methods were used of type I T. gondii (mostly RH strain; 76 studies in vitro, and 36 in vivo). Because type I RH strain is highly virulent in mice, causing 100% mortality, but types II and III are relatively less virulent. Although in some studies, ME49 (7 studies in vitro, and 17 in vivo), Prugniaud, EGS, and VEG strains were used, which showed that the outcome of infections depends on the challenge dose and on the genotype of the host (Szabo and Finney, 2016). Details about the investigated strains in vitro and in vivo are shown in Tables 3, 4, respectively.


Table 3. Summary of in vitro studies evaluated the anti-Toxoplasma activity of drugs/compounds.
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Table 4. Summary of in vivo studies evaluated the anti-Toxoplasma activity of drugs/ compounds.
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Cell Culture

The cell cultures used in in vitro studies were mostly human foreskin fibroblast (HFF; 39 studies), LLCMK2 (12 studies), Vero (11 studies), Hela (6 studies), mouse macrophage cell line (J774A.1) (5 studies), and MRC-5 (2 studies; Table 3).

Laboratory Animals

T. gondii can infect most warm-blooded animals, and is studied in different animal models depending on the nature of the investigation (Szabo and Finney, 2016). The animal model used in studies was mostly mice (16 studies BALB/c and 19 studies Swiss-Webster). In murine models of acute toxoplasmosis, some medicines were protective even when administered at low dosages. But some drugs despite of their excellent in vitro activity were poorly protective in murine models with acute toxoplasmosis (Payne et al., 2013).

Diagnostic Tests and Evaluation Methods

The present review outlines the results of in vitro screening methods including morphological assay, incorporation of [3H] uracil assay, plaque assays, enzyme-linked immunosorbent assay (ELISA), colorimetric micro titer assay (b-galactosidase assay), flow cytometric quantification assay, and cell viability assay. Numerous versions of fluorescent proteins have been expressed in T. gondii (Kim et al., 2001). The reporter genes used in vitro and in vivo studies were the green fluorescent protein (GFP) and yellow fluorescent protein (YFP). Parasites expressing fluorescent proteins can also be analyzed and sorted by flow cytometry. This technology used for drugs screening in 10 studies.

Details about the diagnostic methods and drug dosage under in vivo conditions are shown in Table 4. Also, a comprehensive list of drugs/compounds evaluated against T. gondii with regard to IC50 is illustrated in Table 5.


Table 5. A comprehensive list of drugs/compounds evaluated against T. gondii with regard to IC50.
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DISCUSSION

The aim of this systematic review was to investigate the in vitro and in vivo effects of anti-Toxoplasma drugs and synthetic compounds, from 2006 to 2016. The current anti-T. gondii chemotherapy is deficient; as it is not well-tolerated by immunocompromised patients and cannot completely eradicate tissue cysts produced by the parasite (Rodriguez and Szajnman, 2012). Therefore, developing new, safe, effective, and well-tolerated drugs with novel mechanisms of action could be a global priority (Lai et al., 2012). An ideal drug for prophylaxis and/or treatment of toxoplasmosis would show effective penetration and concentration in the placenta, transplacental passage, parasiticidal properties vs. the different parasitic stages, penetration into cysts, and distribution in the main sites. No available drug fulfills these criteria (Derouin et al., 2000; Montoya and Liesenfeld, 2004).

Thus, the findings of the present systematic review article encourage and support more accurate investigations for future to select new anti-Toxoplasma drugs and strategies in designing new targets with specific activity against the parasite.

Activities of Anti-Toxoplasma Clinically Available Drugs

With growing parasite resistance to therapeutic drugs and in the absence of a vaccine, to increase the effectiveness of drugs, various changes have been made in construction of the clinically available medicines. Thus, the activity of new formulations of clinically available drugs against T. gondii should be evaluated to find alternative treatments for toxoplasmosis (da Cunha et al., 2010).

Interestingly, encapsulation of pyrimethamine improved the efficacy and tolerability of this drug against acute toxoplasmosis in mice and can be considered as an alternative for reducing the dose and side effects of pyrimethamine (Pissinate et al., 2014). Recently, researchers reported that computational analysis of biochemical differences between human and T. gondii dihydrofolate reductase enabled the design of inhibitors with both improved potency and selectivity against T. gondii (Welsch et al., 2016). El-Zawawy et al. reported that incorporating triclosan into in the lipid bilayer of liposomes allowed its use in lower doses, which in turn, reduced its biochemical adverse effects (El-Zawawy et al., 2015b). In another study, sodium dodecyl sulfate (SDS)-coated atovaquone nanosuspensions (ANSs) considerably increased the therapeutic efficacy against experimentally reactivated and acquired toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. Accordingly, coating of ANSs with SDS may improve the treatment of toxoplasmic encephalitis and other cerebral diseases (Shubar et al., 2011).

Also, various studies showed that a number of drugs were investigated for the mechanisms of action summarized in Table 2 and Figure 2. One study discussing the metabolic differences between the host and the parasite noted that dihydrofolate reductase, isoprenoid pathway, and T. gondii histone deacetylase are promising molecular targets (Rodriguez and Szajnman, 2012).

Novel triazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(3′(2-chloro-, 4-trifluoromethoxyphenoxy)propyloxy)-1, 3, 5-triazine), the anti-folate medicines, is highly effective against T. gondii with an IC50 of 0.02 μM, which is more efficacious than pyrimethamine and has in vitro cidal activity. Additionally, pro-drug JPC-2056 (1-(3′-(2-chloro-4-trifluoromethoxyphenyloxy) propyl oxy)-5-isopropylbiguanide) is effective in vivo when administered orally (Mui et al., 2008). Moreover, histone deacetylase is potentially a very important drug target in T. gondii, since scriptaid and trichostatin A had the highest effect against T. gondii tachyzoite proliferation with the IC50 of 0.039 and 0.041 μM, respectively (Strobl et al., 2007). For promising anti- T. gondii drugs/compounds, assessment of their ability to control parasite growth is a key step in drug development (McFarland et al., 2016).

A large number of research papers suggested that the apicoplast represents a potential drug target for new chemotherapy, as it is essential to the parasite and it is absent in host cells. Functions of the apicoplast include fatty acid synthesis, protein synthesis, DNA replication, electron transport, and heme biosynthesis (Yung and Lang-Unnasch, 2004). Some of the drugs evaluated against T. gondii are shown to act in the apicoplast such as thiolactomycin, triclosan (TS), azithromycin, fusidic acid, ciprofloxacin, and quinoline derivatives (Costa et al., 2009; Martins-Duarte et al., 2009, 2015; Payne et al., 2013; Kadri et al., 2014; El-Zawawy et al., 2015b).

In T. gondii, FAS-II enzymes are present in the apicoplast and are essential for its survival. The key enzyme in this process is the ENR enzyme, which is not found in mammals (Surolia and Surolia, 2001). This enzyme catalyzes the last reductive step of the type II FAS pathway. The TS, which inhibits type II FAS, significantly reduced mice mortality, parasite burden, as well as viability and infectivity of tachyzoites and cysts harvested from infected treated mice and their brains. Accordingly, TS is proved as an effective, promising, and safe preventive drug against acute and chronic murine toxoplasmosis. Liposomal formulation of TS enhanced its efficacy and allowed its use at a lower dose (Surolia and Surolia, 2001; El-Zawawy et al., 2015a,b). Among apicoplast pathways, DNA replication is an important potential chemotherapeutic target. Fluoroquinolones are the known DNA replication inhibitors that target prokaryotic type II topoisomerases (Collin et al., 2011). In two studies, researchers showed that derivatives of the antibiotic ciprofloxacin, a fluoroquinolone, are active against T. gondii tachyzoites both in vitro and in vivo (Neville et al., 2015). While all mice treated with ciprofloxacin died by day 10 post-infection, some mice treated with ciprofloxacin derivatives remained alive for at least 60 days, suggesting that ciprofloxacin derivatives cured T. gondii infection in treated mice (Dubar et al., 2011; Martins-Duarte et al., 2015).

Anti-Toxoplasma Activities of New Synthetic Compounds

There are numerous reports on efficacy of many new synthetic compounds with a focus on identifying drug candidates with innovative and acceptable profiles against T. gondii. The anti-coccidial effect of 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP), a synthetic compound, was studied both in vitro and in vivo. Treatment with NPPP showed anti-Toxoplasma activity in vitro with a lower EC50 value than pyrimethamine. In ICR mice infected with T. gondii, oral administration of NPPP for 4 days showed statistically significant anti-Toxoplasma activity with lower number of tachyzoites than those of the negative control (Choi et al., 2015).

In a study by Kadri et al. anti-Toxoplasma properties of 58 newly synthesized quinoline compounds were evaluated. A significant improvement in anti-Toxoplasma effect among quinoline derivatives was detected in B11, B12, B23, and B24. Among these compounds, B23 was the most effective compound with the IC50 value of < 1 μM, displaying its anti-Toxoplasma effects and ability to cause the disappearance of the apicoplast (40–45% of the parasites lost their apicoplasts; Kadri et al., 2014).

In a study by Boyom et al. the strategy adopted was to repurpose the open access Malaria Box to identify chemical series active against T. gondii. The results showed that the most interesting compound was MMV007791, a piperazine acetamide, which has an IC50 of 0.19 μM. This compound is novel for its anti-Toxoplasma activity, and of course, further studies on the rates and mechanisms of compound action will elucidate these considerations (Boyom et al., 2014).

Tetraoxanes, anti-cancer molecules, were tested in vivo against T. gondii. Subcutaneous, administration of a 10 mg/kg/day dose of derivative 21, for 8 days allowed the survival of 20% of infected mice, demonstrating the high potential of tetraoxanes for the treatment of T. gondii (Opsenica et al., 2015).

In another study by Moine et al. researchers evaluated in vitro anti-T. gondii activity of 51 compounds with a biphenylimidazoazine scaffold. Eight of these compounds displayed highly potent activity against T. gondii growth in vitro, with 50% effective concentration (EC50) below 1 mM, without demonstrating cytotoxic effects on human fibroblastic cell at equivalent concentrations. However, these compounds have to be evaluated in animal models so as to confirm their in vivo activity (Moine et al., 2015a).

Several pathways were characterized and shown to differ significantly from those of the mammalian host cells, thus, revealing an attractive area for therapeutic intervention. 1-Hydroxy-2-Alkyl-4 (1H) quinolone derivatives inhibit the fourth step of the essential de novo synthesis of pyrimidine, which uses ubiquinol reduction as an electron sink for dihydroorotate oxidation (Saleh et al., 2007). Also, newly synthesized bisphosphonates interfere with the mevanolate pathway, which leads to the synthesis of sterols and polyisoprenoid compounds that are important for parasite survival (Shubar et al., 2008).

Interestingly, Kamau et al. identified novel kinases that are integral to essential pathways, elucidating their mechanism of action and ultimately, identifying new drug targets (Kamau et al., 2012). In that study, 527 compounds were evaluated in vitro; also, they assessed the impact of the inhibitory compounds C1, C2, C3, and C5 in mouse models of toxoplasmosis. C2 was found quite effective in decreasing the parasite burden and increasing mice survival. These results should be considered with caution, since there are a number of factors are at play in whether a compound will be in vivo effective, such as solubility in vivo, access to different tissues, and host metabolic processes (Kamau et al., 2012). In a recent study, Dittmar et al. screened a collection of 1,120 compounds, 94 of which were blocked parasite replications with IC50 of <5 μM. These data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this parasite (Dittmar et al., 2016). According to a new study, in silico screening is useful, particularly in the identification of molecular targets in the laboratory. Fernandez et al. synthesized VAM2 compounds (7-nitroquinoxalin-2-ones), based on the design obtained from an in silico prediction with the software TOMOCOMD-CARDD. From the group of VAM2 compounds, Fernandez et al. chose VAM2-2 with an IC50 of 3.3 μM against T. gondii. However, more studies are required to evaluate its effect on the cysts formed by of the parasite and in animal models of toxoplasmosis (Fernández et al., 2016).

Activity of Drugs, Compounds, and Combined Therapy against Cysts

An ideal drug against toxoplasmosis should not only be effective against the proliferative stage of the parasite but also exert dual activity against the tissue cyst stage and penetration into cysts (Benmerzouga et al., 2015). Currently, there is no approved therapy that eliminates the tissue cysts responsible for chronic infection (Innes, 2010). Derouin reported that among the drugs commonly used in humans, only atovaquone and azithromycin were found effective after long-term incubation. Besides, arpinocid-N-oxyde, an anticoccidial for veterinary use, was efficient at a high dosage (Derouin, 2005).

Recently, investigators have focused on guanabenz for in vivo studies, as guanabenz inhibitor of eIF2a dephosphorylation, is already an food and drug administration (FDA) approved drug and has excellent solubility with good penetration into the CNS. The results of that study show that guanabenz (5 mg/kg/day) not only protects mice against acute toxoplasmosis, but also reduces 69% of the number of brain cysts in chronically infected animals. This finding suggested that guanabenz can be repurposed into an effective antiparasitic with a unique ability to diminish tissue cysts in the brain (Benmerzouga et al., 2015).

Another study showed that miltefosine had no efficacy in controlling acute toxoplasmosis after 5 days of treatment; however, a 15-day treatment against the established chronic stage led to a 78% reduction of cysts in the brain. Additionally, the remaining cysts were noticeably smaller upon microscopic examination, suggesting that the drug effectively penetrates the blood-brain barrier, and that extension of treatment time may produce greater effects (Eissa et al., 2015).

In another study by Maubon et al. FR235222 and its derivatives were identified as new lead compounds for use against acute and chronic toxoplasmosis both in vitro and in vivo. In vivo experiments indicated that FR235222, as a histone deacetylase inhibitor, is able to access the bradyzoites within the cyst. The ability of FR235222 to permeate the membrane wall is a major advantage for crossing the blood-brain barrier and CNS tissue, where Toxoplasma cysts are located. This opens a promising way to develop drugs that are selective against Toxoplasma and those that have sterilizing activity, especially in patients with cysts, who are at risk for reactivating acute toxoplasmosis (patients with HIV infection, hematological malignancies, or transplantation). Still, effectiveness of FR235222 against chronically infected mice remains to be directly demonstrated in vivo (Maubon et al., 2010).

In a new study Vidadala et al. identified compounds 32 (T. gondii calcium-dependent protein kinase 1 inhibitor) a promising lead for the development of a new antitoxoplasmosis therapy. Compounds 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing brain cysts by 88.7% (Vidadala et al., 2016).

Many studies reported anti- Toxoplasma effects of different drugs combination with novel compounds. The compound 2-hydroxy-3-(1′-propen-3-phenyl)-1, 4-naphthoquinone (PHNQ6), (50 mg/kg/day) combined with sulfadiazine showed reduction or elimination of brain cysts in vivo (Ferreira et al., 2006). In another study that coadministered spiramycin and metronidazole, spiramycin, did not reach effective concentrations in the brain due to the presence of the efflux transporters multidrug-resistant protein 2, and P-glycoprotein. Metronidazole increased brain penetration of spiramycin, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment. According to the reports, combination therapy leads to faster recovery, less relapse, lower doses of drugs, and fewer side effects of the disease. Furthermore, such combinations are highly promising to develop a drug that is able to eliminate the cyst stage of the parasite, and thus, efficiently impairs relapse of the disease (Chew et al., 2012; Martins-Duarte et al., 2013).

Activity of Drugs against Congenital Toxoplasmosis

In pregnant women, current toxoplasmosis treatment is based on the administration of spiramycin or a drug combination such as sulphadiazine-pyrimethamine-folinic acid (SPFA) in cases of confirmed fetal infection. However, these drugs are not well-tolerated and present many adverse effects due to their toxic effects to the host (Degerli et al., 2003).

Degerli et al. evaluated the effectiveness of azithromycin, artemisia annua infusion, spiramycin, and SPFA in Calomys callosus, such as model of congenital toxoplasmosis. The results demonstrated that the treatment of pregnant C. callosus with azithromycin was effective for inhibiting the vertical transmission of T. gondii ME49 strain, suggesting that it may be an alternative drug of choice for the treatment of congenital infection, since it is able to inhibit fetal infection and offers new perspectives for the treatment of congenital toxoplasmosis. Azithromycin is one of the new generation macrolides with numerous advantages. Mechanism of action of azithromycin is based on the inhibition of protein synthesis in both T. gondii tachyzoite and bradyzoite stages (Degerli et al., 2003), but it may present limited effectiveness against T. gondii, requiring high drug concentrations (Costa et al., 2009). In another study, Oz et al. reported that combined atovaquone and diclazuril therapy is a novel synergistic prophylactic and therapeutic approach to fetal maternal toxoplasmosis (Oz, 2014a). Atovaquone, an inhibitor of mitochondrial electron-transport processes, is an FDA-approved toxoplasmosis therapy but not for use in congenital toxoplasmosis treatment (Oz, 2014a). Another compound, diclazuril, and its related benzeneacetonitriles have long been used in the treatment and prevention of poultry and livestock coccidiosis. In addition, it is known to be a safe compound at therapeutic dose levels (Assis et al., 2010).

Adverse Effects of Drugs

However, anti-Toxoplasma effects of drugs/compounds were reported in many trials, but prednisolone increased the number of tachyzoites and bradyzoites in immunosuppressed infected mice (Puvanesuaran et al., 2012). In addition, betamethasone can escalate the invasion of tachyzoites, in cell culture. It could be suggested that patients under prolonged use of betamethasone and prednisolone should be protected against T. gondii infection. Also, if individuals receiving betamethasone are infected with T. gondii, interferon-gamma may be used to reduce the invasion of tachyzoites (Ghaffarifar et al., 2006).

CONCLUSIONS

As current chemotherapy against toxoplasmosis is still not satisfactory, the development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. Immunotherapeutics strategies for improving toxoplasmosis control could either be a vaccine which would induce strong protective immunity against toxoplasmosis, or passive immunization in cases of disease recrudescence. However, with the increasing number of high-risk individuals, such as immunocompromised patients, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
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Atemisia annva, calosus ©Omg2ah), immunohistocherical  changes were seenin  more effective
spramycin, SPFA Aamnua(10mg:8  analyses, mouse the placentaand

1. sphamycin @15 bloassay; and PCRY  embryoric tissues rom

my/ah) foralos treated with
azitrromyc,
spiramycin, and SPFA

7 Dhydroartemisinn  Kunming mico et 2% Ditydroartemisinin  Thoutrastructure of  Tho ulirastructuro of Efioctivo - i etal, 2000
and azittvomycin 10%achyzoites  andazitvomyein 75 tachyzoites tachyzoites was

and 200mgkg observedin the
treatment groups such
s edema, enlarged,
broken or damaged
8 AZlananze Oubredfemale  CFIME&Q  Chonc  20cystsofthe  10,20mg/k/day Sunivalrates and ITZsunivalof 90,87%  Efective Martns Duarto et a,
Swiss MEgg oraly brain oyst burden FLZ sunvival rate of 71, 2010
oraly oipp 85%
o HDQ" dervatives Femalo NV, RHMES)  Acte, 105 green 52mokg body Paraste loads in Deriatives of HDQ had  Efective Aovaquone  Bajoh et al, 2010
A chonie fuorescent weight/day lungs, vers by lower parasito
protein, .p QPCR®, and fow concentations than
10cysts cytomelryanalyses  mice treated with HOQ

10 FR235222, Outbredfomale  PRU Chvonc  Lvingoystsip  200nM Presence orabsence  No cysts were detected  Effective Pyimetramine  Mauoon ot al.
FR235222 dervative,  Swiss of ystsinbrainwas  in mice nocuted with
(1363, W71, W99, assessedbystaning  FRR35222-reated
W06, Wa2)

1 Astvomycn BaBe - Aeuty stisiecysts 250, 200mgkgiday  Microscopical Gure rate 100% Efictive - HALjader and
Gombined with oraly oip examination, bioassay AMkhtar, 2010
metronidazole were dono forbrain,

and survival rates

12 Nowlcompowds €D AH et 2000 10mghgip Parasito burdonsin  Reduction of parasite. Effectivo - Tipparaju ot al.
219 the peritoneal cavty  buen 2010
(ntibitors of Enoyt and survival ates

Reductase)
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Common clinical uses  Drugs/compounds References
Antiprotozoal agents. Bisphosphonates Baramee et al., 2006; Ferreira et al., 2006; Rajapakse et al., 2007; Strobl et al., 2007;
Diamidine anslogs Leepin et al, 2008; Shubar et al., 2008; Liesen et al., 2010; Aquino et al, 2011; Franco
‘Spiramycin (Rovermycin) etal., 2011; Martins-Duarte et al., 2011; Chew et al., 2012; Asgari et al., 2013; Bilgin
et al, 2013; Gomes et al., 2013; Gaaer et al,, 2014; da Siva et al., 2015;
‘Thiosemicarbazides El-Zawawy et al, 2015ab
4-thiazoliinones
1,3 4-thiadiazoles
Naphthalene-sulfonyl-indole
Thiosemicarbazone
Phenylsemicarbazone
Ivermectin
Silver nanoparticles

Novel ferrocenic atovaquone derivatives
Triclosan

Triclosan liposomal nanoparticies
Metronidazole

1,25(0H)208

Naphthoquinone

PHNQS?

Novel azasterols

Apicidin

Antimalarial agents

Pyrimethamine
Atovaquone

Triazine JPC-2067-8
Spircindolone
Endochin-like quinolones
Halofuginone

Meneceur et al., 2008; Mui et al., 2008; Doggett et al., 2012; Zhou et al., 2014; Jain et al,
2015

Antibacterial agents

Sulfadiazine

Agithromycin
Enrofloxacin
Fusidic acid

Ciprofloxacin
Chitosan

Meneceur et l., 2008; Costa et al., 2009; Barbosa et al,, 2012; Payne et al., 2013;
Castro-Fiice et al., 2014; Gaafar et al., 2014; Martins-Duarte et al., 2015

Antiretroviral agents

Mazanayir
Fosamprenayir
Indinavir
Nelfinavir
Ritonavir
‘Saquinavir

Monzote et al., 2013

Anticoccidial agents.

NPPPP
Diclazuril
Toltrazuri

Kul et al., 201; Choi et al., 2014; Oz, 2014a,0

Antihelminthic agents.

Niclosamide
Nitazoxanicle:

Fomovska et ., 2012; Galvan-Ramirez et al., 2013

Antitungal agents

Anticancer agents

ltraconazole:
Fluconazole
Chitosan

SAHA

Pterocarpanquinone

Ruthenium complexes

Quinoline derivatives 4-aminoquinoline
4-piperazinylquinoiine analogs
Miltefosine

Tetraoxanes

Gefitinio

3-bromopyruvate

Tamoxifen

Martins-Duarte Edos et al., 2008; Martins-Duarte et al., 2010, 2013; Gaafar et al., 2014

Strobl et al., 2007; Portes Jde et al., 2012; Leyke et al,, 2012; Barna et al., 2013; Kadki
etal., 2014; de Lima et al., 2015; Eissa et al., 2015; Opsenica et al., 2015; Dittmar et al.,
2016

Immunosuppressants
agents

Auranofin

Am80
Betamethasone
Pyridinyimidazole
Imidazopyrimidine

Ghafarifar et al., 2006; Wei et al., 2007; Andrade et al., 2014; Ihara and Nishikawa, 2014

immunomodulators agents

Afifiand Al-Rabia, 2015

Immunoreguiatory agents

Levamisole

Koksal etal., 2016

Antipsychotic agents

Avipiprazole

Saraei et al., 2015

Antioxidant agents

Antischizophrenic agents

Resveratrol

Haloperidol
Clozapine
Fluphenazine
Trifluoperazine
Thioridazine
Amisulpride
Cyamemazine
Levomepromazine
Loxapine
Olanzapine.
Risperidone
Tiapride

Bottari etal,, 2015

Goodwin et al,, 2011; Fond et al., 2014; Saraei et al,, 2016

Moodstabilizing agents

Anti hypertensive agents

Valproate

Guanabenz

Fond et al., 2014

Benmerzouga et al, 2015

Anti hypertensive and
imegular heart rate agents

Propranolol

Montazeri et al., 2015, 2016

*2-hydroxy-3-(1"-propen-3-pheny)-1,4-naphthoquinone.
*(4-nitrophenoxy) pheny] propane one.
¢ Suberoylanilide hydroxamic acid.





OPS/images/fmicb-08-00025-t002.jpg
Pathway/mechanism of action Drugs/compounds References
Electron transport chain PHNQ6™@ Baramee et al., 2008; Ferreira et al., 2006, 2012; Saleh et al.,
Hoard 2007; Meneceur et al., 2008; Bajohr et al., 2010; Doggett et al,
201 ul et al., 2013; de Lima et al., 2015
Atovaquone”

Endochin-like quinolones®
Ferrocenic atovaquone derivatives
Naphthoguinones

Toltrazuri

3-Bromopyruvate

Sterol biosynthesis

Novel quinuciidine (ER119884, E5700)

Martins-Duarte et al., 2006

Synthesis of cholesterol

Am80"

Ihara and Nishikawa, 2014

Antifolate

Calcium-dependent protein kinase 1

Pyimethamine*
Sufadiazine*
Dinydrotriazine®

1 NM-PP1*
Bumped Kinase Inhibitor 1294*
Imidazo [1,2-b) pyridazines
Compound 32

Meneceur et al., 2008; Mui et al., 2008; Martins-Duarte et al., 2013

Sugi et al, 2011; Dogget et al, 2014; Moine et al, 2016b;
Vidadala et al,, 2016

Human mitogen-activated protein kinase

Nucleoside triphosphate hydrolase (NTPase)

Pyidinylimidazole”
Imidazopyrimidine”

2-(Naphthalene-2-ylthiol)- 1H indole*

Wei et al., 2007

Asgari et al., 2013, 2015

Isoprencid pethwiay

Type Il fatty acid synthesis

2- akylaminoethyl- 1,1- bisphosphonic acids™
Newly synthesized bisphosphonates®
Atorvastatin®

Thiolactomycin®
53 novel compounds®

Inhibitors of enoyl reductase
Triclosan and triclosan liposomal®

Shubar et al., 2008; Szajnman et al., 2008; Li et al., 2013

Martins-Duarte et al., 2009; Tipparaju et al., 2010; El-Zawawy
etal, 20152

Protein synthesis

Disappearance of the Apicoplast

Azithromycin®

Spiramycin®
Spircindolone
3-aminomethyl benzoxaborole (AN6426)

Quinoiine derivatives®
(MC1626, quindline, 8-hydroquinoline and B23)

Costa et al., 2009; Franco et al., 2011; Chew et al., 2012; Zhou
etal, 2014; Palencia et al., 2016

Smith et al., 2007; Kadri et al., 2014

Histone deacetylase enzyme

SAHA®

sBHA

Scriptaid®

Trchostatin A*

Di-cationic pentaidine-analog™
FR235222, FR235222 derivative”

Strobl et al., 2007; Maubon et al., 2010; Kropf et al,, 2012

DNA synthesis

Metronidazole®
Phenylsemicarbazone®
Phenylthiosemicarbazones™
Thiosemicarbazides™
4-Thiazolidinones®

1,8 4-thiadiazoles®

Liesen etal., 201

hew et al., 2012; Gomes et al., 2013

Cyclic AMP signaling pathways

Rolipram*

Afifi et al., 2014; Afifiand Al-Rabia, 2015

Post-translational modification by N-linked
giycosylation of proteins

Tunicamycin®

Luk etal., 2008

Membrane permeabilty

Novel diamidine analog®

Leepin et al., 2008

Microfiament functional

Cromolyn sodium

Ketotifen
Propranolol
Oryzaiin analogs

Endeshaw et al., 2010; Rezaei et al., 2014; Montazeri et al., 2015,
2016

Micronemal secretion pathway, cysteine
protease

Pepidylvinyl sulfone compounds” (LHVS and
213v8)

Teo et al., 2007

Immuno-regulatory Levamisole® Keksal et al, 2016
Translational control Guanabenz® Payne et al., 2013; Benmerzouga et al., 2015; Jain et al, 2015
Fusidic acid
Halofuginone"
DNA gyrase activty, transcription Enrofloxacin Barbosa et l., 201

Giprofioxacin derivatives”

Thioredoxin reductase

Auranofin

Andrade etal., 2014

Topoisomerases | and Il HSP9O protein

Harmane, norharmane, and harmine

Aomar et al., 2013

Metabolism of neurotransmitters in the brain

Resveratrol

Bottari et al., 2015

Effect on the liver biochemical parameters

ATT-5126 and KH-0562

Choi etal., 2014

Vascular ATP synthase subunit C and/or
methyltransferase

NPPP

Choi etal., 2015

Sterol biosynthesis enzyme-sterol methyl

22, 26-azasterol and 24, 25-(R, S)-

Martins-Duarte et al., 2011

transferase. epiminolanosterol
Downregulates expression of serine/threonine  Diclazuril 0z, 201420
protein phosphatase
Ergosterol synthesis Fluconazole Martins-Duarte Edos et al., 2008; Martins-Duarte et al., 2013
traconazole
Interruption of mitosis. Trifuralin Wiengcharoen et al., 2007
Oidative phosphorylation Niclosamide Fomovska et al., 2012
Apocynin-dependent pathway NSC3852 Strobl et al, 2009
Phospholipid metabolism Mitefosine: Eissa et al., 2015
Quinone oxidoreductase expression Nitaxozanide Galvan-Ramirez et al., 2013
Kinase inhibitors Small-molecules Kamau etal., 2012
Tyrosine kinase Gefitinib Yang et al., 2014
Crizotinib

Adenosine kinase in the purine salvage
pathways

N6-benzyladenosine analog”

Kim et al., 2007; Szajnman et al., 2008

Purine nucieoside phosphorylase

3-(thiophen-2-y)-1,2,4-triazole-5-thione

Dritko et al., 2014b.

Damage on the microneme proteins

7-nitroquinoxalin-2-ones (VAM2-2)

Fernandez et al,, 2016

“Drugs/compounds with known pathway/mechanisms of action gainst T. gondii
12-hycroxy-3:(1"-propen-3-pheny)-1,4-naphthoquinone.

>1-hydroxy-2-dodecyl-4 (1H) quinolone.
“Suberoylanilde hydroxamic acid.
dSuberic bishydroxamic acid.
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in, spiramycin

Novel azasterols

Ciprofloxacin derivatives
2-hydrazolyi-3-phenyl-5-(4-
nitrobenzylidene)-4-

thiazoldinone
substituted

Nanoparticles

Enrofloxacin

ELQ-271 and ELQ-316%
Plerocarpanquinone
New naphthoquinones and an

alkaloid

‘Spiramycin coadministered with
metronidazole

Di-cationic pentamidine-analogs

‘Small-Molecule (1=527)

Salioylc acids
(39 compounds)

FLZ combined with sulfadiazine:
and pyrimethamine.

RH
RH
ME49
RH

RH

RH
(CAT-GFP)

RH

2F

RH

RH, EGS

ME49

RH
ME49

Strains.

SA10 (type
10 strain)

RH,
RH-YFP,
and ME49
RH

Bewo cell line

LLCMK2

LLC-MK2

Macrophages
J774-A1

HFF

HFF

LLOMK2

HFF

Vero E6

HFF

HFF

HFF

LLOMK2

24h

24.0r48h

240r48h

24h

72h

4 days

24.0r48h

48h

1 week

72h

72h

1h

24h

MTT assay, measurement of Increase TNF-a", IL-10, IL-4

Thi/Th2

1Cs0 values,
imunofluorescence
assays

1Cs0, MTS assay

LDso values

HPLC®: flow cytomelry

MTT assays

Host-cell toxicity

Direct counts, viabilty,
imunofluorescence assays

MTT assays.

Numbers of cysts and
tachyzoites

Cytotoxicity assays

Luciferasebased assay,
Host call viabiity, electron
microscopy, invasion,
motility assays

[8H}-Uracil incorporation
and YFP Fluorescence
assay

1C50 values and MTS assay

produiction, but decreased
IFN-y

1G5 compounds 1,2, 8 =
08-4.7uM

150 compounds 2, 4, 5=
0.42, 124, and 046 uM

LDso =05, 10mM

CaP 85% observed maximum
in Toxoplasmosis therapy
efficiency

Enrofloxacin resulted ina
significant inhibition of the.
percentage of infected cells by
the paraste (68.72%)

ICs0 ELQ-271, ELQ-316 =
0.0001, and 0.000007 M

ICs0=2.54M

150 QUI-6, and QUI-6"
60.35,and 172.81 uM
Spiramycin reduced in viro
reactivation,

metronidazole alone did not
have significant effect

1Csp arylimidamide DB745 =
0.11,0.13uM

(tachyzoites of Rh, Med9)
ECgo s for the 14 compounds
=0.14-87pM

3i, 3}, 7a, 14a, and 14b were
active at low nanomolar
concentrations

ICso FLZ = 8.4 £ 1.2,1Cs0
sulfadiazine/pyrimethamine,
pyrimethamine = 8.7 £ 0.8 M

Effective

Compound 3 was.

the most effective

Effective

Effective

Effective

Effective

Effective

Effective

Effective

Effective

Effective

14 compounds
effect

Effective

Effective

Hydroxyurea,
Sulfadiazine

Sulfadiazine,
pyrimethamine

Atovaquone

Atovaquone,
Sulfadiazine

Atovaquone

Pyrimethamine,
Sulladiazine

Francoet al., 2011

Martins-Duarte
etal, 2011

Dubar et al,, 2011

Aquino et al., 2011

Leyke etal. 2012

Barbosa et al., 2012

Doggett et al,, 2012
Portes Jde et al.,
2012

Ferreira et al., 2012

Chew etal., 2012

Kropf et al., 2012

Kamau etal., 2012

Fomovska et al.,
2012

Martins-Duarte
etal, 2013
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Drug 1Cso (11M) References.

<1 15 5-10
Novel quinuciidine + Martins-Duarte et ., 2006
Novel ferrocenic atovaquone Atovaquone 2d, 2e, 2f Baramee et al., 2006
derivatives (PLK strain)
SAHA?, SBHAY, Scriptaid, Soriptaid Strobl et al, 2007
Trichostatin A Trichostatin A

SAHA

SBHA
Pyridinylimidazoles RWJ67657, (ME49 strain)  SB202190 'SB203580 Wei et al., 2007
$B203580 and $8202190

SB203580

RWJB8198, (ME49 strain)
RWJB7657, (RH strain)

RWJ68198, (RH strain)

1-hydroxy-2-dodecy-4(1H) quindlone  + Seleh ot al., 2007
Fluorine-containing aryloxyethyl Compound 1,3,9 Compound 10 LiRares et al., 2007
thiocyanate derivatives
Novel diamidine analog + Lespin et al, 2008
Pyrimetharmine, sulfadiazine, + Meneceur et al, 2008
atovaquone
Novel triazine JPC-2067-8 + Mui ot al, 2008
2-aliylaminosthyl-1,1-bisphosphonic. Compound 19 Compound 14, 17 Szajnman et al., 2008
acids
iraconazole + Martins-Duarte Edos et al, 2008
Thiolactomycin analog Compound 5, 6 Compound 2 Martins-Duarte et al, 2009
Fluconazole (FLZ) FLZ (48 h) FLZ (24 h) Martins-Duarte et al., 2010
1-Hydroxy-2-Akyi-4(1H) Quinolone  + Bajohr et al, 2010
derivatives
Haloperidol, clozapine, fluphenazine, + Goodwin et al., 2011
trifluoperazine, thioridazine
Novel azasterols Compound 3 (48 h) Compound 1 (48 h), 2,3 (24h)  Compound 1 (24 h) Martins-Duarte et al., 2011
Endochin-fke quinolones + Doggett et al, 2012
Plerocarpanquinone + Portes Jde et al, 2012
New naphthoquinones (QUI), Qurt Forrira ot l, 2012
. Liriodenine
Di-cationi + Kropfet al, 2012
pentamicine-analog
Fuconazole combined with Pyiimethamine + Martins-Duarte et al, 2013
sulfadiazine and pyrimethamine
Antipsychotio drugs and valproate Fluphenazine Zudlopenthixol Fond et al, 2014

Thicridazine
Fusidic acid + Payne et al.,, 2013
ermectin and sulphadiazine ermectin Sulphadiazine Bilgin ot al,, 2013
Novel ruthenium + Barnaetal., 2013
complexes, (compounds 16 and 1)
Auranofin + Andrade et al., 2014
6-Trflioromethyl-2-thiouraci + Choi etal, 2014
200 drug-like, 200 probe-like MMV007791 MMV007881 Boyomet al,, 2014
compounds of Malaria Box o

MMV006704

MMVB66095

MMV020548

MMV085203
Quinoline derivatives 8 Hydroxyauinoline, 726, A12, Quinoline Kadiiet al. 2014

A11,A14,A18,B11, A15—-17, A23,
B12, B15, 823, 824 sles2me 2. chioroquinoine
829, Cicrocine 5-Nitroqu
Inoline Quinoline

N-oxide hydrate A7, B18

Bumped Kinase Inhibitor 1294

+

Doggett et al, 2014

Salicylanildes 3,3}, 7a, 14a, 14b Fomovska et al, 2012
Antiretroviral compounds. Atazanavir Fosamprenavir Monzote et al., 2013
Ritonavir Nelfinavir
Saquinavir
Spiroindolone + Zhou etal, 2014
Ciprofloxacin derivatives Compound 2, 5 Compound 4 Dubar etal, 2011
Thiazolidin-4-one derivatives 12A 27,34A 36A D'Ascenzio et al., 2014
NG-benzyladenosine analog Compound 11,g,],n,0,  Kim et al., 2007
quv
Naphthoquinone derivative LOB151 (48 h) LQBo4 da Siva etal., 2015
LOB151 (24 )
LQB150 (24, 48 h)
Oryzaiin analogs Compound 6a, h,i, 143, Compound 6b, g, 1, n, 12 Compound 6m, 14b Endeshaw et al., 2010
18a,b,c
94 compounds + Dittmar et al, 2016
6-(1,2,6,7-tetraoxaspiro[7.11] + Xinetal, 2016

nonadec-4-ylhexan-1-ol (N-251)

sSuberoylanilde hydroxamic acid.
bSuberic bishydroxamic acid.
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Novel triazine JPC-2067-8

Newly synthesized
bisphosphonates
(15 new compounds)

2-alkylaminoethyl-
1,1-bisphosphonic acids
traconazole

Thiolactomycin analogs
(8 new compounds)

NSC3852)

FR235222, FR285222 derivative
compounds (W363, W371,
W399, W06, W425)

Thiosemicarbazides,
4-thiazolicinones and
1,34-thiadiazoles

AZ! and mZ™

1-Hydroxy-2-Akyl-4(1H)
Quinolone Derivatives
Oryzalin Analogs

53 novel compounds.
(Inhibitors of Enoyl reductase)

Haloperidol, clozapine,
fluphenazine, tifuoperazine,
thioridazine

RH

RH

RH
RH

RH

RH

RH, PRU
(typel)

RH

RH

RH (type )

RH

RH

RH

HFF

Mouse
macrophages
I 744A1)

HFF
LLCMK2

LLCMK2

HS 68 HFF

HFF

Vero

LLCMK2

HFF

HFF

HFF

HFF

3days

24,48h

Daiy

24 0r 48h

24,480

24h

24h

24,48h

24h

8day 26h

3days

48h

Liquid scintillation counting

MTT assay, flow cytometry

ICs values,
raciometric assay

G50 values, TEM analysis

Cso values,

Lipid extraction,
chromatographic analysis
SYBR green assay, MTS
assay, ROS assay,

NO assays

ECS0 determination,
Western blot analysis,
immunofluorescence
microscopy

Mean number of intracellular
parasitesa, L Dgok

ICsp values

1Cs values

Plaque assay,
Immunofiuorescence assay,
1G5 values

1Gso values

G values

1Cs0 JPC-2067-8 = 0.02M,
1Cgo JPC-2067-B = 0.05M
91Aand 282A showed
moderate and low toxicity
(cellviabiity between 70% and
100%)

1C50 compound 19 = 2.6 M

150 = 0.11,0.05 M for 24,
48h

ICs0 compounds =
16-29.4uM

ECs0 NSC3852 = 0.08 M,

ECsg NSC74949 = 0.64M
100% altered cysts 24 h after
treatment with the lowest
concentration of FR235222

Asignificant decrease in the
percentage of infected cells
and in the mean number of
tachyzoites per cellfrom the
concentrations of 0.1, 1,
10mM

ICso FLZ = 89, 3.1 uM after
24,480

1Cs0 ITZ = 0.1, 0.05 M for
24,480

ICsp compound A, B=
0.0004, 0.0008 kM

1Cs0 180 = 0.03 M

1G5 compounds 2, 19 = 004,
0.02pM,

IC50 compounds 39 less active
1Cs0 fluphenazine, thioridazine,
triluoperazine = 1, 1.2, and
38uM

Effective

Effective

Compound 19 was
very effective
Effective

Compound 5 was
very efective

NSC3852,
NSC74949 were the
most effective

Effective

Effective

Effective

Effective

Effective

Compounds 2, 19,
39 greatest effect

Fluphenazine,
thioridazine,
trifluoperazine were
effective

Sulfadiazine,
pyimetharmine

Hydroxyurea,
sultadiazine

Sulfediazine,
pyrimethamine

Atovaquone

Mui et al., 2008

Shubar et al., 2008

Szajnman et al.,
2008
Meartins-Duarte Edos
otal, 2008
Meartins-Duarte
etal, 2009

Strobl et al., 2009

Maubon et al., 2010

Liesen et al., 2010

Martins-Duarte
etal, 2010

Bajohr et al, 2010

Endeshaw et al.,
2010

Tipparaju etal,
2010

Goodvwin etal., 2011
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§5  Dextran sufate Pigs
56 Proprandiol BaLBic
57 Resverstol and Mo Suiss
suemethorazo:  Webster
trmetropim
58 Compound220f Webster mice
‘sulfur-containing
ncar
bisphosphonates
59 Compoundsz Fomalo GF-1

(TgODPK1 inhibito)  CBA

RH

RH

VEG

RHMED

22-hydroxy-3-(1_-propen-3-phenyl)-1,4-naphthoquinone.

bindirect immunofiuorescence antibody test.

“Reverse transcription polymerase chain reaction.

@Polymerase chain reaction.
®Quantitative Polymerase chain reaction.
Fluconazole.

9 traconazole.

"1-Hycroxy-2-Alkyh-4(1H) Quinolone.
'6-tlcoromethyl-2-thiouracil

I3-{{2-({E)-furan-2-ylmethylene) hydrazinyl) methylene]-1, 3-dibydroindol-2-one.

“Lipid peroxidation.
'Glutathione-S-transferase.

" lanine aminotransierase.
"Aspartate amino transferase.
°Akaline phosphatase.
Pinterferon gamma.

ATumor necrosis factor

Acute

Acute,
chronic

Acute

Acute,
chronic

1x 106
tachyzoites,
intravenously

1108

tachyzotes ip

S0cysts
orally

200r1000r
5000
tachyzottes ip

less than 100
tachyzottes/mL.

50-500 g per head

2, 3mgkg/day

Oral doses of 0.5 and
100mghg/day

0.05,0.1,05, and
1mgkg of 22/ ip. for
10days

20mg/ig for

5 days/ oral gavage
30mg/ig for 14 days

host cinical,
pathological, and
immnciogical
analyses

Parasite oad
determined by GPCR,
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