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Editorial on the Research Topic

An Omics Perspective on Fungal Infection: Toward Next-Generation Diagnosis and Therapy

Fungal infections are estimated to occur in over a billion people each year, and evidence suggests
the rate is increasing. Vaccines are unavailable, and despite progress in diagnosis and therapy, the
management of fungal infections is a challenging endeavor associated with unacceptable mortality
rates, particularly in immunocompromised hosts (Kontoyiannis et al., 2010; Pagano et al., 2010).
Importantly, the risk of infection and its clinical outcome vary significantly even among patients
with similar predisposing conditions (Carvalho et al., 2010). Concerns over excessive prescription
of antifungals and the remarkable burden conveyed to healthcare systems have encouraged efforts
to decipher the molecular and cellular causes underlying variable susceptibility to infection (Cunha
and Carvalho, 2012).

The combination of omics technologies and advanced computational methods, together with
the use of both established and alternative in vitro and in vivo models of infection (Brunke
et al., 2015), provides comprehensive views of the architecture and dynamics of host-fungus
interaction networks at a level of complexity previously unanticipated. As a result of our deepened
understanding of the biological, biochemical and biophysical molecular processes regulating
the host-fungus interaction, several targets with potential usefulness in personalized medical
interventions have been proposed (Oliveira-Coelho et al., 2015).

The present Research Topic brings together 10 articles covering multiple aspects of the host-
fungus interaction with emphasis on the application of omics-based technologies to project novel
or improve current diagnostic and therapeutic approaches. Smeekens et al. point out the advent
of omics platforms and the development of systems biology tools to study antifungal immunity
(Smeekens et al.). Much research has been performed on host genetics and fungal infection (Cunha
et al., 2013; Smeekens et al., 2013b), but only recently have these data been integrated into functional
genomics approaches driving unbiased identification and quantification of targets controlling
susceptibility to infection (Smeekens et al., 2013a; Kumar et al., 2014). With the increasing number
and quality of data repositories, the generation of multi-scale host-fungus interaction models
through systems biology is expected to support personalized medicine interventions (Dix et al.,
2016).

A substantial proportion of genetic markers associated with the risk of fungal infection are
within immune-related genes (Lupianez et al., 2015), often implicated in the nuclear factor (NF)-κB
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signaling pathways. Through a systematic evaluation of single
nucleotide polymorphisms (SNPs) in NF-κB pathways, Lupiañez
et al. exclude a clinically relevant impact of SNPs in these genes
to the risk of invasive aspergillosis (IA) (Lupiañez et al.), thus
supporting the concept that innate immune receptors, rather
than molecules involved in downstream signaling, are major
repositories of genetic variability regulating antifungal immune
function (Bochud et al., 2008; Carvalho et al., 2008, 2012b;
Cunha et al., 2010, 2014, 2015; Wojtowicz et al., 2015). As host
damage perception is fundamental for resolution of infection
(Cunha et al., 2012), SNPs underlying the hyperactivation
of the S100 calcium-binding protein B (S100B)/receptor for
advanced glycation end products danger signaling pathway
have also been put forward as intrinsic factors influencing
the risk for IA (Cunha et al., 2011). Accordingly, Dix
et al. describe an enrichment of gene expression profiles of
patients suffering from IA in the S100B transcript, therefore
highlighting its potential as a valuable prognosis biomarker (Dix
et al.).

The use of transcriptomics and epigenomics has also
contributed to the identification and characterization of dynamic
cellular processes with unparalleled resolution. An emerging
view is that immune cells are able to adapt their metabolic
programs to meet specialized defense needs through the precise
and concerted action of epigenetic mechanisms and metabolic
pathways (Cheng et al., 2014; Saeed et al., 2014). Hellwig et al.
provide evidence that the effector functions of natural killer T
cells in response to Candida albicans are also critically dependent
on metabolic plasticity (Hellwig et al.). This finding is in line
with the metabolic reprogramming and epigenetic imprinting
occurring in monocytes in response to β-glucan (Netea et al.,
2016). Understanding how metabolism coordinates immune cell
function might uncover innovative therapeutics or metabolic
adjuncts to reorient cells toward immune protection (Cheng
et al., 2016).

The adaptation of the fungus to its host also requires a
profound reprogramming of the fungal transcriptome. Previous
studies have been centered on the isolation of minute amounts
of RNA from host tissues and the use of microarrays or RNA-
sequencing (Cairns et al., 2010; Liu et al., 2015). Amorim-Vaz
and Sanglard discuss two emerging technologies to improve
the capture of fungal RNA and discuss their pros and cons,
and how microbial transcriptomics can benefit from them
(Amorim-Vaz and Sanglard). The underrepresentation of fungal
DNA has also been hampering the precise characterization of the
fungal communities in the human host, their composition and
dynamics, and contribution to disease. By examining the human
gut mycobiota, Strati et al. highlight important implications
of age- and gender-dependent interindividual variation in
microbiota diversity, and consequently susceptibility to fungal
infection (Strati et al.).

Systems biology has demonstrated that the fungal cell wall
is a highly dynamic organelle (Brown et al., 2015). Based on
the proteomics of fungal extracellular vesicles (EVs), Nimrichter
et al. discuss the contributions of EVs to the interaction with
host cells (Nimrichter et al.). Likewise, fungal sphingolipids
form a unique and complex group of bioactive lipids with a

role in microbial pathogenesis (Bryan et al., 2015). Singh and
Del Poeta provide an overview of the methods employed in
qualitative and quantitative fungal sphingolipidomics (Singh and
Del Poeta). The characterization of the cell wall composition and
dynamics is therefore expected to deliver novel therapeutic and
vaccination targets (Carvalho et al., 2012a). On the other hand,
Prado et al. demonstrate that Paracoccidioides lutzii undergoes
a global metabolic adaptation in response to the antifungal
argentilactone (Prado et al.). Thus, the use of omics may extend
beyond therapeutic target identification to the evaluation of the
course of action of antifungals and mechanisms of resistance.

Among fungi, the biology of C. albicans is unique due to
the flexible reassignment of the leucine CUG codon to serine
and synthesis of statistical proteins (Gomes et al., 2007). This
aminoacid misincorporation shapes cell surface composition
(Miranda et al., 2013) and drives vast phenotypic diversity
concerning metabolism, drug resistance and host immunity
(Bezerra et al., 2013). Simões et al. resequenced the genome of
mistranslating strains to infer that expression of serine tRNAs
was linked to mutations in the deneddylase gene (Simões et al.).
Besides demonstrating neddylation as a key mechanism in the
tolerance to codon ambiguity, this posttranslational modification
is highlighted as a promising therapeutic target.

In conclusion, the articles presented here provide an overview
of the potential for omics based on concrete examples of
their application. With the unrelenting advances in technology,
a major contribution of omics to the elucidation of fungal
pathogenesis are anticipated, providing crucial information
bridging basic research to the patient’s bedside.
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