
ORIGINAL RESEARCH
published: 28 February 2017

doi: 10.3389/fmicb.2017.00261

Frontiers in Microbiology | www.frontiersin.org 1 February 2017 | Volume 8 | Article 261

Edited by:

Suhelen Egan,

University of New South Wales,

Australia

Reviewed by:

Lindsey Neil Shaw,

University of South Florida, USA

Hansel McClear Fletcher,

Loma Linda University, USA

*Correspondence:

Richard J. Lamont

rich.lamont@louisville.edu

Murray Hackett

mhackett@u.washington.edu

Specialty section:

This article was submitted to

Microbial Symbioses,

a section of the journal

Frontiers in Microbiology

Received: 04 August 2016

Accepted: 07 February 2017

Published: 28 February 2017

Citation:

Hendrickson EL, Beck DAC, Miller DP,

Wang Q, Whiteley M, Lamont RJ and

Hackett M (2017) Insights into

Dynamic Polymicrobial Synergy

Revealed by Time-Coursed RNA-Seq.

Front. Microbiol. 8:261.

doi: 10.3389/fmicb.2017.00261

Insights into Dynamic Polymicrobial
Synergy Revealed by Time-Coursed
RNA-Seq
Erik L. Hendrickson 1, David A. C. Beck 1, 2, Daniel P. Miller 3, Qian Wang 3, Marvin Whiteley 4,

Richard J. Lamont 3* and Murray Hackett 1*

1Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, USA, 2 eScience

Institute, University of Washington, Seattle, WA, USA, 3Department of Oral Immunology and Infectious Diseases, University

of Louisville School of Dentistry, Louisville, KY, USA, 4Department of Molecular Biosciences, University of Texas at Austin,

Austin, TX, USA

Many bacterial infections involve polymicrobial communities in which constituent

organisms are synergistically pathogenic. Periodontitis, a commonly occurring chronic

inflammatory disorder, is induced by multispecies bacterial communities. The

periodontal keystone pathogen Porphyromonas gingivalis and the accessory pathogen

Streptococcus gordonii exhibit polymicrobial synergy in animal models of disease.

Mechanisms of co-adhesion and community formation by P. gingivalis and S. gordonii are

well-established; however, little is known regarding the basis for increased pathogenicity.

In this study we used time-coursed RNA-Seq to comprehensively and quantitatively

examine the dynamic transcriptional landscape of P. gingivalis in a model consortium with

S. gordonii. Genes encoding a number of potential virulence determinants had higher

relative mRNA levels in the context of dual species model communities than P. gingivalis

alone, including adhesins, the Type IX secretion apparatus, and tetratricopeptide repeat

(TPR) motif proteins. In contrast, genes encoding conjugation systems and many of the

stress responses showed lower levels of expression inP. gingivalis. A notable exception to

reduced abundance of stress response transcripts was the genes encoding components

of the oxidative stress-related OxyR regulon, indicating an adaptation of P. gingivalis to

detoxify peroxide produced by the streptococcus. Collectively, the results are consistent

with evolutionary adaptation of P. gingivalis to a polymicrobial oral environment, one

outcome of which is increased pathogenic potential.

Keywords: Porphyromonas gingivalis, Streptococcus gordonii, model community, RNA-Seq, time-course profiling

INTRODUCTION

Microbiome studies have enhanced our awareness of the polymicrobial etiology of many infectious
diseases. Organisms within polymicrobial communities often exhibit synergistic interactions and
such polymicrobial synergy helps define the pathogenic potential, or nososymbiocity, of the entire
community (Hajishengallis and Lamont, 2016; Stacy et al., 2016). Periodontal diseases, which are
among the most common infectious diseases worldwide (Kassebaum et al., 2014), are an exemplar
of polymicrobial infections in which disease is initiated by a complexmicrobial community residing
in the subgingival compartment (Darveau, 2010; Hajishengallis and Lamont, 2012). Pathogenic
outcomes in periodontal diseases depend on interbacterial interactions amongmicrobial colonizers
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that engender a dysbiotic community and destructive
inflammatory responses (Hajishengallis and Lamont, 2014;
Lamont and Hajishengallis, 2015).

A series of well-defined developmental processes characterize
periodontal microbial community formation. Early colonizers of
the hard and soft tissues are primarily Gram-positive facultatives
such as the oral streptococci, and these organisms adhere to
mucosal and saliva-coated surfaces (Rosan and Lamont, 2000;
Jenkinson and Lamont, 2005). Primary colonizers in turn
provide an attachment substratum, along with physiological and
nutritional support, for later colonizers such as the keystone
pathogen Porphyromonas gingivalis (Pg). The interaction
between Pg and Streptococcus gordonii (Sg) has been extensively
studied, and the organisms are synergistically pathogenic
in animal models of periodontal disease (Periasamy and
Kolenbrander, 2009; Daep et al., 2011; Wright et al., 2013). Co-
adhesion between Pg and Sg is mediated by the FimA and Mfa1
component fimbriae of Pg, which interact with streptococcal
surface GAPDH and SspA/B proteins, respectively (Kuboniwa
and Lamont, 2010;Wright et al., 2013). Subsequent accumulation
of Pg is regulated by a protein tyrosine (de)phosphorylation
signal transduction cascade that controls transcription factor
activity (Maeda et al., 2008; Wright et al., 2014). The long term
(18 h) association between Pg and Sg has been studied on the
proteome level by our group and paints a picture consistent
with a mutually physiologically supportive environment

FIGURE 2 | Metabolic pathway diagram showing amino acid metabolism over the time course for P. gingivalis alone. Each dot represents a comparison of

a time point in the course to the T = 1 control, reading from left to right starting with 5 min. Red indicates higher levels, green lower levels, and gray no significant

change. Full details for each Pg ORF can be found in Tables S1–S3.

FIGURE 1 | Principal Component Analysis. The figure shows each

biological replicate for each condition on the first two components of

the principal component analysis. The analysis was run using the 500

genes with the largest normalized count variance across all samples and time

points (see Methods). The first two components account for 73% of the

variance in the data. The first component primarily reflects the influence of

time. The second component reflects the presence or absence of S. gordonii.
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(Kuboniwa et al., 2009b, 2012; Hendrickson et al., 2012).
However, little is known regarding the initial dynamic adaptation
of Pg on a global scale to a dual species community and the
potential mechanisms of synergistic pathogenicity.

RNA sequencing (RNA-Seq) is a sensitive method for the
comprehensive analysis of gene expression, which is now
commonly used for the study of microbial pathogenicity and
environmental adaptations (Westermann et al., 2012; Creecy
and Conway, 2015). Moreover, as computational methods and
sequencing technology have improved, RNA-Seq can also be
exploited to reveal changes in gene expression over a time
course. Herein, we have used RNA-Seq to examine the dynamic
transcriptional landscape of Pg in a model community with Sg.
The results provide insights into the nature of the physiologic
support provide by Sg to Pg, and the basis for pathogenic synergy
exhibited by PgSg communities.

MATERIALS AND METHODS

Bacteria and Culture Conditions
Porphyromonas gingivalis ATCC 33277 (Pg) was grown
anaerobically (85% N2, 10% H2, 5% CO2) at 37◦C in
trypticase soy broth supplemented with 1 mg/ml yeast
extract, 1 µg/ml menadione and 5 µg/ml hemin. S. gordonii

TABLE 1 | Top 25 genes with the highest mRNA levels in PgSg communities compared to Pg over time by RNA-Seq.

Time (min)

5 30 120 240 360

PGN_1401 PGN_1535 PGN_0798 PGN_0458 PGN_0458

PGN_0273 PGN_0273 PGN_0458 PGN_0798 PGN_0798

PGN_0182 fimB PGN_1534 PGN_0357 sufB PGN_1227 TPR motif PGN_0357 sufB

PGN_1906 hagC PGN_1639 PGN_0802 PGN_0357 sufB PGN_0388

PGN_1904 hagB PGN_0802 PGN_1238 PGN_1238 PGN_1413

PGN_0184 fimD PGN_0798 PGN_0856 PGN_0856 PGN_1507

PGN_1535 PGN_1541 PGN_1227 TPR motif PGN_0855 PGN_1204

PGN_0181 fimB PGN_1401 PGN_1210 PGN_1413 PGN_0937

PGN_1639 PGN_1326 PGN_0273 PGN_0937 PGN_0927

PGN_0183 fimC PGN_0931 PGN_1535 PGN_1507 PGN_1816

PGN_1534 PGN_0778 porT PGN_0358 sufC PGN_0043 PGN_1238

PGN_0185 fimE PGN_0932 PGN_1817 PGN_1204 PGN_0043

PGN_0180 fimA PGN_0458 PGN_0937 PGN_1903 PGN_0423

PGN_1460 PGN_1687 PGN_0982 PGN_1817 PGN_0752

PGN_0826 PGN_2009 PGN_0928 PGN_1210 PGN_1752

PGN_0778 porT PGN_0856 PGN_1534 PGN_0928 PGN_1424

PGN_0549 PGN_1823 PGN_0778 porT PGN_0927 PGN_0855

PGN_0412 PGN_1821 PGN_0043 PGN_0982 PGN_1705

PGN_1674 PGN_1673 PGN_0336 PGN_0358 sufC PGN_0928

PGN_1505 PGN_1837 PGN_1211 PGN_1988 PGN_0380

PGN_1461 PGN_1906 hagC PGN_1376 PGN_1480 PGN_0739

PGN_1402 PGN_1904 hagB PGN_1340 PGN_0972 TPR motif PGN_0569

PGN_2050 PGN_0185 fimE PGN_1903 PGN_0172 PGN_1423

PGN_1673 PGN_0580 PGN_1413 PGN_0380 PGN_1145

PGN_1053 PGN_0180 fimA PGN_1507 PGN_0388 PGN_0972 TPR motif

DL1 (Sg) was grown anaerobically at 37◦C in Todd-Hewitt
broth. Bacteria were cultured to mid-log phase, harvested by
centrifugation and resuspended in pre-reduced PBS, pH 7.2.
Model communities were generated by the method described
by Merritt et al. (2005). 1 × 109 cells of Pg and Sg were
mixed in an equimolar ratio, pelleted and held anaerobically
at 37◦C for 5, 30, 120, 240, and 360min. Pg cells alone,
pelleted and held over the same time course were used for
comparison with the PgSg condition. To obtain a baseline
reading, Pg cells were pelleted and then immediately lysed
for RNA extraction (see below), this represented the T = 1
condition.

RNA Sequencing
RNAwas extracted from cells using the AmbionmirVanamiRNA
Isolation Kit AM1561 (ThermoFisher Scientific, Waltham, MA).
Library construction was performed with the Illumina TruSeq
Stranded mRNA library prep kit RS-122-2101 (Illumina, San
Diego, CA). Fragmented RNA was converted to cDNA, and
enriched and purified by PCR to create the library without
rRNA depletion. High throughput sequencing was performed on
a HiSeq2500-v4 sequencer (Illumina) at the High-Throughput
Genomics Center (htSEQ) at the University of Washington
Department of Genome Sciences.
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Validation
To corroborate the sequencing results, expression of a subset of
genes was determined by qRT-PCR analysis. Total RNA samples
were prepared from communities of PgSg and Pg alone at 5
and 360 min under the same conditions as those for RNASeq.
RNA was isolated from three independent experiments and
converted to cDNA with an iScript cDNA synthesis kit (Bio-
Rad, Hercules, CA). qRT-PCRwas performed by StepOne plus by
the 11Ct method using 16S rRNA as an internal control. Three
experimental replicates were analyzed for each biological sample.
Although the magnitudes of fold differences were different
between the two techniques as expected, expression profiles for
the genes tested were concordant with respect to direction of
change.

Data Processing
The genomes for Pg ATCC 33277 (Naito et al., 2008) and Sg DL1
were retrieved from Genbank (loci AP009380 and NC_009785).

The Genbank files were combined and converted to a GFF file
suitable for use with htseq-count tool from HTSeq (Anders et al.,
2015) with BioPerl’s (Stajich et al., 2002) bp_genbank2gff3.pl
tool. The raw reads were aligned to the combined genomes
at the same time using BWA (Li et al., 2009; Li and Durbin,
2010) version 0.7.4-r385 using the aln/samsemode under default
options. The alignments were post-processed, sorted into BAM
files, and indexed with SAMTools version 0.1.19-44428cd (Li
et al., 2009). Reads per gene was computed from the alignments
with htseq-count version 0.5.4p5 in the “intersection-nonempty”
mode.

Data Analysis for Differential Expression
Normalized read counts and p-values for differential abundance
were computed for three biological replicates using DESeq2
(Anders and Huber, 2010). The p-values were subsequently
corrected for multiple hypothesis testing using the q-value
method of Storey (Storey and Tibshirani, 2003a,b). Principal

FIGURE 3 | Differential expression of fimA locus genes (PGN_0180-PGN_0185) along with fimSR (PGN_0903 and PGN_0904) in communities of PgSg.

Results are expressed as log2 fold change in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, see Methods for

statistical thresholds.
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components (PCA) of the normalized read abundances were
computed with R (R Core Team, 2015) using the top 500
genes with the most expression abundance variance across all
samples. Transcripts were considered statistically different if they
made the q-value cutoff of 0.001 and had an absolute log2 fold
difference of greater than 0.5.

Ontology Analysis
An ontology analysis was conducted using the DAVID functional
annotation clustering feature (Database for Annotation,
Visualization and Integrated Discovery, Huang et al., 2007). Lists
of transcripts with increased or decreased levels were compared
to the list of overall detected transcripts as the background using
Entrez gene identifiers to designate the genes. The databases used
were left at the default settings. Potentially interesting clusters
were then inspected manually.

Gene Expression Data
All sequence data for this study have been deposited in
GEO (Gene Expression Omnibus). The accession number for
the dataset is GSE78126, see http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE78126.

RESULTS AND DISCUSSION

Within the complex multispecies environment of oral microbial
communities, P. gingivalis (Pg) interfaces with a multitude of
bacterial species. Both antagonist and synergistic interactions
have been documented (Jenkinson and Lamont, 2005), and

elevated pathogenicity in animal models occurs with Pg and
a number of partner species (Kesavalu et al., 2007; Metzger
et al., 2009; Orth et al., 2011). In vivo, Pg can be found in
association with streptococci including S. gordonii (Sg) (Valm
et al., 2011; Griffen et al., 2012), and these two organisms
in combination are synergistically pathogenic (Daep et al.,
2011).

To investigate the responses of Pg to Sg in a heterotypic
community over time, we employed a well-established
experimentally tractable model of nascent community
interaction (Merritt et al., 2005; Kuboniwa et al., 2009b;
Hendrickson et al., 2012, 2014). Model Communities were
constructed using Pg alone or an equal combination of Pg and
Sg, and total RNA extracted after 1, 5, 30, 120, 240, or 360min.
This combination of time course and experimental model was
chosen, based on our previous studies cited above, to cover the
interval in which most early stage and (or) pre-programmed
interactions take place, while minimizing confounding starvation
or growth responses. Obvious starvation responses using Pg with
this model, either alone or with Sg, have not been observed prior
to 360min. Transcriptomes were determined for each sample
using high throughput RNA sequencing, and between 44 and
57 million mapped reads were obtained from each library. Prior
work in our group with a variety of ribosomal RNA depletion
schemes suggested that our sampling was deep enough with this
model system that we could safely avoid the biases introduced
by such depletion schemes, without compromising our ability to
detect low abundance transcripts (data not shown). P. gingivalis
alone (Pg) showed large changes in the transcriptome. Of

FIGURE 4 | Differential expression of mfa1 locus genes (PGN_0287-PGN_0291) in communities of PgSg. Results are expressed as log2 fold change in PgSg

compared to Pg alone at the times indicated. Higher mRNA levels are represented by red bars.

Frontiers in Microbiology | www.frontiersin.org 5 February 2017 | Volume 8 | Article 261

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78126
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78126
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hendrickson et al. Synergy Revealed by Time-Coursed RNA-Seq

FIGURE 5 | Differential expression of hemagglutinin and inlJ genes in communities of PgSg. Results are expressed as log2 fold change in PgSg compared

to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, lower mRNA levels are represented by green bars.

FIGURE 6 | Differential expression of the cdhR gene in communities of

PgSg. Results are expressed as log2 fold change in PgSg compared to Pg

alone at the times indicated. Higher mRNA levels are represented by red bars,

lower mRNA levels are represented by green bars.

the 2090 predicted genes in the Pg 33277 genome, 69% were
differentially expressed by 360 min. In P. gingivalis-S. gordonii
communities (PgSg), 48% of genes were significantly altered at
the 5 min time point compared to Pg alone, and this increased
to 63% by 360 min. The results for all annotated genes at
all time points are summarized in Tables S1–S3, ordered by
PGN number. Tables S1–S3 are a static PDF version of a
comprehensive relational database that contains a number of
convenient search functions and adjustable parameters. The
file size requirements of the journal required breaking up the
main supplement into three parts. Readers desiring access to
the full database capability should contact the corresponding
author. A key advantage of working with the full database is
that the log-fold, p- and q-value cut-offs are treated as adjustable
variables, allowing the user to visualize and mine the dataset
under a variety of conditions, and to use alternative statistical
models of their own choosing. Table S4 in the supplemental
material covers a specific subset of genes discussed in the main
text, those annotated to play a role in translation initiation,
elongation and termination. Representative qRT-PCR validation
data is illustrated in Figure S1.
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Principal Components
A principal component analysis was run using the 500
genes with the highest variance across the time course
samples. Figure 1 shows a plot of the first and second
components, which accounted for 73% of the variance. The
first component generally followed the time course, consistent
with the finding that a large percentage of the Pg transcriptome
was differentially increased or decreased over time. The second
component largely separated the PgSg samples from Pg alone.
Consistent with this, the most significant genes for the
second component generally showed increased or decreased
transcript levels for PgSg compared to Pg across the time
course.

P. gingivalis Transcriptional Landscape
over Time in a Monospecies Community
In our control condition Pg is maintained as a high density
monospecies community in the absence of exogenous nutrients.
Pg is an asaccharolytic organism and primarily derives its
energy from amino acids, with strain 33277 preferring dipeptides
to peptides, and glutamine/glutamate and asparagine/aspartate
as amino acids (Takahashi et al., 2000). Examination of the
pathways related to metabolism of these amino acids (Figure 2)
showed that most of the genes had increased transcript levels,
compared to the T = 1 condition, albeit the increase tapered
off at the 360min time point. Differential gene expression
levels indicated a trend toward increased propanoate and a

FIGURE 7 | Differential expression of stress response related genes in communities of PgSg. Results are expressed as log2 fold change in PgSg compared

to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, lower mRNA levels are represented by green bars.
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possible shift of acetyl-CoA from acetate to butanoate. These
results suggest that Pg has sufficient energy reserves to continue
metabolic activity in buffer at least through 240min. Similarly,
ribosomal protein genes showed increased expression across the
time course (see Tables S1–S3 for individual genes annotated
as coding for ribosomal proteins). The largest number of genes
with increased expression was seen at 120min and the number
was reduced at later time points. The genes for translation
initiation, elongation, and termination followed a similar pattern
(Table S4). Hence, Pg appears capable of maintaining protein
synthesis up to at least 120min following the loss of exogenous
nutrients.

Adhesin Gene Expression in PgSg
Communities
Comparison of genes regulated in the PgSg condition with Pg
alone revealed that adherence-associated genes comprised 8 of
the top 15 (by degree of expression change) genes with higher
relative RNA levels after 5 min (Table 1). Attachment of Pg to Sg
involves two types of fimbriae: the longer fimbriae comprised of
the FimA structural subunit and the shorter fimbriae, comprised

of the Mfa1 structural subunit (Wright et al., 2013). Initial
contact between Pg and Sg is mediated by engagement of
the FimA protein with GAPDH on the streptococcal surface
(Maeda et al., 2004). Expression of the fimA gene was increased
in PgSg communities at all time points (Figure 3), indicating
that Pg responds to the presence of Sg by increasing the
availability of a major coadhesin. Similarly, Maeda et al. (2015)
reported increased fimbrial expression, at both the protein and
mRNA levels, in communities of Pg with the closely related
streptococcus S. oralis. Pg genes for FimA accessory proteins
PGN_0181 and PGN_0182 (the two fragments of fimB in strain
33277, Nagano et al., 2010), fimC, fimD, and fimE had higher
mRNA levels compared to Pg alone, although more consistently
at the 5 and 30min time points. Alignment of the RNA-Seq reads
with the genome (Figure S2), also showed different levels of
expression of fimA compared to fimB-E, in accord with previous
reports that the major fimbrial genes in Pg do not comprise an
operon (Nishikawa et al., 2004). Interestingly, mRNA levels of
fimS and fimR, encoding the two component system (TCS) which
controls fimA transcription (Nishikawa et al., 2004), were highest
compared to Pg alone at 120min when fimA mRNA levels were

TABLE 2 | Differential expressiona of genes associated with the OxyR regulon in communities of PgSg.

Gene Gene name/function Log2 (Fold change)

5 min 30 min 120 min 240 min 360 min

PGN_0368 oxyR, redox-sensitive transcriptional activator 0.57 0.56 0.35 −0.01 −0.62

PGN_0035 rplS, 50S ribosomal protein L19 −1.05 −0.83 −0.93 −1.23 −0.70

PGN_0167 rpsP, 30S ribosomal protein S16 −1.62 −1.47 −1.49 −1.43 −0.66

PGN_0301 conserved hypothetical protein −0.20 0.59 0.86 0.68 0.83

PGN_0357 ABC transporter membrane protein −1.05 0.91 2.62 2.48 2.38

PGN_0373 putative thioredoxin −1.39 0.23 1.66 1.35 1.67

PGN_0564 superoxide dismutase Fe-Mn −1.13 −0.04 1.03 1.33 1.76

PGN_0567 prtC, collagenase 0.84 0.90 0.88 0.52 0.14

PGN_0569 S-adenosylmethionine: tRNA ribosyltransferase-isomerase −0.58 −0.03 1.21 1.44 1.85

PGN_0604 ferritin −0.60 −0.04 0.59 0.46 0.72

PGN_0638 rpoD, RNA polymerase sigma factor −0.76 −0.21 0.55 0.54 0.56

PGN_0639 rpsF, 30S ribosomal protein S6 −0.57 −0.25 0.12 0.25 0.66

PGN_0660 ahpC, alkyl hydroperoxide reductase C subunit −1.12 −0.54 −1.30 −1.75 −1.14

PGN_0661 ahpF, alkyl hydroperoxide reductase F subunit −0.56 −0.17 −1.10 −1.33 −0.82

PGN_0722 conserved hypothetical protein −0.74 0.35 1.46 1.50 1.56

PGN_0741 TonB-dependent receptor −0.56 −0.52 0.50 0.80 1.00

PGN_1111 formate-tetrahydrofolate ligase −0.56 0.01 0.79 0.65 0.70

PGN_1172 acyl-CoA dehydrogenase short-chain specific 0.95 0.89 0.64 0.63 0.64

PGN_1186 rprY, DNA-binding response regulator −0.85 −0.37 0.10 0.12 0.71

PGN_1206 putative methylenetetrahydrofolate dehydrogenase −0.07 −0.08 0.25 0.57 0.51

PGN_1221 probable ATP:corrinoid adenosyltransferase −1.01 −0.34 0.52 0.39 0.54

PGN_1232 thioredoxin reductase −0.72 −0.08 1.08 1.42 1.40

PGN_1526 conserved hypothetical protein −0.90 0.65 1.57 1.15 0.71

PGN_1547 conserved hypothetical protein −1.44 −0.29 0.65 1.05 1.13

PGN_1580 rpsU, putative 30S ribosomal protein S21 −1.11 −0.60 −0.01 0.49 1.01

PGN_1891 rpmB, 50S ribosomal protein L28 −0.18 0.22 0.44 0.33 0.92

PGN_2037 dps, DNA-binding protein from starved cells −1.14 −0.84 −1.02 −1.31 −0.78

aResults are expressed as log2 fold change in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red font, lower mRNA levels are represented

by green font.

Frontiers in Microbiology | www.frontiersin.org 8 February 2017 | Volume 8 | Article 261

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hendrickson et al. Synergy Revealed by Time-Coursed RNA-Seq

beginning to decline (Figure 3) indicating a complex control
system for the production of FimA. However, TCS require the
appropriate signal for activity, and thus there is not a linear
relation between level of protein (or mRNA) and information
flow.

Expression of Mfa1 in dual species PgSg communities is
downregulated after 20 h, as the developing Pg microcolony no
longer requires interspecies adhesion (Park et al., 2006). mfa1,
along with genes encoding Mfa2, the anchor and filament length
regulating protein, and Mfa3-5, which decorate the fimbrial
structure have been shown to comprise an operon (Hasegawa
et al., 2009, 2013; Ikai et al., 2015). Neither mfa1 nor mfa2
showed significant differences with Sg (Figure 4); however,mfa3,
mfa4 and mfa5 had higher expression levels in PgSg compared

to Pg at 5 min through 120 min. Examination of sequence
reads in the intergenic mfa2-mfa3 region did not reveal the
presence of a potential transcriptional start site (tss) upstream
of mfa3. Hence, Pg may utilize posttranscriptional mechanisms
to fine tune production of Mfa3-5. Furthermore, alignment
of the RNA-Seq reads with the genome (Figure S3), shows
that mfa1 is transcriptionally detached from the downstream
genes in the mfa locus. Sequence read analysis did not
indicate the presence of a tss upstream of mfa2, and thus the
lower levels of mfa2-5, compared to mfa1, may result from
the presence of transcriptional terminators, or be caused by
differences in RNA stability. The specific roles of Mfa2-5 in
PgSg community formation are under investigation in our
laboratories.

FIGURE 8 | Differential expression of genes for type IX secretion system components in communities of PgSg. Results are expressed as log2 fold change

in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, lower mRNA levels are represented by green bars.
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In addition to contributing to the PgSg interaction, both
the FimA and Mfa fimbriae display a number of properties
consistent with a role in the periodontal disease process. FimA
can mediate attachment to a number of oral substrates including
epithelial cells, matrix proteins and a variety of bacteria (Lamont
and Jenkinson, 1998; Enersen et al., 2013). FimA is strongly
proinflammatory while concomitantly reducing TLR2 mediated
responses, a strategy that has been proposed to benefit the
organism through the production of proteinaceous inflammatory
breakdown products while impeding clearance (Hajishengallis
et al., 2008; Hajishengallis and Lambris, 2011). The Mfa fimbriae
can also mediate adherence to host cells and are involved in
auto-aggregation and monotypic biofilm formation (Umemoto
and Hamada, 2003; Kuboniwa et al., 2009a). Additionally,
Mfa1 selectively engages the dendritic cell (DC) C-type lectin
DC-SIGN, which facilitates evasion of antibacterial autophagy
and lysosome fusion, and enhances intracellular persistence in
myeloid DCs (El-Awady et al., 2015).

Transcripts for the highly conserved hemagglutinin (Hag)
B and HagC showed higher levels in the presence of Sg at
all time points (Figure 5). Although these adhesins have not
been implicated in interbacterial binding (Lépine et al., 1996),
they can mediate attachment to host cells (Song et al., 2005).
Pg may thus use Sg as a cue for the presence of oral tissues
and maintaining higher levels of the relevant adhesins. HagB
is considered a major virulence factor of the organism (Pingel
et al., 2008) and increased expression may thus contribute to
the synergistic pathogenicity of Pg-Sg communities (Daep et al.,
2011). In contrast, the gene encoding HagA, which is structurally
and functionally distinct from HagB/C (Bélanger et al., 2012),
showed lower levels of expression with Sg at 120 and 240min, and
was not significantly different between PgSg and Pg at other time

points (Figure 5), suggestive of the existence of a selective process
for the regulation of haemagglutinin adhesins in Pg prompted by
the presence of Sg.

The leucine-rich repeat (LRR) domain Internalin (Inl) J of
Pg is involved in adherence to abiotic surfaces (Capestany
et al., 2006). An InlJ mutant, however, exhibits enhanced Pg-Sg
community formation (Capestany et al., 2006). The expression
profile of inlJ (Figure 5) was consistent with a role for InlJ in
constraining Pg-Sg community development. Transcripts for inlJ
were lower with Sg at the 5 min time point but higher at 120–360
min consistent with Pg facilitating community development early
in the interaction and then implementing strategies to constrain
heterotypic community accumulation (Chawla et al., 2010).

Regulators of P. gingivalis Community
Formation with S. gordonii
In addition to co-adhesion between Pg and Sg, a phosphotyrosine
dependent signaling network controls heterotypic community
development (Maeda et al., 2008; Wright et al., 2014). Pg can
sense metabolites produced by Sg and activates phosphoprotein
signal transduction leading to the production of theMfa1 adhesin
and the LuxS enzyme responsible for the production of AI-
2 (Kuboniwa et al., 2006; Chawla et al., 2010). However, in
the current model system whereby immediate close contact is
imposed upon the cells, and in the absence of the opportunity
to first interact with Sg metabolites, PgSg did not show higher
levels of mfa1 or luxS transcription relative to Pg alone.
Interestingly, the expression pattern of the gene encoding CdhR,
a transcriptional regulator which suppresses mfa1 and luxS
(Chawla et al., 2010), showed lower levels at 5min and higher
levels at 120–360min compared to Pg (Figure 6), consistent with

FIGURE 9 | Differential expression of genes encoding tetratricopeptide repeat (TPR) motif containing proteins in communities of PgSg. Results are

expressed as log2 fold change in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, lower mRNA levels are

represented by green bars.
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its role in PgSg community development (Chawla et al., 2010),
but indicating the existence of mulilevel control of mfa1 and
luxS expression. Dissection of these pathways is an area of active
investigation in our laboratories.

Stress Responses
Models of the formation and development of heterotypic plaque
communities hold that physiologically compatible organisms
tend to cluster together (Stacy et al., 2016). In support of this
notion, mRNA levels for Pg genes involved in stress responses
were lower in PgSg communities compared to Pg alone over
all time points. Stress-response related genes that were lower
with Sg throughout the time course included groES, groEL, dnaJ,

dnaK, clpB, clpC, and htpG (Figure 7). A notable exception to
the overall reduced stress environment for Pg, was a number of
oxidative stress related genes that were increased. These genes
comprised predominantly the OxyR regulon (Diaz et al., 2006).
The gene encoding OxyR itself showed higher mRNA levels at 5
min through 30min, followed by higher levels in PgSg compared
to Pg of 15 of 26 predicted regulon genes at 120 min, and
by 360min, 20 of the predicted regulon genes demonstrated
elevated expression (Table 2). In addition, mRNA coding for the
bacterioferritin co-migratory protein (Bcp, PGN_1058), which
contributes to oxidative stress resistance in Pg (Johnson et al.,
2011), was higher at 240 and 360min compared to Pg alone. Sg
produces H2O2 as an end product of carbohydrate fermentation,

TABLE 3 | Differential expressiona of genes associated with conjugation in communities of PgSg.

Gene Gene name/function Log2 (Fold change)

5 min 30 min 120 min 240 min 360 min

PGN_0056 probable conserved protein found in conjugate transposon −0.74 −0.65 −0.41 −0.51 −0.08

PGN_0057 traP, probable conserved protein found in conjugate transposon −0.49 −0.30 −0.42 −0.70 −0.50

PGN_0058 probable conserved protein found in conjugate transposon −0.91 −1.11 −1.05 −1.07 −0.50

PGN_0059 traN, conserved protein found in conjugate transposon −0.61 −0.62 −0.76 −0.71 −0.17

PGN_0060 traM, conserved protein found in conjugate transposon −0.61 −0.67 −1.07 −1.03 −0.53

PGN_0061 hypothetical protein −0.94 −0.71 −0.91 −0.42 0.01

PGN_0062 traK, putative conserved protein found in conjugate transposon −0.971 −0.81 −1.20 −0.79 −0.57

PGN_0063 traJ, conserved transmembrane protein found in conjugate transposon −0.71 −0.94 −1.11 −0.86 −0.59

PGN_0064 traI, putative conserved protein found in conjugate transposon −0.53 −0.77 −0.97 −0.81 −0.26

PGN_0065 traG, conserved protein found in conjugate transposon −0.80 −0.92 −1.11 −1.23 −0.96

PGN_0066 traF, conserved transmembrane protein found in conjugate transposon −0.84 −0.96 −1.14 −0.98 −0.48

PGN_0067 traE, conserved transmembrane protein found in conjugate transposon −0.59 −0.69 −1.01 −0.85 −0.42

PGN_0068 hypothetical protein 0.11 0.13 0.03 −0.11 0.29

PGN_0069 traA, probable conserved protein found in conjugate transposon −0.16 −0.44 −0.62 −0.54 −0.49

PGN_0070 hypothetical protein −0.13 −0.58 −0.53 −0.54 −0.65

PGN_0071 hypothetical protein −0.25 −0.41 −0.46 −0.48 −0.50

PGN_0072 hypothetical protein −0.31 −0.68 −0.51 −0.52 −0.63

PGN_0073 traA, putative conserved protein found in conjugate transposon −0.50 −0.71 −0.70 −0.54 −0.82

PGN_0074 conserved hypothetical protein −1.11 −0.89 −0.51 −0.81 −1.09

PGN_0075 conserved hypothetical protein −0.70 −0.57 0.28 −0.22 −1.04

PGN_0076 putative mobilization protein TraG family −0.35 −0.55 −0.59 −1.03 −1.41

PGN_0592 traQ, putative conserved protein found in conjugate transposon 0.40 0.65 0.31 0.68 −0.29

PGN_0593 traO, putative conserved protein found in conjugate transposon 0.25 0.57 0.54 0.32 −0.20

PGN_0594 traN, conserved protein found in conjugate transposon 0.06 0.11 0.39 0.27 −0.44

PGN_0595 traM, putative conserved protein found in conjugate transposon −0.27 0.06 0.04 −0.45 −0.85

PGN_0596 conserved hypothetical protein found in conjugate transposon −0.58 −0.31 0.41 0.46 0.23

PGN_0597 traK, putative conserved protein found in conjugate transposon −0.60 −0.58 0.16 0.38 −0.71

PGN_0598 traJ, conserved transmembrane protein found in conjugate transposon −0.76 −0.89 0.03 0.16 −1.62

PGN_0599 traI, putative conserved protein found in conjugate transposon −0.39 −0.39 0.20 0.52 −0.66

PGN_1281 traM, putative conserved protein found in conjugate transposon −0.54 −0.80 −1.06 −1.03 −0.53

PGN_1282 traN, conserved protein found in conjugate transposon −0.64 −0.69 −0.79 −0.62 −0.15

PGN_1283 traO, conserved protein found in conjugate transposon −0.84 −1.10 −1.17 −0.97 −0.57

PGN_1284 traP, putative DNA primase involved in conjugation −0.36 −0.44 −0.44 −0.57 −0.58

PGN_1285 traQ, conserved protein found in conjugate transposon −0.73 −0.50 −0.50 −0.58 −0.04

aResults are expressed as log2 fold change in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red font, lower mRNA levels are represented

by green font.
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and levels of H2O2 can reach millimolar concentrations in
heterotypic communities with another periodontal pathogen,
Aggregatibacter actinomycetemcomitans (Liu et al., 2011). Indeed,
the spatial organization within A. actinomycetemcomitans—
Sg communities is such that A. actinomycetemcomitans is
sufficiently distant from Sg to reduce H2O2 toxicity, while
remaining in proximity to utilize streptococcal lactic acid as
a nutritional substrate (Stacy et al., 2014). Thus, we propose
that H2O2 produced by Sg within PgSg communities results in
a detoxifying OxyR response by Pg to maintain a synergistic
interaction.

Type IX Secretion
Pg produces a type IX secretion system (T9SS) for the
translocation of around 30 proteins, from the periplasm across
the outer membrane (Nakayama, 2015). Target proteins possess
a conserved C-terminal domain that is necessary for secretion.
The machinery of the T9SS comprises over 10 proteins and
is controlled by the PorX/Y TCS and the extracytoplasmic
function (ECF) sigma factor SigP (Kadowaki et al., 2016). In the
heterotypic community with Sg, Pg had higher mRNA levels for
the gene for PorY at all time points, and sigP expression was
higher at 240–360min (Figure 8). mRNA of T9SS machinery
components PorK, PorL, PorM, PorN (genes porKLMN are

adjacent in the chromosome), PorQ, PorT, PorV, and Sov were
also higher in the presence of Sg, predominantly over 5–120min.
Indeed porT was among the top 25 genes with the highest levels
of mRNA for PgSg compared to Pg during this period (Table 1).
Although not all of the T9SS-associated genes were consistently
differentially expressed, at present little is known regarding the
structural organization of the T9SS system and proteins with
distinct functional roles may be optimally present in different
amounts. A number of virulence-associated proteins, including
the gingipain proteases and PAD, are secreted through the T9SS
(Nakayama, 2015). Thus, higher levels of T9SS components could
make a significant contribution to the increased pathogenicity of
communities of PgSg communities compared to Pg alone, even
in the absence of increased expression of the virulence factors
themselves.

Tetratricopeptide Repeat Proteins
The tetratricopeptide repeat (TPR) motif is a protein-protein
interaction module found in multiple copies in a number of
functionally different proteins and which facilitates specific
interactions with a partner protein. In Pg loss of the TPR
protein TprA renders the organism less virulent in the murine
subcutaneous model of infection (Kondo et al., 2008). TprA
(PGN_0876) did not show differential relative abundance

TABLE 4 | Differential expressiona of genes associated with the hemin/iron uptake in communities of PgSg.

Gene Protein name/function Log2 (Fold change)

5 min 30 min 120 min 240 min 360 min

PGN_0553 hmuV, conserved hypothetical protein −0.58 −0.79 −0.66 0.18 −1.25

PGN_0554 hmuU, conserved hypothetical protein −0.43 −0.67 −0.08 −0.69 −1.45

PGN_0555 hmuT, conserved hypothetical protein −0.32 −0.16 −0.04 −0.26 −0.73

PGN_0556 hmuS, putative cobalamin biosynthesis-related protein −0.62 −0.76 −0.38 −0.43 −1.07

PGN_0557 hmuR, TonB-dependent receptor −0.94 −0.70 −0.19 −0.03 −0.65

PGN_0558 hmuY, conserved hypothetical protein −2.52 −2.04 −1.63 −1.69 −1.64

PGN_0604 ferritin −0.60 −0.04 0.59 0.46 0.72

PGN_0704 ihtA, putative tonB-linked outer membrane receptor −0.19 −0.04 −0.12 −0.28 −0.01

PGN_0705 ihtB, heme-binding protein FetB 0.16 0.41 0.05 −0.66 0.01

PGN_0706 ihtC, putative exported periplasmic protein 0.65 0.43 −0.65 −0.40 −0.62

PGN_0707 ihtD, putative iron compound ABC transporter 0.60 0.28 −0.70 −0.58 −0.76

PGN_0708 ihtE, putative iron compound ABC transporter 0.33 0.05 −0.91 −0.67 −0.67

PGN_0659 HBP35, 35 kDa hemin binding protein −0.38 0.02 0.08 0.35 0.90

PGN_0683 tlr, TonB-linked receptor 0.32 0.21 −0.21 −0.50 −0.30

PGN_0684 htrD, conserved hypothetical protein 0.25 0.24 0.35 0.16 −0.10

PGN_0685 htrC, putative iron compound ABC transporter 0.17 0.10 0.12 −0.43 −0.35

PGN_0686 htrB, putative iron compound ABC transporter −0.12 −0.57 −0.97 −0.77 −0.65

PGN_0687 htrA, putative iron compound ABC transporter 0.16 −0.35 −0.41 −0.51 −0.29

PGN_0752 haeS, hypothetical protein −0.23 0.14 1.32 1.64 2.08

PGN_0753 haeR, probable two component system response regulator −0.21 0.54 1.78 1.67 1.81

PGN_1335 conserved hypothetical protein −0.57 −0.46 −0.29 −0.67 −1.45

PGN_1336 conserved hypothetical protein −0.83 −0.47 −0.32 −0.54 −0.72

PGN_2091 husA, conserved hypothetical protein −0.48 −0.94 −1.21 −1.27 −0.88

aResults are expressed as log2 fold change in PgSg compared to Pg alone at the times indicated. Higher mRNA levels are represented by red font, lower mRNA levels are represented

by green font.
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changes with Sg; however mRNA for 3 of 8 predicted TPR-
domain proteins was higher compared to Pg at two or
more time points (Figure 9). PGN_0972 and PGN_1227 were
higher at 30 min through 360 min, with PGN_0972 among
the top 25 most differentially expressed genes at 120 and
240min, and PGN_0972 in the top 25 at 240 and 360min
(Table 1).

Conjugation System
A number of Pg strains, including 33277, are capable of
conjugal transfer of both chromosomal DNA and conjugative
transposons via a homolog of the type IV secretion system, and
based on homologs of the DNA transfer regions (tra genes)
of the Bacteroides conjugative transposons cTnDot and cTn341
(Tribble et al., 2007). Strain 33277 contains three clusters of tra
genes with more than one ortholog of many of the components.
As shown in Table 3, in the PGN_0056 to PGN_0076 cluster,
mRNA levels all of the tra homologs were lower in PgSg than Pg
over at least two time points, and 5 genes showed lower levels at
all time points. A similar pattern of expression was observed in
the PGN_1281-1285 region, whereas the PGN_0578-PGN_0599
region showed variable differences. In general, transfer of DNA
is utilized by panmictic pathogens to facilitate adaptation as
environmental conditions become challenging (Jolley et al., 2007;
Tribble et al., 2007). Although the functionality of the Tra
homologs in Pg has not been verified, these data are consistent
with the stress response data and support the concept that Pg
finds the community environment with Sg to be physiological
supportive.

Hemin Acquisition
Pg has an obligate requirement for iron in the form of hemin
(Lewis, 2010; Smalley and Olczak, 2017). As Pg adapted to
attachment and accretion in our model, there was a general
trend of lower mRNA of hemin uptake associated genes in the
presence of Sg (Table 4). One notable exception was higher
levels, over 120–360min, of the genes encoding the HaeS/R
TCS, which regulates components of hemin uptake systems
including the hmuYRSTUV operon along with a number of
TonB-dependent receptors, transporters and ABC transporters
(Scott et al., 2013). While, as noted above, the activity of a TCS
will depend on the presence of appropriate stimulatory signals in
addition to the abundance of the components, collectively these
data suggest that Pg may streamline and optimize hemin uptake
in the absence of growth and division. The increased mRNA
levels of the gene for ferritin PGN_0604 at 120 and 360min
compared to Pg (with a non-statistically significant trend up at
240min) would be consistent with Pg transitioning intracellular
iron into storage. Interestingly, Scott et al. (2013) reported that
strain 33277 was mutant in haeS (∼2.5 kbp deletion) and found
barely detectable transcription from the gene. In addition, this
group was unsuccessful in creating mutants in haeS/R, consistent
with their report that haeS/R mutants were not represented in
a transposon mutagenesis library (Scott et al., 2013). In the
current model system, transcription of haeS was abundant and
we have also found haeS/R mutants in a transposon library of
Pg (Hutcherson et al., 2015). Differences between these datasets
are likely attributable to differing growth medium between
laboratories and the levels of available hemin.

FIGURE 10 | Differential expression of genes encoding the SufABC complex in communities of PgSg. Results are expressed as log2 fold change in PgSg

compared to Pg alone at the times indicated. Higher mRNA levels are represented by red bars, lower mRNA levels are represented by green bars.
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Suf ABC Complex
Expression of the sufBCD genes (PGN_0357-PGN_0359) was
increased in PgSg compared to Pg over 120–360min (Figure 10).
sufB was one of the top five most significantly more highly
expressed genes over this interval, and sufC was in the top
25 at 120 and 240min (Table 1). SufBCD comprise an ABC
protein complex. While ABC proteins are traditionally involved
in transport across membranes, recent studies have established
that they can also be structural maintenance of chromosome
(SMC) proteins and participate in iron-sulfur (Fe-S) cluster
biogenesis (Higgins, 1992; Hirano, 2005; Hirabayashi et al., 2015).
The SufBCD complex is a constituent of the Suf machinery
that is responsible for the de novo biogenesis of iron-sulfur (Fe-
S) clusters which act as cofactors of Fe-S proteins (Takahashi
and Tokumoto, 2002). The Suf machinery in E. coli includes
six proteins encoded by the sufABCDSE operon. In Pg, sufBCD
are adjacent in the chromosome whereas the sufE homolog is
separate. The gene encoding SufE, the sulfur transport protein
(Layer et al., 2007), was not more highly expressed in the PgSg
condition compared to Pg and, moreover, was lower over 120–
240min. Expression of a potential homolog of sufS, encoding
the cysteine desulfurase, PGN_0766, was also lower over 120–
240min. Pg does not appear to have a homolog of SufA, the
F-S carrier protein and thus may co-opt another protein for
this purpose. Collectively these results indicate that higher levels
of sufBCD may be related to the need to conserve intracellular
iron (see section above), rather than sulfur metabolism, although
again with the caveat that functional verification of Suf proteins
in Pg has yet to be established.

CONCLUSIONS

This study presents a time–resolved comprehensive analysis of
gene expression in an important periodontal pathogen as it
adapts to a heterotypic community environment and pathogenic
potential is elevated. While the presence of Sg resulted in more
oxidative stress resistance mRNA, presumably in response to
streptococcal peroxide, a community with Sg otherwise appeared
to be a low stress environment for Pg, likely reflective of a
long term evolutionary relationship. Higher relative levels of
transcripts encoding adhesins, the type IX secretion apparatus,
and tetratricopeptide repeat (TPR) motif proteins are consistent

with a more virulent phenotype. Further studies are required to
determine the concordance between mRNA levels and protein
expression and metabolic activity, and the extent to which this
in vitromodel is reflective of the in vivo situation.
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