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The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen
cycling offers an interesting case for evaluating the corresponding sensitivity of microbial
community composition to environmental change. Better understanding of the degree
of linkage between functional and compositional stability would contribute to ongoing
efforts to build mechanistic models aiming at predicting rates of microbe-mediated
processes. We used an amplicon sequencing approach to test if previously observed
large effects of experimental soil warming on C and N cycle fluxes (50–100% increases)
in a sub-arctic Sphagnum peatland were reflected in changes in the composition of
the soil bacterial community. We found that treatments that previously induced changes
to fluxes did not associate with changes in the phylogenetic composition of the soil
bacterial community. For both DNA- and RNA-based analyses, variation in bacterial
communities could be explained by the hierarchy: spatial variation (12–15% of variance
explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that
the bacterial community in this environment is stable under changing conditions, despite
the previously observed sensitivity of process rates—evidence that microbe-mediated
soil processes can alter without concomitant changes in bacterial communities. We
propose that progress in linking soil microbial communities to ecosystem processes can
be advanced by further investigating the relative importance of community composition
effects versus physico-chemical factors in controlling biogeochemical process rates in
different contexts.

Keywords: peatlands, bacteria, climate change, soil organic carbon, soil nitrogen, seasonality, 16S RNA, 16S DNA

INTRODUCTION

Underlying many studies in microbial ecology is the premise that there is a relation between
the microbial community composition (“who is there?”) and the functional potential (“what
can they do or are doing?”) of a community (Raes and Bork, 2008; Vandenkoornhuyse et al.,
2010). Within the soil environment, many important biological processes are carried out by
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microorganisms, leading to important ecosystem-level
consequences: (i) they can influence the diversity and
productivity of plant communities (Van der Heijden et al.,
2008); (ii) they mediate important transformations in the cycles
of nitrogen, phosphorus, and other nutrients (Falkowski et al.,
2008); and (iii) through their activity as decomposers regulate
the formation and persistence of soil organic carbon, a globally
important carbon store (Six et al., 2002). A primary motivation
for soil molecular microbial ecology is therefore the promise of
gaining insights into the biological mechanisms underlying these
important ecosystem processes.

For microbial communities to be predictive of ecosystem
functions, there should be a detectable causative or correlative
link between the composition of the microbial community at a
given environment, and a (qualitative or quantitative) measure
of the ecosystem process of interest (Schimel and Gulledge,
1998; Allison and Martiny, 2008; Amend et al., 2016). Although
variation in soil microbial communities have been shown to
associate with gradients in, e.g., soil pH (Lauber et al., 2009)
or nutrient availability (Fierer et al., 2012), the extent to which
such variation in community structure has consequences for
biogeochemical processes still remains an open question (Prosser,
2012; Schimel and Schaeffer, 2012; Graham et al., 2014, 2016;
Bier et al., 2015). For some transformations, performed by
well-defined functional groups, it is possible to make a direct
link between community composition and biogeochemical fluxes
(e.g., ammonia oxidation, denitrification, methane oxidation;
Mertens et al., 2009; Salles et al., 2009; Bodelier et al., 2012;
Bier et al., 2015). However, evidence for such a link remains
elusive for ecosystem processes mediated by a broader range
of microorganisms, such as soil heterotrophic respiration, and
the turnover of organic nitrogen. Given the importance of these
“general community” processes for understanding and predicting
ecosystem dynamics, it is therefore imperative to establish if and
when such a link exists.

One of the main potential applications of links between
composition and process is the development of Earth system
models that explicitly model microbial processes in order to
improve predictions of biogeochemical cycling as influenced by
global change phenomena (Todd-Brown et al., 2012; Wieder
et al., 2015). In this context, a long-term climate manipulation
experiment in a sub-arctic peat bog in Abisko, Sweden
(Dorrepaal et al., 2004), offers a particularly relevant system
to investigate whether perturbations that lead to variation in
biogeochemical functions are also associated with changes in
the phylogenetic composition of the bacterial community. In
this system, experimental climate manipulations have led to
persistent increases of approximately 50–100% in carbon and
nitrogen cycling rates (Dorrepaal et al., 2009; Weedon et al.,
2012). This result has significant implications for terrestrial
feedbacks to climate change due to the major global importance
of northern peatlands as a long-term sink for atmospheric carbon
(Limpens et al., 2008). Given the high climate-sensitivity of peat
C and N dynamics at this experimental site, we hypothesized
that, if bacterial community composition is indeed linked to
general biogeochemical fluxes, then climate treatments that lead
to changes in biogeochemical fluxes should also lead to changes

in the composition of the soil bacterial community. Conversely,
if there has been no change in community composition, then
changes in C and N dynamics can be attributed to altered
rates of activity of a stable bacterial community, or control by
other groups of soil organisms. We used Illumina sequencing
of amplicons generated from the V3 region of bacterial 16S
rRNA genes and rRNA (Bartram et al., 2011; Caporaso et al.,
2012) to describe the bacterial community composition in
the peatland climate experiment at Abisko. The simultaneous
analysis of patterns in DNA and RNA allowed comparison of
patterns between the total (DNA) and potentially active (RNA)
bacterial communities (Urich et al., 2008; Baldrian et al., 2012),
between which there may be important differences in sensitivity
to environmental conditions. Our primary aim was to determine
if the previously observed climate effects on peatland C and N
cycles also lead to changes to the bacterial phylogenetic DNA
and/or rRNA community composition.

MATERIALS AND METHODS

Field Site and Sampling
Sampling for the soil bacterial community was conducted
in permanent plots established for a long-term climate
manipulation experiment close to the Abisko Scientific Research
Station in Abisko, sub-arctic Sweden (68◦21′N, 18◦49′E,
altitude 340 m). The site is a gently sloping ombrotrophic peat
bog dominated by Sphagnum spp. mosses that experiences
strong seasonal differences in temperature (mean monthly
temperatures in January and July: −9.7 and 12.3◦C, respectively,
meteorological data 1999–2008, Abisko Scientific Research
Station; a fuller site description is given in Dorrepaal et al.
(2004)). The climate manipulation experiment was established
in 2000 and consists of factorial combinations of summer
treatments (ambient or warming), and winter/spring treatments
(ambient and snow addition + spring warming), randomly
assigned to hexagonal plots (2.5 m across) in five contiguous
blocks parallel to the bog slope (i.e., 5 plots per 4 treatments= 20
plots total). Treatments are applied using open top chambers
(OTCs) that increase average daily mean air temperature by
0.3–1.0◦C in spring (April–June) and by 0.2–0.9◦C in summer
(June–October). These treatments have been shown to increase
the rate of soil respiration and organic N cycling by 50–100%
(Dorrepaal et al., 2009; Weedon et al., 2012). During winter, there
is a passive accumulation of snow leading to an approximate
doubling of the snow layer thickness and an increase of winter
average soil temperature of 0.5–2.2◦C (Dorrepaal et al., 2004,
2009).

Our sampling program was designed to characterize the
soil bacterial community in plots subject to the four climate
treatments described above. We targeted our sampling to the
critical period of the winter–spring transition, when soils are
thawing and there is turnover of microbial biomass and possible
concomitant changes in bacterial community composition
(Schmidt et al., 2007). Previous work has suggested that effects of
warming on soil processes are related to dynamics in microbial
populations in the early part of the growing season (Weedon
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et al., 2012). To characterize the bacterial community dynamics
over this period, we sampled soil on three occasions in the
spring–summer of 2011: April 19–22, May 2–4, and June 1–4.
Over this period, the mean daily soil temperature rose from a
uniform −0.1◦C across the depth profile to 20 cm, to 4.8 and
1.3◦C at 10 and 20 cm depth, respectively. On each sampling
occasion, we took peat cores to a depth of 20 cm using a 2 cm
diameter corer. To minimize the time between coring and nucleic
acid extraction (see below), cores were taken four at a time and
transported on ice back to the lab (500 m from the site) within
1 h for immediate extraction of nucleic acids.

Nucleic Acid Extraction and cDNA
Synthesis
Cores were hand-mixed, live moss and coarse roots removed,
and four 0.3 g subsamples per core taken for nucleic acid
extraction (total= 240 extractions) using the phenol–chloroform
extraction protocol of Griffiths et al. (2000) with DEPC-treated
reagents. Bead-beating was carried out using a table-top vortex
and Lysing Matrix E tubes (QBiogene, Carlsbad, CA, USA).
Precipitated nucleic acids were stored in 70% ethanol at −20◦C
and transported to Amsterdam, The Netherlands, for further
analysis at the end of the field campaign (June 2011).

Prior to preparation for sequencing, the quantity and
integrity of the extracted nucleic acids was checked by
spectrophotometry (NanoDrop, Wilmington, DE, USA).
Subsequently, the subsamples of each core were pooled and
then split into two aliquots for either RNA- or DNA-based
analyses. DNA was removed from the samples used for RNA
analysis using an on-column DNase digestion with the RNeasy
Protect Mini Kit (Qiagen, Valencia, CA, USA) following standard
protocols. After verifying that no residual DNA remained (by
negative PCR using universal bacterial primers (F357–R518;
Muyzer et al., 1993), cDNA was synthesized with random
hexamer primers using the RevertAidTM Premium First Strand
Synthesis Kit (Fermentas, Glen Burnie, MD, USA) following the
manufacturer’s protocol.

PCR and Illumina 16S rRNA Amplicon
Sequencing
DNA and cDNA samples were prepared for Illumina sequencing
following the protocol of Bartram et al. (2011). Briefly, each
DNA/cDNA sample was amplified using custom primers that
target the hypervariable V3 region of the bacterial 16S rRNA
gene. These primers correspond to the primer pair F357
and R581, and include Illumina sequencing adapters and
primer sequences, as well as one of 48 unique 6-bp barcode
sequences. PCR was performed using GoTaq PCR Master mix
(Promega, Madison, WI, USA), with ∼ 5 ng template (total
DNA or cDNA), and the following thermocycler program:
initial denaturation 95◦C for 2 min; 25 cycles of 30 s
at 95◦C, 30 s at 50◦C, and 45 s at 72◦C; with a final
elongation step of 5 min at 72◦C. For convenience in further
processing, PCR products were pooled into groups of six
independent samples. Each of these pools was subsequently
purified by gel extraction using the Qiagen Gel Extraction kit

(Qiagen, Valencia, CA, USA). The molar concentration and
purity of each of the clean amplicon pools was quantified
on Bioanalyzer DNA chip (Agilent Technologies, Palo Alto,
CA, USA) and the eight pools for each run were combined
in equimolar ratios before being sequenced on the Illumina
MiSeq platform (Illumina Technologies, San Diego, CA,
USA), using 2 × 150 cycle paired-end settings. A total
of 10,008,455 barcoded reads were obtained from three
MiSeq runs that could be assigned to specific samples.
There was a large degree of variation in sample coverage,
ranging from 3.1 × 103 to 2.14 × 105 reads per sample
(mean 7.0 × 104, SD = 4.4 × 104), although this large
range was caused by a small number of outliers, and the
central 90% of samples had a range of 2.2 × 104 to
1.23 × 105 reads per sample—with no systematic difference
in read coverage due to sampling time, climate treatment, or
RNA/DNA sample (see Supplementary Figure S1). To assess
the reproducibility of the PCR and sequencing pipeline, several
technical replicates (i.e., independent PCRs of the same nucleic
acid sample using distinct barcode indices) were included in each
run.

Bioinformatics Workflow
Paired-end sequences were assembled using the USEARCH
“merge” function (Edgar, 2013), with a maximum of one
mismatch allowed in the overlapping region (85% of raw-
reads retained). This was followed by quality filtering with the
USEARCH “fastq_filter” function and maximum expected errors
set at 0.05 (a stringent filter) which removed an additional 10%
of the successfully merged reads. Operational taxonomic units
(OTUs) were then defined over the complete sequence collection
(RNA- and DNA-derived) using the UPARSE algorithm with 97%
minimum similarity (Edgar, 2013), after removing all singleton
reads. Chimeric sequences were removed with UCHIME (Edgar
et al., 2011). A set containing representative sequences for
each OTU was aligned using PyNAST (Caporaso et al., 2010a)
using as a reference alignment the Green Genes (DeSantis
et al., 2006) “core-set” as distributed with QIIME version
1.7.0 (Caporaso et al., 2010b). Sequences belonging to OTUs
that failed to align with at least 75% sequence similarity,
were most likely chimerical sequences or sequencing errors,
and were removed from the dataset (499 OTUs representing
0.85% of successfully assembled reads). As PCR and sequencing
errors can produce sequence errors leading to generation
of spurious OTUs, we applied abundance filtering to the
final dataset, removing all OTUs that were represented by
less than 500 reads in the total dataset (see “Supplementary
Presentation 1” for the choice of abundance threshold). This
resulted in a dataset of 618 core OTUs (containing a total of
70% of the reads that successfully merged and passed quality
filtering). Using the abundance filtered dataset, we generated
a phylogenetic tree based on the aligned representative set
using FastTree (Price et al., 2009), created separate OTU
tables for DNA and RNA sequences, and assigned all OTUs
to a taxonomic classification using the Ribosomal Database
Project Bayesian classifier (Wang et al., 2007) with a threshold
minimum confidence of 80%. Raw sequences are deposited
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in the NCBI Sequence Read Archive (accession number:
SRP099222).

Statistical Analyses
All analyses were performed in parallel on RNA- and DNA-based
OTU tables. Due to the uneven coverage of sequence reads over
the different barcoded samples, we performed all analyses on 100
randomly sub-sampled datasets, rarefied to an equal number of
sequences per sample (7491 for DNA, 16,627 for RNA). This
rarefaction depth was chosen to allow the inclusion of all but the
two samples with lowest sequencing depth (see Supplementary
Figure S1). Inclusion of these two samples would have strongly
affected the coverage of the rarefaction. Phylogenetic dissimilarity
matrices based on pairwise UniFrac distances between samples
(Lozupone and Knight, 2005) were generated for each rarefied
dataset. Cut-off filtering analyses showed that inferences based
on unweighted Unifrac (i.e., ignoring read abundance) were
extremely sensitive to the choice of abundance cut-off (see
“Supplementary Presentation 1” in Supplementary Material).
We therefore focused on the weighted version of the UniFrac
metric, which is robust to the choice of cut-off. The effect
of sampling time and climate change treatment on bacterial
community composition was tested by permutational-MANOVA
(PERMANOVA, Anderson, 2001) analysis of these UniFrac
dissimilarity matrices using the ADONIS function in the vegan
package of R (Oksanen et al., 2010; R Development Core Team,
2010), with block (i.e., spatial location at the experimental site),
climate change treatment, sampling date, and date × treatment
interaction as fixed factors. We report the mean R2 and
permutation P-values from analyses conducted separately on
each of the 100 rarefied subsets. Relationships between samples
from different times or climate change treatments were visualized
by Principal Coordinates Analysis (PCoA) ordinations of
the UniFrac dissimilarity matrices. Differences in multivariate
dispersion between levels of treatment factors were evaluated
using the permutational analyses of multivariate dispersion
(PERMDISP, Anderson, 2006) implemented in the vegan R
package (Oksanen et al., 2010) Reproducibility of the PCR
and sequencing pipeline was confirmed by the small standard
errors of technical replicates in the appropriate PCoA plot
(see Supplementary Figure S2).

Community composition variation was more closely
associated with sampling date than treatment effects (see
Results). To better characterize this pattern, we analyzed each
OTU separately to identify those contributing to the seasonal
shift in community composition. Our goal was to classify each
OTU as “increasing,” “decreasing,” or “neutral” with respect
to sampling time. For each of the 100 rarefied datasets (for
both RNA- and DNA-based analyses), we calculated the slope
and P-value of linear regression of log-transformed abundance
as a function of sampling time for each OTU. We then
applied the Benjamini–Hochberg (Benjamini and Hochberg,
1995) false discovery rate (FDR) correction to the resulting
P-values (each averaged over the 100 rarefaction datasets).
OTUs with a significantly (after FDR correction) positive or
negative slopes were classified as “increasing” or “decreasing,”
respectively.

RESULTS

Phylum-Level Taxonomic Composition of
Samples
Phyla-level assignments of sequences in the core 618 OTU
dataset were broadly similar between the DNA- and RNA-based
analyses (Figure 1). The majority of sequences were assigned
to the phyla Actinobacteria (46.9 and 46.7% of DNA and
RNA sequences, respectively), Proteobacteria (21.9 and 23.2%),
and Acidobacteria (15.2 and 15.3%). Within the phylum
Proteobacteria, members of the class Alphaproteobacteria
dominated the sequence counts (77.8% of all Proteobacteria in
DNA, 64.3% in RNA), followed by Deltaproteobacteria, which
was strongly overrepresented in the RNA sequences (3.7% versus
23.0%), with the remainder assignable to Gammaproteobacteria
(15.4 and 10.6%), Betaproteobacteria (2.5 and 1.8%) or not
assignable below phylum level (0.5 and 0.2%). The phyla
Cyanobacteria, Verrucomicrobia, Bacteroidetes and candidate
divisions WPS-2 and TM7 each contributed between 1 and
4% of sequences in both data sets (with the exception of a
relative underrepresentation of candidate division TM7 and
Cyanobacteria in RNA relative to DNA datasets). Of the
remaining circa 5% of sequences, 2.3% (both DNA and RNA)
could not be assigned to phyla level at the 80% confidence
level, while other sequences were distributed over the phyla
Planctomycetes, Armatimonadetes, Firmicutes, Elusimicrobia,
Chlamydiae, Chlorobi, Chloroflexi and candidate divisions AD3,
TM6, and SC3, with each phylum contributing less than 0.9% of
the total sequences.

Effects of Climate Change Treatments
and Sampling Time on Bacterial
Community Composition
Analysis of UniFrac distance matrices by PERMANOVA
indicated some evidence for an effect of the climate change
treatments on the bacterial community composition in the
DNA-based analyses, but not in the rRNA-based analyses
(Table 1). However, in the former case, the pattern does
not appear to be driven by a consistent shift in community
composition due to the treatments (location in ordination space),
but rather through treatment effects on community composition
variability (i.e., as indicated by dispersion in ordination space)
(Figure 2A). This is confirmed by the results of the PERMDISP
test which showed significant differences in group dispersions
when classified by treatment for DNA data only (PERMDISP
F3,55 = 4.37, P = 0.008) No differences in dispersion were
found in the RNA data (PERMDISP F3,56 = 1.39, P = 0.25).
The interaction between treatment and time was not significant
in any of the PERMANOVA analyses (mean permutation
P > 0.05, Table 1), implying that there was no evidence for
climate treatment-related temporal shifts in bacterial community
composition (Figures 2A,B).

For both DNA- and rRNA-based analyses, space (expressed
as treatment block) and sampling time explained a statistically
significant fraction of the dissimilarity matrix structure (Table 1).
Sampling time effects were most pronounced in RNA compared
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FIGURE 1 | Assignment of amplicon sequencing reads in the core 618
OTU dataset to phyla level classification, for DNA- and RNA-based
analyses, respectively. Category “Other∗” contains phyla representing less
than 1% of sequences, and contains members of the phyla Planctomycetes,
Armatimonadetes, Firmicutes, Elusimicrobia, Chlamydiae, Chlorobi,
Chloroflexi and candidate divisions TM6 and SC3.

TABLE 1 | Table of R2 values (as %) for PERMANOVA model factors based
on abundance weighted UniFrac dissimilarity matrices.

Source of variation DNA RNA

Space (block) 14.2∗ 12.1∗

Time (month) 7.5∗ 10.1∗

Treatment 8.3∗ 4.8

Time × treatment 6.6 7.2

Residual variation 63.4 65.8

∗P < 0.01.

to DNA (Figures 2C,D). For RNA, there is a visible shift in
the central location of the samples in ordination space with
time (Figure 2D, but this shift is subtle, reflected in the high
residual variation (∼65%) and the lack of discrete clusters
in the ordination. PERMDISP analyses showed no significant
differences in group dispersion when classified by sampling time,
or treatment block (not shown).

Selectively Responding OTUs
Given that sampling time explained a higher proportion of
variance in community composition relative to climate-change
treatments, we focused on this temporal effect by determining
which OTUs show shifts in relative abundance across the
sampling period (Figure 3). For DNA-based analyses, a total of
26 OTUs out of 618 OTUs showed significant variation (after
FDR correction) in relative abundance from April to June, of
which 14 increased over time, and 12 decreased. The number
of significantly changing OTUs was greater for the RNA-based
analysis: 25 significantly increased in relative abundance through
time and 34 decreased. There was some overlap between the
two analyses, eight of the increasing OTUs and eight of the
decreasing OTUs were identified by both the DNA- and RNA-
based analyses. There was also some degree of phylogenetic
coherence in these temporal patterns: for example, the groups

Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria
contained only increasing OTUs in both DNA and/or RNA
datasets (taxonomic assignments for indicator species are in
Supplementary Table S1). In other phylogenetic groups such as
Actinobacteria, Acidobacteria, and Alphaproteobacteria both
increasing and decreasing taxa were identified. However, the
vast majority of OTUs showed no significant pattern of variation
related to sampling time, indicating a relatively stable bacterial
community composition. In contrast to the temporal changes
detected, there were no OTUs identified that showed a significant
response to climate treatment.

DISCUSSION

Despite previous observations of consistently strong effects
(50–100% increases) of the experimental treatments on C and
N cycles in our system, we did not detect strong effects
of the same treatments on the composition of the bacterial
community (Table 1 and Figure 2). Although treatment
effects on phylogenetic community structure were found to be
statistically significant for DNA-based analyses (Table 1), these
appear to be related to treatment effects on variance, rather
than differences in the mean composition of the communities
(Figure 2; see also Anderson, 2001). Moreover, the treatment
effect was consistently weaker than spatial (over 10s of meters)
and temporal (over 3 months) variation (Table 1). Some
OTUs showed significant temporal trends in relative abundance
(Figure 3), and, interestingly, these OTUs often showed some
degree of phylogenetic clustering (cf. Amend et al., 2016).
Nevertheless, bacterial community structure was in general
unresponsive to both experimentally applied climate change, as
well as seasonal variation in environmental conditions.

Our failure to detect a clear directional response of the
bacterial community related to climate change treatment is not
a result of low-statistical power. To illustrate, while we observed
an average within-treatment weighted Unifrac distance of 0.09,
other studies with 16S amplicon community profiles from soil
environments have reported within-site mean distances as high
as 0.4–0.6 (Ferrenberg et al., 2013). Moreover, our analyses based
on 16S rRNA led to qualitatively very similar conclusions as those
based on 16S rRNA genes (DNA). Relative stability of bacterial
community composition could be a consequence of high-levels of
bacterial dormancy, and/or long-term preservation of DNA from
non-living microorganisms (Jones and Lennon, 2010). However,
the congruent results from both DNA and RNA analyses, and the
long-term nature of the experimental manipulations (>10 years)
support our interpretation that the bacterial community structure
is either non-responsive to the experimental climate change—
or if it was once sensitive, has subsequently returned to the
undisturbed state (i.e., resilient; Allison and Martiny, 2008) while
consistently amplifying biogeochemical fluxes.

Several recent studies have reported significant shifts in
microbial community composition and/or functional gene
abundance in response to experimental warming (Yergeau et al.,
2012; Luo et al., 2014; Xiong et al., 2014), although in most
cases the detected effect sizes were rather modest (e.g., a mean
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FIGURE 2 | Principal Coordinates Analysis (PCoA) ordinations of UniFrac distance matrices generated from RNA or DNA bacterial 16S V3 amplicon
sequences. Ordinations were performed on the mean of 100 matrices per sample type, corresponding to rarefactions to ensure even sample coverage. Colors of
points and 90% confidence ellipses correspond to climate change treatment (A,B) or sampling time (C,D). Treatment codes—first letter: A, summer ambient; W,
summer warming; second letter: A, spring/winter ambient; S, spring warming, winter snow accumulation.

2% increase in phyla-level abundances; Luo et al., 2014) and
further analysis is required to elucidate how this climate-related
variation compares to underlying spatial and temporal variation.
On the other hand, the lack of detectable effect of experimental
warming on bacterial community composition agrees with results
from previous studies of soil microbes in grasslands (Penton
et al., 2013), and temperate upland soils (Kuffner et al., 2012).
In a somewhat different context, Cruz-Martinez et al. (2009) also
found community resistance to precipitation manipulation—
despite considerable treatment effects on overlying vegetation.
These results imply that the sensitivity of bacterial communities
to warming (and other disturbances) is likely to be generally
small, but context dependent.

The lack of effects on bacterial community composition, in
a system where climate treatments had previously been shown
to strongly affect soil processes (Dorrepaal et al., 2009; Weedon
et al., 2012), also raises questions about the decoupling of
functional and compositional stabilities (Yergeau et al., 2012).
In a meta-analysis, Shade et al. (2012) reported that out of
378 disturbance studies examining microbial communities, 56%
showed a response at the level of microbial community function
(e.g., respiration, enzyme activities), but only just over half of
these functional effects were accompanied by detectable shifts
in microbial community composition. Similarly, a recent meta-
analysis of experimental studies showed that a significant link
between measures of community structure and community

functions was found in only a minority of studies (Bier et al.,
2015). In the light of these findings and the results presented in
the current study, we suggest that (as in the case of community
resistance and resilience; De Vries and Shade, 2013) it may
be helpful to shift the focus of investigations from asking
“are changes in microbial function associated with changes
in microbial community composition?” to “in which contexts
are changes in microbial function associated with changes in
microbial community composition?” (cf. Krause et al., 2014).

A commonly used framework for relating environmental
change to microbial community composition and associated
functions was proposed by Allison and Martiny (2008) (see
right side of Figure 4). Microbial community composition will
mediate ecosystem process responses to environmental change
as long as the communities are not resistant, resilient or
functionally redundant. This “Microbial Pathway” has received
primary attention in recent studies of the relationship between
disturbance and changes to microbe-mediated processes (Allison
and Martiny, 2008; Shade et al., 2012; De Vries and Shade,
2013). For the purposes of interpreting our results, we consider
an alternative “Physical and Substrate” alternative pathway
linking environmental change and ecosystem functions. That
is, that changes in physico-chemical conditions and substrate
supply rates can also influence the rate of an ecosystem
process directly without changes to the microbial community
composition (left side of Figure 4). The question of interpreting
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FIGURE 3 | Tree representation of core 618 OTUs (represented by >500 reads in DNA and/or RNA subsets), based on alignment of V3 region of the
16S rRNA gene. The colour of branches indicates phylum level assignment by tree-based classification using RaXML, pplacer and the Green Genes 85% OTU tree.
Branch-lengths are homogenized for legibility, and are therefore not proportional to phylogenetic distance used to calculate UniFrac metrics for beta-diversity
analyses. Tips are labeled blue for OTUs that decreased over the sampling period, red for increasers, and gray for no significant temporal pattern. The inner ring
shows results for DNA analyses, the outer ring RNA analyses. More detailed taxonomic assignment and relative abundances of significant indicator OTUs are given
in Supplementary Table S1.

the mixed evidence relating microbial community composition
to ecosystem processes (Bier et al., 2015; Graham et al., 2016) can
then be framed in terms of the relative importance of these two
pathways. We propose that for C and N cycling under simulated
climate change in the peatland system we examined, the “Physical
and Substrate” pathway is more important than community
composition effects. We suggest two possible explanations for
this.

Firstly, the ecosystem processes in question—cycling of
organic N and C—are most likely carried out by a broad
range of microorganisms, with a correspondingly broad range of
environmental tolerances (Prosser, 2012; Schimel and Schaeffer,
2012). This leads to a weak coupling between changes to
physical conditions and the aggregate functional potential of
the microbial community, and therefore no clear relationship
between community composition and measured functions.
Schimel and Schaeffer (2012) have proposed that many
component processes of the soil carbon cycle can be classified
as phylogenetically “broad.” This can lead to situations such as
reported by Tveit et al. (2013) who found that at the level of the
metatranscriptome related to C cycling, soil communities from
high-arctic tundra permafrost soils are indistinguishable from
those in temperate grasslands. In such situations, magnitudes of

ecosystem processes (e.g., soil respiration, decomposition rates)
may be more determined by activity and/or growth responses
of the bacterial community to physical parameters than by the
composition of the microbial community. Conversely, rates of
“narrow” functions, performed by a relatively smaller proportion
of the microbial community, such as acetoclastic methanogenesis
(Godin et al., 2012), ammonia oxidation (Kowalchuk and
Stephen, 2001), and methane oxidation (Bodelier et al., 2012),
may be more strongly coupled to community composition. In the
context of the current study, this distinction between “broad” and
“narrow” functions could be tested by examining the relationship
between climate treatment and the composition and activity
of microorganisms involved in more phylogenetically limited
functions such as methane production and consumption, or
nitrous oxide emissions.

Secondly, our data support the conclusion that the bacterial
community in our peatland is resistant or resilient with regard
to the disturbance introduced by the climate treatments. This
is commonly observed under experimental climate change
experiments with small temperature increases (Kuffner et al.,
2012; Penton et al., 2013). If the microbial community is resistant
to disturbance (or, if sensitive, shows subsequent resilience), then
it follows that any consequences of that disturbance for ecosystem
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FIGURE 4 | Schematic describing the two major pathways by which disturbance or change in environmental conditions can alter microbe-mediated
ecosystem processes. The right side of is adapted from Allison and Martiny (2008).

processes cannot be explained by changes in community
composition. In contrast, for highly sensitive communities, loss
or suppression of particular functional groups (and therefore
shifts in community structure) in response to disturbance
can have consequences for ecosystem processes. For example,
it has been proposed that suppression of saprophytic fungal
communities by high nutrients and low pH may explain observed
reductions in forest soil respiration in response to nitrogen
deposition (Janssens et al., 2010). In this context, it should
be fruitful to explore which characteristics of environments or
communities determine resistance or sensitivity, e.g., relative
proportions of oligotrophic versus copiotrophic taxa (De Vries
and Shade, 2013), soil chemical properties (Griffiths and
Philippot, 2013), or food web structure (Neutel et al., 2002). For
the Sphagnum peatlands sampled in the current study, it could
be argued that a fairly strong environmental filter imposed by the
low pH and high concentration of secondary compounds derived
from the Sphagnum peat have already selected for a resistant
microbial community (Opelt et al., 2007).

We conclude that the combination of a phylogenetically broad
ecosystem process and a resistant bacterial community results
in a system where bacterial community composition is not
an important mediator of the effects of climate warming on
peatland C and N cycling. Indeed, we see the lack of climate
sensitivity of bacterial community composition as evidence
that warming effects on substrate supply can better explain
the climate sensitivity of C and N cycling rates (Weedon
et al., 2013, 2014). We suggest that our distinction (Figure 4)
between systems where composition is an important mediator,
from those where physical and substrate supply plays a more
important role, may be a useful conceptual framework for

interpreting past and future datasets (Graham et al., 2014,
2016; Bier et al., 2015). Important to note is that even
when the physical and substrate pathway dominates, this
does not imply that microbes are unimportant. Rather the
size and/or aggregate activity of microbial populations (driven
by substrate supply) may be a more important predictor of
ecosystem processes in these contexts (Serna-Chavez et al.,
2013).

Several caveats and potential alternative interpretations
should be considered in relation to our conclusions. Firstly,
our data set cannot exclude the possibility that warming effects
on soil C and N cycling was mediated by microorganisms not
detected with our profiling method, in particular fungi and other
eukaryotes. Although fungi are known to be present and active
in ombrotrophic mires (Thormann, 2006), there is evidence that
microbial activity in boreal peatlands is dominated by bacteria
(Myers et al., 2012). Further research into the relative stability
of bacterial versus eukaryotic soil microorganisms, and the
accompanying functional consequences, would help to further
illuminate this issue.

Secondly, the large amount of unexplained variation in
bacterial community composition (Table 1) could imply that
warming effects are obscured by variation driven by small
scale differences in other environmental drivers, such as soil
pH or vegetation. Previous studies in the same system have
shown that soil pH is fairly uniform across the site, and
not affected by climate treatment (Lang et al., 2009). Plant
community composition is similarly not affected by climate
treatment (Keuper et al., 2011), but it could be expected
that plants influence bacterial communities at small scales,
by litter and rhizosphere effects (Urbanová et al., 2015),
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independent of treatments, thus potentially obscuring any
treatment effect. This can only be analyzed with plant community
data matched to our microbial samples. However, even if this
were the case, it would only further underline the absence of
strong effects of the climate treatment on bacterial communities.

Lastly, our dataset does not allow a direct comparison between
process measurements and bacterial communities, due to a
temporal mismatch in sampling. Carbon cycle effects were
measured in the period 2004–2008 (Dorrepaal et al., 2009), N
cycle effects in the summer of 2009 (Weedon et al., 2012),
and sampling for the bacterial community profiles conducted
in 2011 (present study). In inferring a lack of link between
process rates and bacterial communities, we are therefore making
the assumption that the climate effects on process rates have
persisted over the 2–3 years separating the community and
process measurement. Although we lack the data to directly test
this assumption, for our main conclusions to change it would be
necessary for both bacterial communities to covary with process
rate responses to treatments in the period 2004–2009, and for
composition and process responses to cease after 2009. A lack
of treatment effects on community profiles in samples from
2009 based on phyla-specific qPCR (admittedly, a much coarser
technique than amplicon sequencing) makes the former seem
unlikely (Weedon et al., 2012); and the detection of ongoing
treatment effects on aspects of ecosystem C cycling extending to
2011 (Hicks Pries et al., 2015) could be taken as partial evidence
against the latter.

As more studies seek to link microbial community
composition to ecosystem processes, we suggest that framing
the questions in terms of the relative importance of community
composition effects versus physical and substrate effects may
provide some general insights. The novelty and data richness
of sequencing and other –omics approaches should not obscure
the fact that in some environments, and for some ecosystem
processes, simpler models, without community effects, may be
sufficient for understanding controls of process rates. Identifying
the contexts where compositional effects are more or less
important will be an important step in building a predictive soil
microbial ecology.
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