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Lyme disease and relapsing fever are caused by various Borrelia species. Lyme disease

borreliae, the most common vector-borne pathogens in both the U.S. and Europe,

are transmitted by Ixodes ticks and disseminate from the site of tick bites to tissues

leading to erythema migrans skin rash, arthritis, carditis, and neuroborreliosis. Relapsing

fever borreliae, carried by ticks and lice, trigger reoccurring fever episodes. Following

transmission, spirochetes survive in the blood to induce bacteremia at the early stages

of infection, which is thought to promote evasion of the host complement system. The

complement system acts as an important innate immune defense mechanism in humans

and vertebrates. Upon activation, the cleaved complement components form complexes

on the pathogen surface to eventually promote bacteriolysis. The complement system

is negatively modulated by a number of functionally diverse regulators to avoid tissue

damage. To evade and inhibit the complement system, spirochetes are capable of

binding complement components and regulators. Complement inhibition results in

bacterial survival in serum (serum resistance) and is thought to promote bloodstream

survival, which facilitates spirochete dissemination and disease manifestations. In this

review, we discuss current methodologies to elucidate the mechanisms of Borrelia spp.

that promote serum resistance and bloodstream survival, as well as novel methods to

study factors responsible for bloodstream survival of Lyme disease borreliae that can

be applied to relapsing fever borreliae. Understanding the mechanisms these pathogens

utilize to evade the complement system will ultimately aid in the development of novel

therapeutic strategies and disease prevention to improve human health.
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stream survival
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COMPLEMENT EVASION AMONG LYME
DISEASE AND RELAPSING FEVER
SPIROCHETES

The spirochete Borrelia is the bacterial agent causing both Lyme
disease (LD) and relapsing fever (RF) (Steere et al., 2004; Radolf
et al., 2012). LD, the most common vector-borne illness in the
U.S. and Europe, is caused by the Borrelia burgdorferi sensu
lato complex, consisting of 20 species of which 6 cause illness
in humans (Rudenko et al., 2011). B. burgdorferi sensu stricto
(B. burgdorferi) causes most infections in the U.S., whereas this
species as well as B. garinii and B. afzelii cause most infections
in Europe (Baranton et al., 1992; Canica et al., 1993; Steere et al.,
2004). LD borreliae are transmitted by Ixodes ticks to reservoir
animals and humans (Steere et al., 2004). After a tick bite, the
bacteria infect the skin at the feeding site, often accompanied with
the development of an erythema migrans skin rash (Steere et al.,
2004). If left untreated, LD borreliae are capable of disseminating
to tissues and organs to cause diverse manifestations including
arthritis, carditis, and neuroborreliosis (Steere et al., 2004).
Human RF infections are transmitted by ticks or lice, resulting
in tick-borne relapsing fever (TBRF), or louse-borne relapsing
fever (LBRF; Cutler, 2015). At least 10 species of TBRF borreliae,
including Borrelia hermsii, Borrelia parkeri, and B. duttonii, are
transmitted through bites by various Ornithodoros ticks whereas
LBRF B. recurrentis is solely transmitted by the clothing louse
P. humanus via crushed lice or feces contacting irritated human
skin. Upon transmission, RF borreliae cause bacteremia, and
alternating febrile/afebrile episodes corresponding with antigenic
variation (Cutler, 2015). The spirochetes then disseminate to the
central nervous system and may lead to complications in the
brain, lungs, kidneys, and spleen (Dworkin et al., 2008; Cutler,
2015).

Survival in the bloodstream is thought to be essential
for LD and RF borreliae to cause systemic disease. The
complement system is an innate immune defense mechanism
in the bloodstream of humans and other vertebrate animals
against pathogens (Zipfel and Skerka, 2009). The complement
system can be activated via three pathways: classical, lectin, and
alternative, all of which result in the formation of C3 convertases
(Figure 1). The classical pathway is initiated by the active form
of C1 complex (C1qr2s2) binding to antibody-bacterial antigen
complexes. The lectin pathway is initiated by binding of lectins
[mannan-binding lectin (MBL) or ficolins] to an MBL serine
protease (MASP) andmicrobial carbohydrate. Activation of these
pathways leads to the generation of the C3 convertase C4b2a. The
alternative pathway is initiated by interaction of C3b with the
microbial surface and generates the C3 convertase C3bBb. Both
C3 convertases recruit C3b to formC5 convertases, which further
promotes the formation of C5b-9 membrane attack complex
(MAC) and pathogen lysis. The activation of complement also
promotes the release of proinflammatory peptides (C3a and
C5a) and deposition of opsonic C3b molecules on the microbial
surface to enhance phagocytic clearance (Figure 1). To avoid
potential self-damage due to complement activation, vertebrate
animals produce a number of diverse complement regulators to

negatively regulate the complement system (Figure 1). Examples
include C1 inhibitor (C1-INH), which binds to inactive C1rs
and/or MASP to block the initiation of the classical and/or lectin
pathways. Factor H (FH) and FHL-1 (a truncated form of FH)
both bind to and promote the cleavage of C3b via recruiting the
protease factor I (FI) to prevent the formation of C3 convertase
C3bBb. C4b-binding protein (C4BP) binds to and triggers the
degradation of C4b via recruiting FI to inhibit the formation
of the C3 convertase C4b2a. Lastly, CD59 binds to C8 and
C9 to block the formation of the MAC to avoid lysis of host
cells.

Bacterial pathogens, including LD borreliae, produce outer
surface proteins that bind and recruit complement regulators
on the cell surface to inhibit complement activation and prevent
killing (Table 1 for references; Kraiczy, 2016). B. burgdorferi
and B. garinii produce the C4BP-binding protein p43, which
may recruit C4BP to the bacterial surface to promote C4b
degradation and eventually inhibit both classical and lectin
pathways. Except B. bavariensis, all other serum-resistant
LD borreliae produce up to five Complement Regulator-
Acquiring Surface Proteins (CRASPs): CRASP-1 (CspA),
CRASP-2 (CspZ), CRASP-3 (ErpP), CRASP-4 (ErpC), and
CRASP-5 (ErpA). CspA and CspZ bind FH (and/or FHL-1).
These proteins simultaneously bind C3b and then promote
C3b degradation on spirochete surface to downregulate the
alternative pathway (Meri et al., 2013). ErpP, ErpC, and
ErpA facilitate serum resistance of LD borreliae and bind to
FH, but the biological significance of these interactions is
unclear.

Similar to LD borreliae, RF borreliae produce complement
regulator-binding proteins on their surface [Table 1 for
references; Embers and SpringerLink, (Online service), 2012].
BHA007 in B. hermsii and its homolog CihC in both B.
recurrentis and B. duttonii bind C4BP. CihC also binds C1-INH.
The association of these proteins with C1-INH and C4BP on the
surface of spirochetes prevents the formation of C1 and MASP
complexes and induces the cleavage of C4b, respectively, to
presumably inhibit the classical and lectin pathways. BhCRASP-
1 and FhbA in B. hermsii, BpcA in B. parkeri, and HcpA
in B. recurrentis bind FH (and/or FHL-1), which promotes
C3b cleavage on bacterial surface and inhibits the alternative
pathway.

LD borreliae also produce other outer surface proteins

that interact with complement components to inhibit the

formation of complement complexes and negatively modulate
the complement system (Table 1 for references; Kraiczy, 2016).
BBK32 of B. burgdorferi, known for both fibronectin (Probert
and Johnson, 1998) and glycosaminoglycan binding (Fischer
et al., 2006), was recently reported as a C1r-binding protein.
By binding to the inactive form of C1r, BBK32 blocks the
formation of the active C1 complex and inhibits the classical
pathway. CspA of B. burgdorferi, B. afzelii, and B. spielmanii, and
BGA66 and BGA71 of B. bavariensis, bind C7, C8, and C9. An
unknown CD59-like protein of B. burgdorferi binds C9. These
interactions result in the inhibition of MAC, thereby preventing
bacteriolysis.
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FIGURE 1 | Activation and control mechanisms of the human

complement system. The classical pathway, initiated by antibody

(Ab)-pathogen antigen (Ag) complexes, and the lectin pathway, initiated by

lectin-microbial carbohydrate complexes, generate the C3 convertase C4b2a.

The alternative pathway, initiated by interaction of C3b with the microbial

surface, generates the C3 convertase C3bBb. These C3 convertases, by

recruiting other complement components, generate C5 convertases (C4b2a3b

and C3bBb3b), which in turn result in the release of pro-inflammatory peptides

(C5a), deposition of opsonins (C3b) on the microbial surface to enhance

phagocytic clearance, and generation of the membrane attack complex (MAC

or C5b-9). Different complement regulators exists to modulate complement

activation. For example, C1 inhibitor (C1-INH) binds to C1r/C1s or MASPs and

inhibits their proteolytic activity, thus inactivating the classical and lectin

pathways. C4BP binds to C4b, factor H (FH), and factor H-like protein 1

(FHL-1) bind to C3b on C3 convertase. These interactions recruit factor I (FI) to

inactivate C3b and subsequent activation steps.

APPROACHES TO STUDY MECHANISMS
OF SERUM RESISTANCE FACTORS IN LD
AND RF BORRELIAE IN VITRO

Serum Resistance Assays
Investigating the role of spirochete proteins in interfering
complement pathways allows us to elucidate the mechanisms
of bacterial bloodstream survival. Because complement
components and regulators are present in the blood, serum
resistance assays (also known as bactericidal, growth inhibition,
and serum susceptibility assays) are frequently utilized to
determine the ability of spirochetes to survive in the serum in
vitro, which is likely correlated with their ability to survive in
the bloodstream in vivo. Bacterial survival can be determined
by (i) counting viable cells using dark field microscopy, (ii)
measuring the color change of the culture media (bacterial
growth leads to the acidification of the media, resulting in
color change), (iii) staining the DNA of live and dead bacteria,

or (iv) plating bacteria on semi-solid agar plates (Table 1 for
references). To test the role of a specific protein for serum
resistance of LD and RF borreliae, spirochetes in the infectious
background are genetically engineered to be deficient of these
proteins (loss-of-function strains), and these strains are expected
to be susceptible to complement-mediated killing (Brooks et al.,
2005; Kenedy et al., 2009). However, loss-of-function strains
currently can only be generated in B. burgdorferi. In addition,
any redundant functions provided by other proteins involved
in serum resistance in such a strain background may make the
defect of a single gene undetectable (Coleman et al., 2008; Fine
et al., 2014). Therefore, the alternative strategy is to ectopically
produce these factors on the surface of the serum-susceptible
spirochetes (gain-of-function strains). Frequently used gain-of-
function strains include B. burgdorferi strains B313 and B314,
and B. garinii strain G1. Note, B313 and B314 are non-infectious
and only harbor six of the 21 plasmids due to repeated in vitro
passaging (Sadziene et al., 1993). Gain-of-function strains allow
us to study a serum resistance factor without complications from
redundant serum resistance proteins.

The concentration of serum used in these assays is important.
Although 10–40% serum has been used, only concentrations
above 40% effectively eliminate serum-sensitive spirochetes
(Breitner-Ruddock et al., 1997; van Dam et al., 1997; Kurtenbach
et al., 1998; Kraiczy et al., 2000; Hartmann et al., 2006; Meri
et al., 2006; Grosskinsky et al., 2009; Kenedy et al., 2009; van
Burgel et al., 2010; Hammerschmidt et al., 2012, 2014; Hallstrom
et al., 2013; Garcia et al., 2016). Interestingly, bactericidal activity
is not consistently observed by serum from laboratory mouse
strains (e.g., C3H/HeN, BALB/c, and C57B/6 strains), likely due
to instability of mouse complement in vitro (Kurtenbach et al.,
1998; Ristow et al., 2012; Caine and Coburn, 2015). The serum
from white-footed mouse (Peromyscus leucopus), the natural
reservoir host of LD spirochetes, invariably displayed ability in
serum-sensitive bacterial killing, suggesting the serum from this
species may be an alternative for rodent serum resistance assays
(Rynkiewicz et al., 2013).

Far Western Blotting and Serum
Adsorption Assays
To explain the molecular mechanism of serum resistance
by LD and RF borreliae, Far western blotting (also known
as ligand affinity blotting) and adsorption assays have been
utilized to determine if complement proteins or regulators
bind to the outer surface proteins of spirochetes [Table 1 for
the references of specific proteins; Embers and SpringerLink,
(Online service), 2012]. In Far western blotting, borrelial proteins
from lysed cells are separated on a blot and incubated with
either a complement component, regulator, or serum, and then
treated with antibodies for detection of the bound complement
components or regulators. Reverse ligand blotting, a modified
version of Far western blotting, separates serum proteins by size
on a blot. The blot is incubated with a purified complement
component- or regulator-binding protein and treated with
antibodies to detect the complement component- or regulator-
binding protein. However, as the binding of these components or
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regulators to borrelial proteins occurs on the spirochete surface,
lysing the cells prior to incubation may change the structure
of borrelial proteins and prevent binding. This may explain
some inconsistent results when analyzing the complement
regulator-binding activity of borreliae using thismethod (Table 1;
Hartmann et al., 2006; McDowell et al., 2006; Rogers and
Marconi, 2007; Bhide et al., 2009; Grosskinsky et al., 2010;
Brenner et al., 2013).

Unlike Far western blotting, serum adsorption assays
immobilize whole bacterial cells. After incubating the cells
with either complement components, regulators, or serum,
bound cells are lysed, separated by SDS-PAGE, and detected
by antibodies. This is a more biologically-relevant approach
because binding of complement components or regulators occurs
under physiological settings on the spirochete surface. Both
techniques, however, rely on antibodies for binding detection.
As some complement components or regulators (e.g., FH)
are polymorphic between animal species (Blom et al., 2004),
antibodies against complement components or regulators from
one species may not effectively recognize that from another
species (McDowell et al., 2006; Rogers and Marconi, 2007),
making research in infrequently studied animals inconvenient.

Hemolytic and Cell-Free Assays
Hemolytic assays have been utilized to quantitatively determine
the ability of LD or RF borreliae to negatively modulate each
complement pathway via complement-component or -regulator-
binding proteins. These assays incubate human serum with
foreign erythrocytes and borrelial proteins, and measure the
level of erythrocyte lysis (Table 1 for references of specific
proteins; Dodds and Sim, 1997; Morgan, 2000). These proteins
recruit complement components (e.g., C3b, C4b, C7, or C9) by
either directly binding to these components or to complement
regulators that simultaneously associate with these complement
components. This binding reduces the concentration of said
complement components in the serum and ultimately inhibits
erythrocyte lysis. To maximize hemolysis triggered by the
classical pathway or the MAC, erythrocytes are sensitized
by pre-incubating with antibodies and the C5b-6 complex,
respectively, prior to adding serum. Note, erythrocytes do not
need to be incubated with any additional activators prior to
adding serum to measure the hemolytic activity induced by
the alternative pathway. A lower concentration of serum (1%)
can be used to measure the erythrocyte lysis from classical
pathways or MAC formation, whereas a higher concentration
of serum (above 2.5%) permits detection of hemolysis caused
by the alternative pathway (Dodds and Sim, 1997; Morgan,
2000; Hallstrom et al., 2013; Hammerschmidt et al., 2016).
Thus, both the serum concentration and the activators used to
sensitize erythrocytes are critical to differentiate the pathway-
specific hemolysis. In addition, serum deficient in one or more
complement components or regulators essential to activation of
each pathway can be used to determine which pathways the
complement component- or regulator-binding proteins inhibit.

WIESLAB R© recently developed a cell-free assay (Wielisa) to
quantitatively measure the activation of different complement
pathways, which has been used to study spirochete complement

component- or regulator-binding proteins (Garcia et al., 2016;
Hammerschmidt et al., 2016). Serum incubated with spirochete
complement component- or regulator-binding proteins is added
to microtiter plates that have been coated with immobilized
immunoglobulin (classical pathway), mannan (lectin pathway),
or lipopolysaccharides (alternative pathway). The ability of these
bacterial proteins to inhibit complement activation is determined
by detecting the level of MAC formed on the surface of microtiter
plates.

Cofactor Assays
Cofactor assays determine if complement regulators bound
by spirochete proteins facilitate the cleavage of the target
complement components [Table 1 for references of specific
proteins; Embers and SpringerLink, (Online service), 2012]. For
example, following the binding of complement regulators to
the immobilized protein or spirochete surface, the ability of
FH (or FHL-1) to promote C3b degradation in the presence of
FI can be detected by identifying cleaved C3b using Western
blotting. The ability of spirochete C4BP-binding protein to
promote C4b degradation by binding to C4BP and FI can also
be performed in a similar fashion. Although the concentrations
of the complement regulator-binding proteins used in this assay
are generally higher than what is likely physiologically relevant,
this technique allows us to demonstrate a molecular mechanism
of these proteins in inactivating complement system by binding
to respective regulators.

Deposition Assays
Complement complexes form on the surface of spirochetes
during complement activation (Table 1 for references of specific
proteins). Therefore, detecting C3b (a component of C3 and
C5 convertases), and C6 and C5b-9 (the components of MAC)
allows us to measure the level of complement activation on
the surface of LD or RF borreliae. Deposition assays utilize
immunofluorescence staining or ELISA to measure the levels
of the aforementioned complement components bound on the
bacterial surface after spirochetes strains are incubated with
serum. LD and RF borreliae that bind complement components
or regulators from serum should have reduced or no deposition
of C3b, C6, and C5b-9. Note, serum concentrations used range
from 10 to 25% because serum concentrations >40% eliminate
Borrelia, which prevents observation of complement deposition
(Kurtenbach et al., 1998; Kenedy et al., 2009; Hammerschmidt
et al., 2014).

APPROACHES TO STUDY BLOODSTREAM
SURVIVAL PROVIDED BY THE FACTORS
IN LD OR RF BORRELIAE IN VIVO

In the natural transmission of LD or RF borreliae from ticks
to vertebrate animals, the spirochetes first colonize the skin at
the tick feeding site prior to disseminating into the bloodstream
and migrating into the surrounding tissues (Radolf et al., 2012;
Coburn et al., 2013). In traditional models, mice are inoculated
subcutaneously or intradermally, or by bite from a tick infected
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with LD or RF borreliae to study the contribution of spirochete
factors during infection (Barthold et al., 1990; Simon et al., 1991).
However, since a failure at either initial skin colonization or
bloodstream survival would lead to low or undetectable bacterial
burdens in the animal, it can be difficult to distinguish the roles of
spirochete factors in promoting survival within the mammalian
host using traditional models.

A short-term murine model has recently been developed
using the LD spirochete B. burgdorferi to investigate the roles
of bacterial outer surface proteins in mammalian bloodstream
survival (Caine and Coburn, 2015). This model intravenously
inoculates mice with a high number of spirochetes for up to 1
h. The ability of the spirochetes to survive in the bloodstream
can be detected by measuring bacteremia (Caine and Coburn,
2015). Intravenous inoculation bypasses the initial step of
skin colonization allowing the study of non-infectious mutant
spirochetes. Therefore, this strategy teases apart the contributions
of Borrelia factors with multiple functions in bloodstream
survival, protein adhesion, and tissue attachment. For example,
B. burgdorferi outer surface protein BBK32 contributes to
colonization of the inoculation site of skin (Seshu et al., 2006;
Hyde et al., 2011; Lin et al., 2015). Whether this protein
contributes to mammalian bloodstream survival during Lyme
infection is difficult to assess by subcutaneous needle or tick
infection. Using short-term intravenous inoculation in a murine
model, BBK32 ectopically-produced on a non-infectious, serum-
sensitive B. burgdorferi strain promotes spirochete survival in the
bloodstream (Caine and Coburn, 2015). This strategy has also
been applied to identify the contribution of other B. burgdorferi
factors in promoting bloodstream survival (Caine and Coburn,
2015). As RF borreliae are also blood-borne pathogens that
disseminate into host tissues, this short-term model could
be employed to further characterize serum resistance and
disease progression in RF borreliae. Though some complement
components or regulator are polymorphic among vertebrate

animals (Lu et al., 2008), which raises a concern that the in vivo
murine models may not be relevant to humans, recent developed
humanized mouse strains may be utilized as a solution of this
issue (Beernink et al., 2012).

CONCLUSION

Bloodstream survival of LD or RF borreliae is thought to be
essential for spirochetes to survive in humans, and ultimately
cause LD or RF disease manifestations. Serum resistance,
adsorption, hemolytic, cofactor, and deposition assays, as well as
a recently established short term intravenous inoculation murine
model are all used to elucidate the mechanism of LD and RF
borreliae evasion of the complement system and survival in the
bloodstream. The data reviewed here are mainly on borrelial
interactions with humans, but these assays can also be applied to
the interactions with other vertebrate hosts, which will elucidate
the role of the borrelial complement evasion in the enzootic cycle.
Understanding these mechanisms in both humans and other
vertebrate hosts will aid in the development of novel therapeutic
strategies and disease prevention by targeting these complement
component- or regulator-binding proteins to ultimately improve
human health.
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