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Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and

energy through a variant of the pyridine and pyrrolidine pathways (VPP). A 31-kb

novel nicotine-degrading gene cluster, ndp, in strain TY exhibited a different genetic

organization with the vpp cluster in strains Ochrobactrum rhizosphaerae SJY1 and

Agrobacterium tumefaciens S33. Genes in vpp were separated by a 20-kb interval

sequence, while genes in ndp were localized together. Half of the homolog genes

were in different locus in ndp and vpp. Moreover, there was a gene encoding

putative transporter of nicotine or other critical metabolite in ndp. Among the putative

nicotine-degrading related genes, the nicotine hydroxylase, 6-hydroxy-L-nicotine

oxidase, 6-hydroxypseudooxynicotine oxidase, and 6-hydroxy-3-succinyl-pyridine

monooxygenase responsible for catalyzing the transformation of nicotine to 2,

5-dihydropyridine in the initial four steps of the VPP were characterized. Hydroxylation at

C6 of the pyridine ring and dehydrogenation at the C2–C3 bond of the pyrrolidine ring

were the key common reactions in the VPP, pyrrolidine and pyridine pathways. Besides,

VPP and pyrrolidine pathway shared the same latter part of metabolic pathway. After

analysis of metabolic genes in the pyridine, pyrrolidine, and VPP pathways, we found

that both the evolutionary features and metabolic mechanisms of the VPP were more

similar to the pyrrolidine pathway. The linked ndpHFEG genes shared by the VPP and

pyrrolidine pathways indicated that these two pathways might share the same origin, but

variants were observed in some bacteria. And we speculated that the pyridine pathway

was distributed in Gram-positive bacteria and the VPP and pyrrolidine pathways were

distributed in Gram-negative bacteria by using comprehensive homologs searching and

phylogenetic tree construction.
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INTRODUCTION

Nicotine is the most abundant alkaloid in tobacco plants, and it maintains a high content
(15.680–32.536mg/g dry weight according to the particle size of the solid powdery waste) in
tobacco waste, which accumulates in large amounts (Civilini et al., 1997; Novotny and Zhao,
1999; Cosic et al., 2012). Nicotine has good hydrophilicity, can spread in the environment
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through water and soil, and poses a threat to human health
and the environment because of its toxicity. Moreover, nicotine
can be easily absorbed and traverse the blood-brain barrier
(Oldendorf, 1974; Oldendorf et al., 1979; O’neill et al., 2002;
Lemay et al., 2004), and it has been classified as a Toxics Release
Inventory (TRI) chemical by the United States Environmental
Protection Agency since 1994. Microbial bioremediation has
been considered an economical and effective way to eliminate
nicotine in the environment (Brandsch, 2006; Gurusamy and
Natarajan, 2013).

To date, four main types of nicotine degradation pathways
have been described in microorganisms. First, the pyrrolidine
pathway (PRL) was found in Pseudomonas sp. No. 41,
Pseudomonas putida NRRL B-8061, Pseudomonas putida
S16, Pseudomonas sp. HF-1, and Pseudomonas sp. HZN6 (Wada
and Yamasaki, 1953; DeTraglia and Tometsko, 1980; Wang
et al., 2004; Ruan et al., 2005; Qiu et al., 2011). Second, the
pyridine pathway (PD) was reported in Arthrobacter oxydans
P-34, Arthrobacter nicotinovorans pAO1, Nocardioides sp. JS614,
Rhodococcus opacus B4, and Arthrobacter aurescens M2012083
(Hochstein and Rittenberg, 1959a; Ganas et al., 2008; Cobzaru
et al., 2011; Yao et al., 2012, 2015). Third, the methyl pathway was
found only in several fungi Microsporum gypseum, Pellicularia
filamentosa JTS-208, Cunninghamella echinulata IFO-4444, and
Aspergillus oryzae 112822 (Sindelar et al., 1979; Uchida et al.,
1983; Meng et al., 2010). Fourth, a variant of the pyridine and
pyrrolidine pathway (VPP) was discovered in Agrobacterium
tumefaciens S33, Sphingomonas melonis TY, Shinella sp. HZN7,
and Ochrobactrum rhizosphaerae SJY1 (Wang et al., 2009,
2011; Ma et al., 2013; Yu et al., 2014). Additionally, two special
pathways were recently found in Pseudomonas plecoglossicida
TND35 and Pusillimonas sp. T2, the former with some new
intermediates and the latter containing both the VPP and a
partial PD with the formation of 2, 6-dihydroxypyridine (Raman
et al., 2013; Ma et al., 2014). Interestingly, four intermediates of
the nicotine metabolic pathway defined as 6-hydroxynicotine
(6HN), pseudooxynicotine, 3-succinoyl-pyridine, and 6-
hydroxy-3-succinoyl-pyridine (HSP) were studied in a
nicotine-degrading strain Achromobacter nicotinophagum
in 1958 (Hylin, 1958, 1959). It was anticipated that more new
pathways would be found. Among these published pathways, the
most well-established were the PD in A. nicotinovorans pAO1
(Dang et al., 1968; Brühmüller et al., 1972; Grether-Beck et al.,
1994; Schenk et al., 1998; Baitsch et al., 2001; Chiribau et al., 2004,
2006; Sachelaru et al., 2005, 2006; Mihasan et al., 2007), the PRL
in Pseudomonas putida S16 (Tang et al., 2008, 2009, 2011, 2012,
2013; Jiang et al., 2015), and the VPP in O. rhizosphaerae SJY1
(Yu et al., 2014, 2015). The nicotine-degrading gene clusters,
for example, the nic-genes in A. nicotinovorans pAO1, nic1 and
nic2 in strain S16, and the vpp cluster in strain SJY1, have been
comprehensively studied.

The nomenclature and classification of microbial nicotine
degradation pathway was according to the reaction position of
the first step in each pathway. In the PRL, the first reaction
was occurred at C2–C3 bond of the pyrrolidine ring (Tang
et al., 2013); in the PD, the first reaction was occurred at C6
of the pyridine ring (Hochstein and Rittenberg, 1959b); in the

methyl pathway, the first reaction was occurred at methyl group
linked in the N atom of the pyrrolidine ring (Uchida et al.,
1983). All these three pathways have totally different nicotine
metabolism pathway from the first step of degradation (Raman
et al., 2013). And VPP was designated by its feature of combing
upper pathway of PD with lower pathway of PRL (Wang et al.,
2012). There are two key steps shared by the PRL, PD, and VPP
pathways, that were hydroxylation at C6 of the pyridine ring
and dehydrogenation at the C2–C3 bond of the pyrrolidine ring,
which was important for opening the ring.

Horizontal gene transfer (HGT) has been recognized as amain
force in the genomes evolution for a long time (Gray, 1992).
In comparison to eukaryotes, which evolve mainly through the
modification of existing genetic information, bacteria obtain a
considerable ratio of their genetic variants through HGT from
distantly related organisms (Ochman et al., 2000). There are
some commonly used criteria and methods for identifying HGT.
HGT creates an unduly high degree of DNA or protein sequence
similarity between the donor and the recipient strains for the
character in question, and the acquired trait will be limited
to the offsprings of the recipient strain and absent from the
closely related taxa, thereby producing a scattered phylogenetic
distribution (Ochman et al., 2000). However, the strongest
evidence to identify cases of HGT derives from a molecular
genetic analysis of their DNA sequences. Bacterial species display
a wide range of variation in their total G+C content, but the
genes in a particular species’ genome are considerably similar in
regard to their nucleotide compositions, patterns of codon usage
and frequencies of di- and tri-nucleotides (Sueoka, 1962; Muto
and Osawa, 1987; Karlin et al., 1998). Therefore, sequences that
are newly transferred into the bacterial genome, namely, those
introduced through HGT, retain the sequence characteristics of
the original genome and have atypical nucleotide compositions,
or patterns of codon usage bias with the host genome and thus
can be differentiate from vertically inherited DNA (Lawrence
and Ochman, 1998). Additionally, the regions contiguous to the
genes that were confirmed to be horizontally transferred often
contained traces of sequences promoting their integration, such
as mobile element remnants, transfer origins of plasmids or
attachment sites of phage integrases, further confirming their
foreign origin in the genome (Ochman et al., 2000).

Although the molecular mechanism of nicotine metabolism
is very clear in several representative strains, the evolutionary
relationship of these nicotine degradation gene clusters and
the evolutionary relationship between the PD, PRL, and VPP
remain unclear. More gene clusters must be discovered to
help unravel the evolutionary relationships. Moreover, some
intermediates that form during nicotine metabolism have
pharmacological value (Roduit et al., 1997; Wang et al., 2005;
Goetz and Garg, 2013), necessitating additional genetic and
metabolic resources for industrial applications. In this work,
we studied a novel nicotine-degrading gene cluster, ndp, in
S. melonis TY. This 31-kb ndp in strain TY exhibited a
different genetic organization with the vpp cluster in strains
SJY1 and S33. Genes in vpp were separated by a 20-kb interval
sequence, while genes in ndp were localized together. Half of
the homolog genes were in different locus in ndp and vpp.
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Moreover, there was a gene encoding putative transporter of
nicotine or other critical metabolite in ndp, while missing
in vpp. The amino acid sequence identity between two key
common enzymes was low, 45 and 54% to NdpAL and
NdpB, respectively. All these differences showed that ndp was
special and had a different evolution process with that of vpp.
Nicotine dehydrogenase ndpA, 6-hydroxynicotine oxidase ndpB,
6-hydroxypseudooxynicotine oxidase ndpC and 6-hydroxy-3-
succinoyl-pyridine 3-monooxygenase ndpD were identified. In a
word, ndp was found to be an integrated and compact nicotine-
degrading gene cluster with a different genetic organization and
coding sequence compared with vpp in strains SJY1 and S33.
We analyzed the three nicotine-degrading gene clusters in the
VPP and found that all of them seemed to evolve via HGT.
Analysis of the origin of the three main pathways involved in
nicotine degradation revealed that the VPP was more similar
to PRL.

MATERIALS AND METHODS

Chemicals and Reagents
(S)-Nicotine (>99%) was obtained from Chemsky international
Co., Ltd (Shanghai, China). 6HN, 6-hydroxypseudooxynicotine
(6HPON), and HSP were prepared as previously described (Ma
et al., 2013). TransStart R© FastPfu DNA Polymerase for fragment
amplification was purchased from TransGen Biotech (Beijing,
China). Restriction enzymes used for plasmid construction
and premixed protein marker for protein electrophoresis were
purchased from Takara Biotechnology Co., Ltd. (Dalian, China).
Antibiotics, isopropyl β-D-1-thiogalactopyranoside (IPTG) and
other reagents were purchased from Shanghai Sangon Biotech
Co., Ltd. (Shanghai, China). The plasmid extraction, gel
extraction, and DNA purification kits were obtained fromOmega
Bio-tek, Inc. (Norcross, GA, USA). Bacterial genomic DNA was
extracted using the TIANamp Bacteria DNA Kit from Tiangen
Biotech co., Ltd. (Beijing, China). All reagents and solvents were
of analytical or chromatographic grade.

Bacterial Strains, Plasmids, and Growth
Conditions
The bacterial strains and plasmids used in this study are listed
in Table S1 and the primers are shown in Table S2. The
wild-type strain S. melonis TY (deposited in China General
Microbiological Culture Collection Center, collection number
CGMCC1.15791) can use nicotine as a sole carbon, nitrogen,
and energy source to grow (Wang et al., 2011). The wild-type
strain TY and its derivatives were cultured aerobically in LB
medium or inorganic salt medium (ISM) supplemented with
nicotine at 30◦C as described previously (Wang et al., 2011).
Escherichia coli strains were grown in LB broth at 37◦C. When
necessary, ampicillin, kanamycin, and tetracycline were used
at final concentrations of 100, 50, and 10µg/mL, respectively,
excluding Origami B(DE3) (tetracycline and kanamycin were
used at final concentrations of 12.5 and 15µg/mL, respectively).
IPTG was used as an inducer at a given concentration. The
2, 6-diaminopimelic acid (2, 6-DAP) was used at a final
concentration of 0.3 mM for E. coli WM3064. Competent

E. coli WM3064 were prepared according to standard methods
using 0.1 M CaCl2 in 20% (v/v) glycerol (Ausbel et al.,
1995).

Genome Sequence Analysis and Prediction
of Nicotine Metabolism-Related Genes in
Strain TY
To identify putative genes involved in nicotine degradation in
strain TY, we conducted a BLAST analysis against the draft
genome sequence of strain S. melonis TY (the report about
the draft genome sequence of strain TY is under reviewed in
Frontiers in Microbiology, and the accession number of the
genome is LQCK00000000) using known nicotine metabolic
genes, such as ndhLSM and 6hlno in A. nicotinovorans (Grether-
Beck et al., 1994) and hspA, hspB, hpo, nfo, ami, and iso in
Pseudomonas putida S16 (Tang et al., 2008, 2011, 2012). The hits
were designated as putative nicotine metabolism-related genes in
strain TY and used for reverse transcription quantitative PCR
(RT-qPCR) analysis. Subsequently, some of themwere chosen for
gene disruption experiments.

RT-qPCR Analysis of ndpA, ndpB, ndpC,
and ndpD
ISM with 1 g/L glucose and 1 g/L (NH4)2SO4 was used
as the control medium for the RT-qPCR experiments. ISM
supplemented with 1 g/L nicotine was established as the
experimental group. Cultures in the presence and absence of
nicotine were cultured in triplicate at 30◦C to mid-exponential
phase. Total RNA were extracted using the RNAprep Pure
Bacteria Kit (Tiangen Biotech, Beijing, China) and reverse-
transcribed into cDNA using the random hexamer primers and
PrimeScript RT Reagent Kit with gDNA Eraser (Perfect Real
Time; Takara, Dalian, China). The respective cDNA fragments
were applied as templates in the PCR using the gene-specific
primers shown in Table S2 designed using Beacon Designer 7
software, Premier Biosoft International (Palo Alto, CA, USA).
qPCR was performed on a Rotor-Gene Q real-time PCR
detection system (Qiagen, Germany) using TransStart Top
Green qPCR SuperMix (TransGen Biotech, Beijing, China).
The genome of strain TY was used as a positive control, and
untranscribed RNA was used as a negative control. Melting
curves and agarose gel analyses were used to confirm the
specificity of the PCR products. The threshold cycle (CT) values
for each target gene were normalized to the 16S rRNA reference
gene. The 211CT method was used to calculate the relative
expression level, where 11CT = (CT, target − CT, 16S)induction −

(CT, target −CT, 16S)control, whereas the theoretical efficiency value
2 was replaced with the estimated PCR efficiency value (Livak
and Schmittgen, 2001; Ramakers et al., 2003; Ruijter et al., 2009;
Tuomi et al., 2010). In brief, the PCR data were saved in “LinReg
Export Format” in the Rotor-Gene Q series software program
and imported into the LinRegPCR program. Individual samples
were then checked sequentially, and the mean PCR efficiency
values were used for each amplicon group as a substitute for the
theoretical efficiency value 2.
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Gene Knockout and Complementation
All the vectors constructed in this work were first simulated using
Vector NTI Advance 11.5.1 (Invitrogen, USA). Specific primers
for fragment amplification were annotated in this software
and used as output for synthesis, as were the primers used
to sequence the constructed vectors. The sequencing results
obtained from the biotechnology company were assembled
and checked for mutations with simulative construction by
Vector NTI Advance 11.5.1. In-frame disruption of ndpAL,
ndpB, ndpC, and ndpD in strain S. melonis TY was performed
using the suicide plasmid pEX18Tc and a two-step homologous
recombination method (Chen et al., 2014). Plasmids pEX18Tc-
ndpAL, pEX18Tc-ndpB, pEX18Tc-ndpC, and pEX18Tc-ndpD for
gene knockout were constructed by fusing the PCR products
of the kanamycin resistance gene and two upstream and
downstream fragments of the target gene, amplified with the
primers shown in Table S2, to Sac I and Hind III-digested
pEX18Tc using the In-Fusion R© HD Cloning Kit (Takara, Dalian,
China). Constructed plasmids were transformed into E. coli
DH5α and sequenced, and accurate constructions were preserved
and used for subsequent analyses. These plasmids were then
transformed into E. coli WM3064 (2, 6-DAP auxotroph; Dehio
and Meyer, 1997; Saltikov and Newman, 2003) before being
conjugated to strain TY as described previously (Saltikov and
Newman, 2003). The TY1ndpAL, TY1ndpB, TY1ndpC, and
TY1ndpD recombinants were screened on LB plates containing
kanamycin and then verified using specific primers for PCR
and sequencing. If double-crossover recombinants were not
acquired during the first cycle of screening, the single crossover
recombinants were cultured in liquid LB containing kanamycin
and 10% sucrose (w/v) for several generations and then screened
on LB plates supplemented with kanamycin and 10% sucrose
(w/v) to obtain single colonies. Verification was performed
as mentioned above until double-crossover recombinants were
obtained.

Plasmids pRK415-ndpAL, pRK415-ndpB, pRK415-ndpC, and
pRK415-ndpD for gene complementation were constructed
by fusing the PCR products corresponding to the full-length
ndpAL, ndpB, ndpC, and ndpD amplified with the primers
shown in Table S2, to Hind III and EcoR I-digested pRK415.
After sequencing and obtaining the desired construction, four
plasmid constructs were transformed into E. coli WM3064 and
then mated into the TY1ndpAL, TY1ndpB, TY1ndpC, and
TY1ndpD strain by conjugation to obtain TY1ndpAL(pRK415-
ndpAL), TY1ndpB(pRK415-ndpB), TY1ndpC(pRK415-ndpC),
and TY1ndpD(pRK415-ndpD), respectively.

Cell Growth and Resting Cell Reactions of
TY and Its Derivatives
The four mutants TY1ndpAL, TY1ndpB, TY1ndpC, and
TY1ndpD were examined for their ability to grow in the
presence of nicotine. After gene complementation, all the
complementary strains were inoculated in ISM medium
supplemented with nicotine to determine whether they restored
nicotine-degrading ability. After preliminarily confirming the
importance of these four genes in nicotine degradation of strain

TY, biotransformation tests were conducted using TY1ndpAL,
TY1ndpB, TY1ndpC, TY1ndpD, wild type TY, and an
inactivated strain of wild type TY (heated at 80◦C for 5
min to exclude nicotine absorption; Harwood et al., 1994)
and a control group containing only nicotine, to determine
the intermediate product of nicotine produced by these four
mutant strains. The cells were harvested by centrifugation at
6,000 × g for 5 min and washed twice with 12 mM phosphate-
buffered saline (PBS, pH 7.4). Subsequently, the cells pellets
were resuspended in ISM (resting cells). The biotransformation
test was performed in a 150-mL beaker flask containing
60mg dry cell weight of resting cells (with an optical density
at 600 nm (OD600nm) of 5.0, in which one OD600nm unit
was equivalent to 0.40 g/L dry cell weight) and 0.5 mg/mL
nicotine in 30 mL of sterilized ISM and incubated at 30◦C
and 200 rpm for 2 days. The reactions were stopped by
centrifugation at 6,000 × g for 5 min, and the supernatant was
subjected to spectrum scanning and liquid chromatography-mass
spectrometry (LC-MS) analysis. Biotransformation tests were
conducted as described for TY1ndpAL, TY1ndpB, TY1ndpC,
and TY1ndpD with 6HN, 6HPON, and HSP. Additionally,
growth ability was examined using these four mutants with
nicotine-degrading intermediates (6HN, 6HPON, and HSP) in
strain TY.

Heterologous Expression of ndpA, ndpB,
ndpC, and ndpD
To verify the function of ndpA, heterologous expression of
NdpA was performed according to the method described for
the heterologous expression of vppA (Yu et al., 2015). P. putida
KT2440 and Sphingomonas aquatilis JSS7T were chosen as the
expression host (details concerning the heterologous expression
of ndpA, ndpB, and ndpD are provided in the supporting
information).

pET-28a(+) and pET-22b(+) were used as the expression
vectors for ndpB, and E. coli BL21(DE3) and Origami B(DE3)
were used as the expression hosts. Origami B(DE3) was selected
because it carries glutathione reductase (gor) and thioredoxin
reductase (trxB) mutations to enhance the formation of disulfide
bonds in the E. coli cytoplasm (Prinz et al., 1997; Aslund et al.,
1999).

For heterologous expression of NdpB, pRK415-ndpB was
mated into P. putida KT2440 and Sphingomonas aquatilis JSS7T

through E. coli WM3064 to generate P. putida KT-ndpB and
Sphingomonas-ndpB, respectively. The method applied for whole
cell transformation of 6HN by NdpB was the same as that
described for NdpA. For homologous expression of NdpB,
His6-tagged fusion protein under the promoter of pRK415
was expressed in strain TY1ndpB and purified by Wuhan
GeneCreate Biological Engineering Co., Ltd. (Wuhan, China)
under native conditions. The obtained protein was evaluated by
western blot analysis and detection of activity.

Heterologous expression of NdpC was conducted as described
for NdpA and NdpB, with the transfer of pRK415-ndpC into
P. putida KT2440 and Sphingomonas aquatilis JSS7T to obtain
P. putida KT-ndpC and Sphingomonas-ndpC; the substrate
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was substituted with 6HPON when performing whole cell
transformation to detect the enzyme activity.

C-terminal and N-terminal His6-tagged expressions of NdpD
were performed by fusing the ndpD (full-length gene or without
the stop codon) product to Nco I and Hind III-digested pET-
28a(+) or Nde I and Xho I-digested pET-22b(+) to obtained
pET28a-ndpD-C and pET22b-ndpD-N, respectively, using E. coli
BL21(DE3) as the expression host. The crude enzyme activity of
NdpD was detected according to Yu et al. (2014).

NdpD was also heterologously expressed in P. putida
KT2440 and Sphingomonas aquatilis JSS7T with pRK415-ndpD
as described above. Whole cell transformation of HSP by
P. putida KT-ndpD and Sphingomonas-ndpD was also conducted
as described for NdpA.

Analytical Methods
Biotransformation of nicotine by resting cells was analyzed by
spectrum scanning using a Lambda25 UV/VIS spectrometer
(PerkinElmer, USA). LC-MS analysis was performed using
liquid chromatography (Agilent 1200, USA) equipped with Sielc
Obelisc_N column (5µm, 2.1 × 150 mm) and a LCQ Deca
XP Max MS instrument (Thermo Finigan) with an electrospray
interface (Turbo Ion Spray). The iron spray voltage was set
at 4,500 V. Nitrogen was used as the sheath gas (55 arb) and
auxiliary gas (5 arb). The capillary temperature was set at 275◦C,
and the capillary voltage was set at 41 V. Mobile phase A was
50 mM ammonium acetate, pH 5.0, adjusted with formic acid,
and mobile phase B was acetonitrile. The system was run as
follows: 0–5 min, 5% A+95% B; 5–35 min, from 5% A+95% B
to 70% A+30% B; 35–45 min, 70% A+30% B. The total flow
rate was 0.3 mL/min, and 15µl of the sample was injected.
The column was set at 35◦C, and the detection was performed
at 254 nm. The obtained data were analyzed using Xcalibur
software (Thermo Electron Corporation). The HPLC analysis
was performed according to Ruan et al. (2005).

Genetic Characteristics of Genes in the
VPP
The G+C content of genome of TY, SJY1, and S33 were
searched at NCBI (http://www.ncbi.nlm.nih.gov/), and the G+C
content of the nicotine-degrading gene cluster was calculated at
DNA/RNA GC Content Calculator in EndMemo (http://www.
endmemo.com/bio/gc.php). CAIcal (Puigbò et al., 2008) and
condonW (http://codonw.sourceforge.net/index.html) were used
to calculate the nucleotide composition and relative synonymous
codon usage (RSCU) of the nicotine-degrading genes, and
condonW was also used to calculated the effective number of
codons (ENC) value. BLASTp was used to search for closely
related taxa of the nicotine-degrading gene of strain TY, SJY1, and
S33 (https://blast.ncbi.nlm.nih.gov/Blast.cgi). HGT remnants
were checked by searching the annotation of contiguous genes
of nicotine-degrading gene clusters.

Analysis of Evolutionary Relationships
among Nicotine Degradation Pathways
Hydroxylation at C6 of the pyridine ring and dehydrogenation at
the C2–C3 bond of the pyrrolidine ring were common reactions

in the VPP, PRL, and PD pathways. Therefore, all members of
the corresponding hydroxylases and dehydrogenases identified
in previous experiments were used as queries in BLAST searches
against a local genomes database that included 2806 predicted
prokaryotic proteomes (downloaded from the NCBI FTP server,
ftp://ftp.ncbi.nih.gov/). The genomes with homologs of both
NdpAL and NdpB were selected, and the corresponding protein
sequences were retrieved for subsequent analyses. TheNdpHFEG
proteins were also determined using the BLAST method. The
protein sequences of NdpAL and NdpB were aligned using
ClustalW (Larkin et al., 2007), and the resulting alignments of
individual proteins were used to infer the organismal phylogeny
with the maximum likelihood algorithm (ML) in the MPI-
parallelized version of RAxML version 7.3.0 (Stamatakis, 2006).
Ambiguous alignments were removed using the Gblocks method
in SEAVIEW (Gouy et al., 2010) with options for a less
stringent selection. The LG model (Le and Gascuel, 2008) with a
proportion of invariable sites (+I), a gamma-shaped distribution
of rates across sites (+G) and observed amino acid frequencies
(+F) was used for the phylogeny inference. The topologies
of the phylogenetic trees were evaluated using the bootstrap
resampling method of Felsenstein (Felsenstein, 1985) with 100
replicates.

Accession Number of Nucleotide
Sequence
The sequence of the ndp cluster from strain TY is available in
GenBank under accession number LQCK02000019.1.

RESULTS

A Putative Nicotine Metabolism Gene
Cluster Is Present in the Genome of
Strain TY
After performing a BLAST analysis against the genome of
strain TY using previously known nicotine metabolism genes,
we found that the genes including ndhLSM and 6hlno in
A. nicotinovorans pAO1, hspB, hpo, nfo, ami, and iso in
Pseudomonas putida S16 all had hits in one 31-kb scaffold of
the genome of strain TY, demonstrating a compact arrangement
in this scaffold (Figure 1). Among these putative genes were
two genes, ndpAS (54%) and ndpAL (37%), which showed
amino acid sequence similarities to ndhS and ndhL, respectively.
ndpB (43%) displayed similarities to 6hlno, and ndpH (74%),
ndpF (64%), ndpE (72%), ndpG (68%), and ndpD (54%)
all shared considerable similarities with iso, nfo, hpo, ami,
and hspB, respectively. This gene cluster was considered to
be responsible for nicotine degradation and designated ndp.
Until now, the underlying molecular mechanism has been
the most well-studied in strain SJY1, excluding the enzyme
that catalyzes the reaction from 6HPON to HSP (Yu et al.,
2014, 2015); this enzyme was recently found in strain S33
(Li et al., 2016). Analysis of the whole genome sequence
of strains SJY1 (accession number AZRT00000000) and S33
(CP014259.1 and CP014260.1; Yu et al., 2014; Li et al., 2016)
showed that the gene organization and protein sequences of the
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FIGURE 1 | Genetic organization and amino acid sequence identity of nicotine degradation gene clusters in Sphingomonas melonis TY, Ochrobactrum

rhizosphaerae SJY1, and Agrobacterium tumefaciens S33. The arrows indicate the size and direction of the transcription of each gene, and genes with the

same fill color are isoenzymes. The gene name in gray represents speculated genes in the corresponding strain. The corresponding amino acids sequence identity

between TY and S33, TY and SJY1 are shown in red text, and the nucleotide sequence identity is shown in green. ndpAs, nicotine hydroxylase, subunit S; ndpAL,

nicotine hydroxylase, subunit L; ndpB, 6-hydroxy-L-nicotine oxidase; ndpC, 6-hydroxypseudooxynicotine oxidase; ndpD, HSP monooxygenase; ndpE, 2,5-DHP

dioxygenase; ndpF, N-formylmaleamic acid deformylase; ndpG, maleamate amidase; ndpH, maleate isomerase; Percent amino acid sequences identity of genes

compared with orthologous gene product from TY were labeled above the gene cluster in SJY1 and S33, respectively. TY, Sphingomonas melonis TY; SJY1,

Ochrobactrum rhizosphaerae SJY1; and S33, Agrobacterium tumefaciens S33.

nicotine-degrading gene clusters in these two strains were nearly
identical (Figure 1). However, the sequence identity of ndp was
significantly lower at the amino acid sequence (45–80%) and
nucleotide sequence (56–75%) levels compared with strains SJY1
and S33. Moreover, the genetic organization of ndp was clearly
different compared with the vpp gene cluster in strains SJY1
and S33. There was almost a 20-kb interval sequence between
6-hydroxypseudooxynicotine oxidase and maleamate amidase
in the vpp gene cluster. In the 20-kb interval sequence, there
were 6 and 11 mobile element protein genes in strains S33
and SJY1, respectively. However, the ndp gene cluster exhibited
a compact arrangement without too much irrelevant sequence
and no mobile element protein genes between the nicotine-
degrading genes. In addition, we inferred that the undiscovered
6-hydroxypseudooxynicotine oxidase in SJY1 occurred at the
same position as pno (Figure 1) due to their identical coding
sequence.

Transcription Levels of Putative
Nicotine-Degrading Genes in ndp Are
Upregulated by Nicotine
To elucidate the correlation between nicotine degradation and
putative nicotine-degrading genes in ndp, the mRNA expression
levels of nine putative target genes involved in the nicotine
degradation of S. melonis TY were estimated using RT-qPCR and
the 211CT method with or without nicotine supplementation in
the growth medium. The results showed that the levels of these
genes were significantly upregulated in the presence of nicotine
(Figure 2), suggesting that the transcription of these putative

FIGURE 2 | Transcriptional analysis of the ndp gene cluster. RT-qPCR

analysis of target gene transcripts produced in Sphingomonas melonis TY

grown with (gray bars) or without (black bars) nicotine. The expression levels of

the ndp genes were normalized to the 16S rRNA and are expressed as fold

changes relative to the expression level in cells. The results presented in these

histograms are the means of three independent experiments, and error bars

indicate the standard error.

nicotine-degrading genes in ndp was induced by nicotine or
other nicotine degradation intermediates. As shown in Figure 2,
ndpAL, ndpB, ndpC, ndpD, and ndpH displayed more than 50-
times higher than the levels of the corresponding genes in the
control group, while ndpAS, ndpF, and ndpG exhibited relatively
lower levels of transcription.
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NdpA Catalyzes the Reaction from
Nicotine to 6HN
The first step in the VPP is hydroxylation of the C6 at the
pyridine ring to generate 6HN. The mutant TY1ndpAL lost
the ability to grow on nicotine, and after complementation of
the full-length gene, it regained its ability to degrade nicotine.
A biotransformation test with TY1ndpAL revealed that no
intermediate was accumulated by TY1ndpAL, according to UV
scanning with a maximum absorbance at 259 nm (equivalent
to nicotine) and LC-MS analysis. Additionally, TY1ndpAL

could transform 6HN, 6HPON and HSP but not nicotine,
as expected (Table 1). The phenotypic traits of TY1ndpAL

suggested that NdpA was responsible for catalyzing the reaction
from nicotine to 6HN. Heterologous expression of NdpA in
P. putida KT2440 provided negative results, irrespective of
the presence of pRK415ndpA or pRK415ndpAplus. NdpA was

successfully expressed in Sphingomonas aquatilis JSS7T, and
a decrease in the nicotine substrate resulted in the gradual
production of the product 6HN (Figure 3).

The ndpB Gene Encodes
6-Hydroxynicotine Oxidase
The second enzymatic step in the VPP of nicotine degradation
is the transformation of 6HN to 6-hydroxy-N-methylmyosmine
(6HMM). After the disruption of ndpB, the mutant
strain TY1ndpB lost the ability to grow on nicotine, and
complementation restored nicotine-degrading ability similar
to the wild-type strain. A biotransformation test illustrated
that the intermediate that accumulated in TY1ndpB was 6HN,
according to UV scanning (maximum absorbances at 232 and
295 nm) and LC-MS analysis. It also showed that TY1ndpB
could effectively transform nicotine, 6HPON and HSP (Table 1).
The phenotypic traits of TY1ndpB and the complementary
experiment suggested that ndpB catalyzed the transformation
from 6HN to 6HMM. Recombinant NdpB formed in inclusion
bodies following the overexpression in E. coli BL21(DE3).
Additionally, renaturation of NdpB failed in the absence of active
enzyme.

To avoid inclusion body formation and obtain soluble protein,
pET-22b(+) was selected for secretive expression of NdpB,
and the expression host was changed to Origami B(DE3).
Unfortunately, the NdpB still formed in inclusion bodies (data
not shown).

Because E. coli strains were not suitable for the expression of
NdpB, we placed pRK415ndpB in Sphingomonas aquatilis JSS7T

and detected the catalysis of 6HN. Interestingly, NdpB expressed
in Sphingomonas aquatilis JSS7T was active and transformed
6HN to 6HPON, whereas active expression in P. putida KT2440
failed (Figure 4). We obtained 100µg of purified NdpB from
the expression of NdpB in strain TY1ndpB, and the western
blot analysis is shown in Figure 5. The results suggested that
the correct protein was acquired with the expected molecular
weight and with high purity. However, very weak activity was
detected at the primary stage when conducting the enzymatic
reaction, and the product was found to be 6HMM by LC-MS
(Figure 4).

TABLE 1 | Characteristics of mutant and complementary strains.

Biotransformation

Strains Growth with

nicotine

Accumulated

intermediate

metabolite

Nicotine 6HN 6HPON HSP

TY +a NAb + + + +

TY1ndpAL −c Nicotine − + + +

TY1ndpB − 6HN + − + +

TY1ndpC − 6HPON + + − +

TY1ndpD − HSP + + + −

TY1ndpAL
(pRK415-ndpAL)

+ NA NA NA NA NA

TY1ndpB

(pRK415-ndpB)

+ NA NA NA NA NA

TY1ndpC

(pRK415-ndpC)

+ NA NA NA NA NA

TY1ndpD

(pRK415-ndpD)

+ NA NA NA NA NA

ameans have corresponding ability; bmeans not applicable; cmeans have no

corresponding ability.

NdpC Is Responsible for the
Transformation of 6HPON
The reaction from 6HPON to HSP is one of the key steps in
the VPP, causing the degradation pathway that starts at the
PD to switch to the PRL. TY1ndpC, as well as TY1ndpB
and TY1ndpAL, lost the ability to grow with nicotine as the
sole carbon and nitrogen source. After gene complementation,
the complementary strain recovered the ability to degrade
nicotine. A biotransformation test showed that 6HPON was the
accumulated intermediate produced by TY1ndpC, according
to UV scanning (maximum absorbance at 289 nm, pH < 8)
and LC-MS analysis. Additionally, TY1ndpC could convert
nicotine, 6HN and HSP (Table 1). The phenotypic characteristics
of TY1ndpC indicated that ndpC might be responsible for
transforming 6HPON to HSP. Heterologous expression of ndpC
in P. putida KT2440 provided negative results, whereas the
transfer of Sphingomonas aquatilis JSS7T with ndpC provided the
ability to transform 6HPON intoHSP (Figure 6). However, it was
considered that there was a 6-hydroxy-3-succinoylsemialdehyde-
pyridine formed between 6HPON and HSP (Ma et al., 2013),
but this dehydrogenation step may be performed by another
non-specific semialdehyde dehydrogenase in strain.

NdpD Is 6-Hydroxy-3-Succinoyl-Pyridine
3-Monooxygenase
The fourth enzymatic step in the VPP is the formation of 2, 5-
dihydroxypyridine (2, 5-DHP), which is an intermediate that is
generated during the degradation of many pyridine derivatives
by aerobic microorganisms (Yao et al., 2013). The mutant strain
TY1ndpD lost the ability to grow on nicotine, which was
restored after gene complementation. A biotransformation test
with TY1ndpD revealed an accumulation of the intermediate
HSP, according to UV scanning with a maximum absorbance
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FIGURE 3 | Intermediate accumulated by TY1ndpAL and biotransformation of nicotine by Sphingomonas-ndpA, KT-ndpA and KT-ndpAplus.

(A) Nicotine with a maximum absorbance at 259 nm by UV scanning was accumulated by TY1ndpAL; (B–D) biotransformation of nicotine by Sphingomonas-ndpA,

KT-ndpA, and KT-ndpAplus, shows that product was only formed in Sphingomonas-ndpA (product should be 6-hydroxynicotine with a maximum absorbance at 232

and 295 nm); (E) LC-MS analysis of the 6HN produced in (B).

at 276 nm and LC-MS analysis. Additionally, it was anticipated
that TY1ndpD could catalyze the transformations of nicotine,
6HN, and 6HPON (Table 1). Recombinant NdpD was primarily
overexpressed in E. coli BL21(DE3) as a C-terminal His6-
tagged fusion protein in pET-28a(+). A band at an apparent
molecular mass of 45.1 kDa was detected by SDS-PAGE in
the precipitate (data not shown), which corresponded to the
molecular weight of His6-tagged NdpD. To express soluble
NdpD, the N-terminal His6-tagged fusion protein in pET-28a(+)
was selected for expression in E. coli BL21(DE3). Fortunately,
a small amount of soluble NdpD protein in supernatant (data
not shown), but no product formed during detection of the
crude enzyme activity. However, heterologous expression of
NdpD in P. putida KT2440 provided negative results, but the
ability of NdpD to catalyze the transformation of HSP to 2, 5-
DHP was successfully detected in Sphingomonas aquatilis JSS7T

(Figure 7).

ndp Has Different Genetic Characteristics
Compared with vpp
The G+C content of nicotine-degrading gene clusters in
TY, SJY1, and S33 compared with the G+C content of
their genomes revealed no significant differences (Table 2).
The RSCU analysis showed that strains SJY1 and S33 have
nearly the same codon usage bias as well as %G3s+C3s for
each corresponding nicotine-degrading gene, whereas strain
TY has a distinct RSCU value and significantly higher
%G3s+C3s (Figure 8, Table 2). A BLASTp search revealed that

homologous genes of nicotine-degrading genes in strain TY are
present in Sphingomonas sp. Ant20, Sphingobium xenophagum,
Sphingobium chungbukense, Sphingobium sp. KK22, Sphingopyxis
sp. H080, and other closely related species, all of which belong
to the family Sphingomonadaceae. While homologous genes of
nicotine-degrading genes in SJY1 and S33 are distributed inmuch
more distantly related taxa, such as species of Sphingomonas and
Sphingobium for strain SJY1 and species of Rhizobium, Shinella,
Paramesorhizobium, Sphingopyxis, and Sphingomonas for strain
S33, all the species that displayed similarity to strain SJY1 or
S33 belonged to a different order or class. Several clusters of
mobile element protein genes were found in nicotine-degrading
genes or adjacent sequences of strain SJY1 and S33, but none
were found in ndp. In addition to all the necessary nicotine
metabolism genes, a transmembrane protein was encoded by
ndp and was probably related to the transport of nicotine
or other critical metabolite of nicotine degradation in strain
TY. The mean ENC in TY was 35.67, and the mean ENC
in ndp was 34.34. In general, based on the clustered genetic
organization and integrity of ndp and considering the above
results, ndp had different genetic characteristics compared with
vpp, and vpp in strains SJY1 and S33 appeared to evolve
from HGT. Nevertheless, these results didn’t rule out the
possibility that ndp was originated from HGT. On the contrary,
from the results of RSCU analysis of 3867 genes in draft
genome of strain TY (Figure S2), it seems that there was a
considerable possibility that some genes in ndp were originated
from HGT.
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FIGURE 4 | Intermediate accumulated by TY1ndpB and biotransformation of 6HN by Sphingomonas-ndpB and KT-ndpB. (A) 6HN with a maximum

absorbance at 232 and 295 nm by UV scanning was accumulated by TY1ndpB; (B,C) biotransformation of 6HN by Sphingomonas-ndpB and KT-ndpB,respectively,

showed that no product was formed in strain KT-ndpB, whereas Sphingomonas-ndpB exhibited catalytic activity based on 6-hydroxy-N-methylmyosmine formation.

LC-MS analysis of the product shown in (D), and 6HMM formed by purified NdpB demonstrates the same peak as in (D).

DISCUSSION

Microbial degradation plays an important role in the elimination
of nicotine pollution in the environment. In this study, a
novel nicotine degradation gene cluster, ndp, was identified in
strain TY, which degraded nicotine efficiently via the VPP. The
molecular mechanisms of nicotine degradation in this strain
and the functions of four genes, ndpA, ndpB, ndpC, and ndpD,
were studied. NdpA is responsible for the hydroxylation of
nicotine to 6HN, NdpB catalyzes the conversion of 6HN to
6HMM, NdpC transforms 6HPON to HSP, and NdpD converts
HSP to 2, 5-DHP. Elucidation of the molecular mechanism of
nicotine degradation in strain TY provides a new resource for
industrial applications and the management of nicotine-polluted
environments.

Analysis based on vpp and ndp shows that the homologous
genes of nicotine-degrading genes show a scattered phylogenetic
distribution in strains SJY1 and S33, whereas the homologous
genes of nicotine-degrading genes in TY are distributed all in
closely related taxa and species. There were no distinct difference
in G+C content between the nicotine-degrading gene cluster
and the genome in strains S33 and SJY1; however, this may
be due to genetic homogenization during long-term evolution

following HGT of these genes. Moreover, there were no distinct
differences in the G+C content of the genome and cluster in
strain TY. The RSCU values are useful for comparing codon
usage among genes or sets of genes (Andersson and Sharp,
1996). The RSCU value and percentage of G3s+C3s of nicotine-
degrading genes in strains SJY1 and S33 were highly consistent,
despite the very distant relationship of these strains. In contrast,
the nicotine-degrading genes in strain TY had a remarkably
different codon usage bias and nucleotide composition compared
with strains SJY1 and S33. Additionally, the regions contiguous
to the genes that were confirmed to be horizontally transferred
were observed for the nicotine-degrading gene cluster in strains
SJY1 and S33. However, there was no trace of mobile elements
in ndp in strain TY, may be due to the deletion of intervening
genes (such as mobile elements) that do not provide a selectable
function in certain environments, according to the Selfish
Operon Model of gene clustering in prokaryotes and eukaryotes,
thus facilitating the evolution of clustered, energy efficient,
dissemination (both by vertical transmission and by horizontal
transfer) and functional gene clusters (Lawrence and Roth, 1996;
Lawrence, 1999). Meanwhile, it may be due to the genome
rearrangement of orthologous pathway (Periwal and Scaria,
2014).
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FIGURE 5 | Western blot analysis of purified NdpB expressed in

Sphingomonas TY1ndpB. Western blot analysis of the samples using a His

tag-specific antibody. The contents of the lanes are as follows: M, marker; a1,

original sample; a2, parallel sample with a2; b, 10-fold dilution of the original

sample; and c, 100-fold dilution of the original sample.

Substrate transport-related transporter genes are often
contiguous with catabolism genes in the bacterial genome
to save energy and respond rapidly to environmental stress.
For example, MhbT, a specific transporter for the uptake of
3-hydroxybenzoate in Klebsiella pneumoniae M5a1, is encoded
by a cluster, mhbRTDHIM, containing enzymes that convert
3-hydroxybenzoate to pyruvate and fumarate via gentisate and
a gene activator, mhbR (Xu et al., 2012). MhpT, a 3-(3-
hydroxyphenyl) propionate (3HPP) transporter in Escherichia
coli K-12, is encoded by cluster mhpRABCDFET, and the other
genes in this cluster are responsible for regulatory functions
and 3HPP catabolism (Ferrández et al., 1997; Torres et al.,
2003; Xu et al., 2013). GabPCg, a γ-aminobutyric acid (GABA)
transporter, is adjacent to succinic semialdehyde dehydrogenase
(GabD) and GABA oxoglutarate aminotransferase (GabT) in
the genome of Corynebacterium glutamicum (Zhao et al., 2012).
Interestingly, we identified a transmembrane protein, NdpT, in
ndp (Figure 1). Additionally, ndpT was tentatively proposed to
encode a potential transporter involved in the uptake of nicotine,
its metabolic intermediates, or both. Furthermore, this gene
was absent in strains SJY1 and S33. Combining the scattered
phylogenetic distribution of nicotine-degrading genes in strains
SJY1 and S33, the concentrated structure of nicotine-degrading
genes in strain TY and the above-described results, we considered
that the vpp in strains SJY1 and S33 resulted directly from

FIGURE 6 | Intermediate accumulated by TY1ndpC and biotransformation of 6HPON by Sphingomonas-ndpC and KT-ndpC. (A) 6HPON with a

maximum absorbance at 289 nm was accumulated by TY1ndpC based on UV scanning; (B,C) biotransformation of 6HPON by Sphingomonas-ndpC and KT-ndpC

showed that no product was formed in strain KT-ndpC, whereas Sphingomonas-ndpC had catalytic activity based on the formation of 6-hydroxy-3-succinoyl-pyridine.

LC-MS analysis of the product shown in (D).
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FIGURE 7 | Intermediate accumulated by TY1ndpD and biotransformation of 6-hydroxy-3-succinoyl-pyridine by Sphingomonas-ndpD and KT-ndpD.

(A) 6-hydroxy-3-succinoyl-pyridine with a maximum absorbance at 276 nm was accumulated by TY1ndpD based on UV scanning; (B,C) biotransformation of

6-hydroxy-3-succinoyl-pyridine by Sphingomonas-ndpD and KT-ndpD showed that no product was formed in strain KT-ndpC, whereas Sphingomonas-ndpC

displayed catalytic activity based on 2, 5-dihydroxy-pyridine formation. LC-MS analysis of the product shown in (D).

TABLE 2 | Comparison of the G+C content and nucleotide composition of the genome, gene cluster, and encoded genes.

TY %G+C %G3s+C3s SJY1 %G+C %G3s+C3s S33 %G+C %G3s+C3s

Genome 67.10 / Genome 54.2 Genome 59.16 /

Gene cluster 66 / Gene cluster 55.70 / Gene cluster 55 /

ndpAL 67.21 85.93 vppAL 55.46 60.9655 ndhA 55.28 60.68

ndpAS 64.90 87.5 vppAS 56.41 59.7315 ndhB 56.19 59.06

ndpB 66.39 88.18 vppB 53.34 56.5012 hno 53.42 56.97

ndpC 65.73 83.38 vppCa 53.22 50.463 pno 53.32 50.77

ndpD 65.89 87.63 vppD 53.74 56.3342 hsh 53.74 56.06

ndpE 65.90 85.49 vppE 58.79 73.27044 S33vppE 58.69 72.95

ndpF 67.51 83.26 vppF 64.62 71.6599 S33vppF 64.62 71.65

ndpG 66.82 82.5 vppG 55.76 55.3922 S33vppG 55.29 53.69

ndpH 65.95 84.61 vppH 62.73 77.1739 S33vppH 61.06 75.74

aGene name in gray text means they were putative by analysis this work.

HGT and that ndp was the gene cluster result from genome
rearrangement of orthologous pathways or from Selfish Operon
Model, but with a high degree of homogenization. The specificity
of the ndp gene cluster may explain why P. putida KT2440 is
unable to express active nicotine-degrading genes in strain TY,
in contrast to Sphingomonas aquatilis JSS7T. However, VppA can

be successfully expressed in P. putida KT2440 (Yu et al., 2015),
further supporting the differences between ndp and vpp clusters.

The evolutionary relationships analysis showed that the
nicotine hydroxylase large subunit (NdpAL) in the VPP,
3-succinoylpyridine monooxygenase alpha subunit (SpmA) in
the PRL, and the nicotine dehydrogenase (NdhL) and ketone

Frontiers in Microbiology | www.frontiersin.org 11 March 2017 | Volume 8 | Article 337

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Wang et al. Novel Nicotine-Degrading Gene Cluster

FIGURE 8 | Principal component analysis of the codon usage of

nicotine-catalyzing genes in strains TY, SJY1, and S33. Black dots,

genes from strain TY; red squares, genes from strain S33; green triangles,

genes from strain SJY1. Most of the homologous genes in SJY1 and S33 were

overlapping, and the genes in black circles were homologous genes in strains

SJY1 and S33. ndpE and ndpF almost overlapped with each other in strain TY.

dehydrogenase (KdhL) in the PD belonged to the same protein
family (Figure 9). Evidently, the phylogenies of the NdpAL

and NdpB proteins were completely different (Figure 9). This
result indicated that although they were recruited in the same
metabolic pathway, they had different evolutionary patterns.
In particular, NdpAL resided in two clear phylogenetic clades.
Interestingly, although the VPP and PRL pathways were more
similar in terms of metabolic mechanisms, NdpAL and SpmA,
respectively, belonged to different protein subfamilies with
potentially different origins that had undergone convergent
evolution. However, 6-hydroxy-L-nicotine oxidase, NdpB, and
NicA2 (PRL) had relative closer evolutionary relationships.
According to the patchwork hypothesis, the ancient gene could
have encoded a primitive enzyme with low substrate specificity
to catalyze distinct but similar reactions, and it was recruited into
various biological pathways (Jensen, 1976; Lazcano and Miller,
1996). Our results based on the phylogenies of the NdpAL and
NdpB proteins demonstrated that the VPP and PRL pathways
recruited different genotypes. We also found that the ndpHFEG
genes were linked in some strains (Figure 9). The linkages among
these four genes might represent a common genetic structure in
the VPP and PRL pathways.

In the PD, we found that KdhL and NdhL had a closer
evolutionary relationship and that these proteins can also be
identified in other closely related species such as Rhodococcus
opacus, Nocardioides sp. JS614 and Saccharopolyspora erythraea.
We thought that the PD would be distributed in Gram-
positive bacteria and that the VPP and PRL pathways would
be distributed in Gram-negative bacteria (Table S3). To further
study this hypothesis, we evaluated the gram staining of the
strains with of ndpHFEG. As expected, the linked homologs of
ndpHFEG identified by BLAST searches against 2806 predicted
prokaryotic proteomes were in Gram-negative strains (Table S3).

Moreover, one of the three degradation pathways of nicotinic
acid gone through 2, 5-DHP was only found in Gram-negative
strains (Table S3). Surprisingly, we found that Streptomyces
rapamycinicus might have an entire nicotine-degrading pathway
that is not a PD. Although S. rapamycinicus only had linked
ndpHFG genes, one protein exhibited 34.02% similarity to the
NdpE of S. melonis TY. However, further experimental evidence
is needed to support this result. In summary, in terms of
both evolution and metabolic mechanism, the VPP was more
similar to the PRL. The linkage of ndpHFEG genes shared
by both pathways indicated that these two pathways might
have the same origin; however, variants occurred in some
bacteria.

In addition to the common reactions of hydroxylation at C6 of
the pyridine ring and dehydrogenation at the C2–C3 bond of the
pyrrolidine ring, there are three other similar enzyme-catalyzed
reactions (cleavage of the pyrrolidine residue in the pyridine ring,
deamination and dehydrogenation of the pyrrolidine residue)
and one step of autohydrolysis of the pyrrolidine ring that are,
in fact, shared by the VPP, PRL, and PD pathways (Wang et al.,
2012). Moreover, the codon usage of representative strains of
the VPP, PRL, and PD pathways was distinct (Figure S1). We
speculated that a series of ancient genes could have encoded
primitive enzymes with low substrate specificity to catalyze
distinct but similar reactions, and these genes were recruited
to various biological pathways to form distinct pathways over
long-term evolution, according to the patchwork hypothesis
(Jensen, 1976; Lazcano and Miller, 1996). Together with
the analysis of evolution and relationship of the metabolic
mechanisms of the VPP and PRL pathways described above, it
was reasonable to consider that the VPP, PRL, and PD pathways
may have experienced independent but interrelated evolutionary
events.

The hypothesis that the PD is distributed in Gram-
positive bacteria and that the VPP and PRL pathway is
distributed in Gram-negative bacteria was based on current
research and was an innovative inference. This hypothesis
can be verified by a simple experiment that is theoretically
feasible. The representative intermediate product of the VPP
and PRL pathways can be used as a sole carbon and/or
nitrogen source to screen Gram-positive bacterial growth, and
conversely, we can screen the growth of Gram-negative bacteria
on the pyridine pathway-specific metabolite. After analyzing
the intermediates produced in the pyridine, VPP and PRL
pathways, we considered selecting 2, 5-DHP as the representative
metabolic product in the VPP and PRL pathways and 2,
6-dihydroxy-pseudohydroxypyridine as the product in the PD.
The 2, 5-DHP is an intermediate product that is shared by
the nicotine and nicotinic acid degradation pathways (Jiménez
et al., 2008), and all the strains collected using the 2, 5-DHP
pathway were Gram-negative, supporting our speculation. A
second strategy to support or dismiss our hypothesis is to
examine whether certain homologs of ndpHFEG are active in
specific Gram-positive strains. If these homologs become active,
then our hypothesis is incorrect, and natural Gram-positive
strain that utilize the VPP or PRL pathway will eventually
be obtained. Conversely, our hypothesis is reasonable and
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FIGURE 9 | Phylogenetic trees of the homologs of the hydroxylase of the pyridine ring and dehydrogenase of the pyrrolidine ring. (A) Phylogenetic tree

of the homologs of the hydroxylase of the pyridine ring; (B) Phylogenetic tree of the homologs of the dehydrogenase of the pyrrolidine ring. The trees were constructed

using homologs of the corresponding enzymes from 50 bacterial genomes (the information of these homologs is listed in Table S4). The colored text denotes reported

nicotine-degrading strains, and the strains marked by a square frame have linked ndpHFEG.

has research value. Of course, the Gram-positive strain S.
rapamycinicus, which carries the homologs of ndpAL, ndpB,
ndpE, and ndpHFG, can be assessed for nicotine degradation
ability and the associated pathway. Strain, Pusillimonas sp.
T2, which contained nicotine metabolites from both the VPP
and PD pathways (2, 6-dihydroxypyridine), may be explained
by the substrate ambiguity of nicotine hydroxylase. After
hydroxylation of C6 of the pyridine ring, some of the 6HPON
intermediate was hydroxylated again at C2 of pyridine to

generate 2, 6-dihydroxy-pseudooxynicotine, which was then
hydroxylated by a non-specific C-C hydrolase to produce
2, 6-dihydroxypyridine. Otherwise, the portion of the vpp
cluster in Pusillimonas sp. T2 was different with what we
were discussed about. Four nicotine degradation intermediates
produced by Gram-negative Achromobacter nicotinophagum
have been mentioned above and are related to the PD (6HN),
PRL (pseudooxynicotine, 3-succinoyl-pyridine and HSP), and
VPP (6HN and HSP). We thought that this strain might contain
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a complete PRL and that due to the substrate ambiguity of the
hydroxylase of pyridine ring, the strain might be capable of
forming 6HN. On the other hand, this strain may contain both
the PD and the PRL pathway.

In summary, we discovered a new nicotine degradation gene
cluster, ndp, and characterized four genes that catalyze the first
four enzymatic steps in the VPP in S. melonis TY. These results
provide relatively comprehensive evidence for the molecular
mechanism of nicotine degradation in S. melonis TY. We also
formulated an inference that both the evolutionary features and
metabolic mechanisms of the VPP were more similar to the PRL.
These findings provide a deeper understanding of the evolution
of nicotine metabolism in Sphingomonas. The hypothesis that
the PD is distributed in Gram-positive bacteria while the VPP
and PRL pathways are distributed in Gram-negative bacteria
based on the result of comprehensive homologs searching
and phylogenetic tree construction and that the evolutionary
relationships among the VPP, PRL and PD pathways will provide
critical information that will improve our understanding of the
evolution of nicotine-degrading gene clusters.
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