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Previous studies on mouse models report that cecal and fecal microbial communities
may differ in the taxonomic structure, but little is known about their respective functional
activities. Here, we employed a metaproteogenomic approach, including 16S rRNA
gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze
the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of
identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes
were observed as considerably higher in CCs, while several key enzymes, involved
in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and
most actively expressed by Bacteroidetes, were clearly more represented in feces.
On the whole, taxon and function abundance appeared to vary consistently with
environmental changes expected to occur throughout the transit from the cecum to
outside the intestine, especially when considering metaproteomic data. The results of
this study indicate that functional and metabolic differences exist between CC and
stool samples, paving the way to further metaproteogenomic investigations aimed at
elucidating the functional dynamics of the intestinal microbiota.

Keywords: gut microbiome, metabolic pathways, metagenomics, metaproteomics, microbial community,
systems microbiology

INTRODUCTION

Compelling evidence has emerged in the last years supporting the gut microbiota as a key factor in
mammalian physiology and disease (Marchesi et al., 2016). Mouse models have been increasingly
employed to investigate the role and functions of intestinal microbial communities (Laukens et al.,
2016). Mouse and human gastrointestinal tracts share many anatomical and functional features,
although mouse cecum is relatively larger and able to ferment indigestible food components, while
the human cecum is smaller and vestigial (Nguyen et al., 2015). For both human and mouse studies,
an essential question regards what kind of sample ought to be collected for achieving the best
information on structure and functions of the gut microbiota. In human studies, fecal samples
are typically used as a proxy for the gut microbiota, as they are easily accessible; conversely, the
collection of luminal or mucosa-associated material directly from the intestine is often unfeasible
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for ethical and/or practical reasons. When using mouse models,
stool is always preferred as sample in time-course studies, because
it can be collected from the same mouse throughout the entire
duration of the experiment, while cecal samples are collected post
mortem, often together with other organs to be analyzed.

The main question that comes up is whether, and to what
extent, mouse microbiotas from cecal contents (CCs) and
feces are comparable in terms of composition and, mostly,
functional activity. In fact, many physicochemical conditions
(pH, redox potential, oxygen, and salts concentration) as well
as biochemical interactions (with molecules released by the
intestinal epithelium, immune cells, and other microorganisms),
that are expected to shape the microbiota, change along the
different regions of the gastrointestinal tract (Haange et al., 2012)
and are noticeably different in feces. A few studies analyzed
the taxonomic composition of the murine intestinal microbiota
at different sampling sites (Pang et al., 2012; Gu et al., 2013;
Weldon et al., 2015), but no systematic investigations have been
conducted to date. Even more importantly, these surveys were
based on denaturation gradient gel electrophoresis or 16S rRNA
gene sequencing, with no information about genetic potential
and functional activities of the microbiota, which can be achieved
using shotgun metagenomics and metaproteomics, respectively.

Here, we compared the microbiota of paired mouse CCs and
feces (F) in order to investigate the structural and functional
differences between the two microbial communities. To this aim,
we chose to employ a metaproteogenomic approach, enabling
the elucidation of the active response of the microbiota to the
environmental perturbations through the identification of its
actually expressed proteins.

MATERIALS AND METHODS

Mice and Sample Collection
Samples were collected from three 10-week-old female NOD
mice bred at the specific pathogen free facility in the New
Research Building at Harvard Medical School. Mice were
provided a standard chow diet ad libitum (PicoLab Mouse Diet
20, #5058, LabDiet, St. Louis, MO, USA). Fresh fecal pellets
(approximately 100 mg for each mouse) were collected into sterile
tubes under a laminar flow hood, immediately placed on dry
ice and then stored at −80◦C until processing. To obtain the
cecal luminal content, mice were sacrificed at the same time
point of fecal collection. Ceca were immediately collected, opened
longitudinally, and vigorously shaken in 5 ml of sterile PBS to
release their contents. The cecal tissue was removed and the
contents were then centrifuged at 10,000 x g for 10 min. The
supernatants were discarded, while the pellets (approximately
50 mg each) were flash frozen in liquid nitrogen and stored at
−80◦C until use. This study was carried out in accordance with
the recommendations of the Institutional Animal Care and Use
Committee of Harvard Medical School, and the experimental
protocol was approved by the same Committee. At the time of the
analyses, fecal samples and CCs were thawed at 4◦C, and from
each of them two portions were collected for DNA and protein
extraction, respectively.

DNA Extraction and 16S rRNA Gene
Analysis
DNA extraction was undertaken using the QIAamp DNA
Stool Mini Kit (Qiagen, Hilden, Germany), according to
the manufacturer’s protocol. Amplification of the entire
16S-rRNA genes was performed using the universal
primers 27F-1492R (AGAGTTTGATYMTGGCTCAG and
TACGGYTACCTTGTTACGACTT, respectively) and the
recombinant Taq DNA Polymerase from Invitrogen (Thermo
Scientific, San Jose, CA, USA). PCR cycling conditions were
as follows: 2 min at 94◦C; 28 cycles of 30 s at 94◦C, 30 s at
55◦C, 2 min at 68◦C; finally, 7 min at 72◦C. PCR products were
confirmed on 2% agarose gel (Sigma Aldrich, St. Louis, MO,
USA). The 16S rRNA gene amplification reaction was performed
in duplicate, then the two amplification products were pooled
together, cleaned up using AMPure XP (Beckman Coulter, Brea,
CA, USA) magnetic beads and quantified with the Qubit HS
assay using the Qubit fluorimeter 2.0 (Life Technologies, Grand
Island, NY, USA).

Libraries were constructed according to the Nextera XT
kit (Illumina, San Diego, CA, USA). The average insert size
was around 500 bps. Sequence-ready libraries were normalized
to ensure equal library representation in the pooled samples.
DNA sequencing was performed with the Illumina HiScanSQ
sequencer, using the paired-end method and 93 cycles of
sequencing.

The Illumina demultiplexed paired-reads were trimmed
for the first 20 bps using FASTX and the sequences with
Nextera adapter contamination were identified using the
UniVec database1 and removed. Paired reads were merged
using the script join_paired_ends.py inside the QIIME
package v.1.9.0 (Caporaso et al., 2010) with a minimum
overlap of eight base pairs. OTU generation was done using
a QIIME pipeline based on USEARCH’s OTU clustering
recommendations2 using the closed-reference OTU picking
to allow clustering of shotgun 16S sequences. Reads were
clustered at 97% identity using UCLUST to produce OTUs
(Edgar, 2010). Taxonomy assignment of resulting OTUs was
performed using the Greengenes 13_8 database (DeSantis et al.,
2006). With taxonomic lineages in hand, OTU tables were
computed using QIIME (Caporaso et al., 2010; Kuczynski et al.,
2010).

Metagenome Analysis
Libraries were constructed according to the Nextera XT kit and
sequenced with the HiScanSQ sequencer (both from Illumina),
using the paired-end method and 93 cycles of sequencing.

Read processing (merging of paired reads and quality filtering)
was carried out using tools from the USEARCH suite v.8.1.1861
(Edgar, 2010; Edgar and Flyvbjerg, 2015), using the parameters
described elsewhere (Tanca et al., 2016).

Taxonomic annotation was performed using MEGAN v.5.11.3
(Huson and Mitra, 2012). Read sequences were preliminary
subjected to DIAMOND (v.0.7.1) search against the NCBI-nr

1ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec
2http://www.drive5.com/usearch/manual/otu_clustering.html
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DB (2016/03 update), using the blastx command with default
parameters (Buchfink et al., 2015). Then, a lowest common
ancestor (LCA) classification was performed on DIAMOND
results using MEGAN with default parameters.

Functional annotation was accomplished by DIAMOND
blastx search (e-value threshold 10−5) against bacterial sequences
from the UniProt/Swiss-Prot database (release 2015_12) and
subsequent retrieval of protein family, KEGG orthologous group
and pathway information associated with each UniProt/Swiss-
Prot accession number (UniProt Consortium, 2015).

The metagenomic sequence data were deposited in the
European Nucleotide Archive under the project accession
number PRJEB15341.

Protein Sample Preparation
Samples were resuspended by vortexing in SDS-based extraction
buffer and then heated and subjected to a combination of
bead-beating and freeze-thawing steps as detailed elsewhere
(Tanca et al., 2014).

Protein extracts were subjected to on-filter reduction,
alkylation, and trypsin digestion according to the filter-aided
sample preparation (FASP) protocol (Wisniewski et al., 2009),
with slight modifications detailed elsewhere (Tanca et al., 2013).

Metaproteome Analysis
LC-MS/MS analysis was carried out using an LTQ-Orbitrap
Velos mass spectrometer (Thermo Scientific) interfaced with
an UltiMate 3000 RSLCnano LC system (Thermo Scientific).
The single-run 1D LC peptide separation was performed as
previously described (Tanca et al., 2014), loading 4 µg of peptide
mixture per each sample and applying a 485 min separation
gradient. The mass spectrometer was set up in a data dependent
MS/MS mode, with Higher Energy Collision Dissociation as
the fragmentation method, as detailed elsewhere (Tanca et al.,
2013).

Peptide identification was performed using the Proteome
Discoverer informatic platform (version 1.4; Thermo Scientific),
with Sequest-HT as search engine and Percolator for peptide
validation (FDR < 1%). Search parameters were set as described
previously (Tanca et al., 2015).

Parallel searches were performed using two different sequence
databases, and results from the two searches for each sample were
merged. The first database was composed of the metagenomic
sequences obtained in this study, both as raw reads and assembled
contigs (2,158,809 sequences). Paired reads were merged as
described above for 16S rRNA gene analysis. The output
sequences were filtered (with a fastq_truncqual option = 15)
and clustered at 100% using USEARCH v.5.2.236 (Edgar, 2010).
Read assembly into contigs was carried out using Velvet v.1.2.10
(Zerbino and Birney, 2008), by setting 61 as k-mer length,
200 as insert length, and 300 as minimum contig length.
Open reading frames were found from both reads and contigs
using FragGeneScan v.1.19, with the training for Illumina
sequencing reads with about 0.5% error rate (Rho et al.,
2010). The second database was a selection of all bacterial,
archaeal, fungal and gut microbiota sequences (79,203,800

sequences in total) from the 2015_02 release of the UniProtKB
database.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (Vizcaino
et al., 2016) partner repository with the dataset identifier
PXD004911.

The Normalized Spectral Abundance Factor (NSAF) was
calculated in order to estimate protein abundance (Zybailov
et al., 2006). Specifically, a spectral abundance factor (SAF)
was obtained by dividing the number of spectral counts
of a protein by its number of amino acids (Zhang et al.,
2010); then, NSAF values were obtained by dividing the
SAF values by the SAF sum for all proteins identified
in each sample. NSAF values were finally multiplied by
a scale factor corresponding to the average number of
spectral counts identified per sample (in order to deal with
integers).

Taxonomic and functional assignments were performed as
described above for metagenome sequences, except using the
DIAMOND blastp command instead of blastx. Moreover,
peptides from sequences which could not be annotated
by MEGAN were iteratively subjected to LCA taxonomic
classification using the ‘Metaproteome analysis’ module of the
Unipept web application (Mesuere et al., 2015).

Statistical Analysis and Graph
Generation
Differential analysis of 16S-MG, S-MG and MP data (adjusted
based on the total number of counts per sample) was performed
using an established paired sample test for count data based
on an inverted beta binomial (ibb) model (Pham and Jimenez,
2012). Meta-omic count data were assumed to be modeled
by a beta binomial distribution based on previous studies
performed on count data obtained through discovery mass
spectrometry proteomics (Ramus et al., 2016) and nucleic acid
sequencing techniques (Smith and Birtwistle, 2016). The p-value
list provided by the ibb test was subsequently subjected to
a multiple testing adjustment based on a sequential goodness
of fit (SGoF) metatest (Carvajal-Rodriguez et al., 2009) using
the SGoF+ software (v.3.8) with default parameters (Carvajal-
Rodriguez and de Una-Alvarez, 2011). This metatest has been
successfully applied to large RNA-seq and proteomic datasets
(Shi et al., 2012; Mortstedt et al., 2015), and was applied
in this study in view of its suitability for small sample
size and ability to maintain a high statistical power when
increasing the number of test. An adjusted p-value < 0.05
was considered as the threshold for statistical significance of
differential results.

Fold-change was calculated in a paired sample fashion (mean
of cecum/feces ratios calculated for each individual mouse), using
a correction factor (CF = 2) to eliminate discontinuity due to
missing values; fold-change values that were less than 1 were
replaced by the negative of their inverse. Furthermore, features
with missing values in the most abundant group were filtered out
from those considered as differentially abundant.
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Shannon’s index for alpha diversity estimation was
calculated according to established methods (Hill et al.,
2003). ClustVis3 was employed to generate PCA plots
(Metsalu and Vilo, 2015). Cladograms were generated
using GraPhlAn (Asnicar et al., 2015) and edited using
Inkscape4. Venn diagrams were plotted using Venn Diagram
Plotter5.

3http://biit.cs.ut.ee/clustvis
4https://inkscape.org
5https://omics.pnl.gov/software/venn-diagram-plotter

RESULTS

General Metaproteogenomic Metrics of
Mouse Cecal and Fecal Microbiota
The number of reads sequenced per sample, and taxonomically
annotated at least at the phylum level, ranged from 97,929
to 305,577 for 16S-MG (mean 177,994), and from 316,074 to
2,119,077 for S-MG (mean 1,028,635). Based on MP data, the
number of peptide-spectrum matches identified per sample, and
taxonomically assigned at least at the phylum level, ranged from

FIGURE 1 | Cladogram illustrating the distribution of taxa with differential abundance between cecal contents (CCs) and feces, according to 16S-MG
data. Each dot represents an identified taxon, with taxa higher in CCs colored in green, and those higher in feces in brown.
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14,786 to 16,901 (mean 16,264). The number of OTUs detected
by 16S-MG ranged from 2,421 to 7,390 (mean 4,865). The levels
of overlap among OTUs, genera and functions identified with the
three omic approaches in CC and F samples are illustrated in the
Venn diagrams of Supplementary Figures S1–S7.

We first compared alpha-diversity in CC and F samples
(Supplementary Figure S8), both based on taxonomic and
functional data. On the whole, no univocal and significant
differences could be observed between CC and F (probably due
to the small sample size and a considerable inter-individual
variability), apart from a significantly higher taxonomic diversity
in CC according to MP data. Principal component analysis
(PCA) of taxonomic and functional data obtained with the three
meta-omic approaches (Supplementary Figure S9) also suggested
a considerable impact of inter-individual variability, although
clustering of CC and F samples could be observed on the second
component when considering taxon and function abundances
based on MP data.

Cecal and Fecal Microbiota Exhibit
Different Taxonomic Structures
To identify which members of the microbiota changed in
relative abundance when the intestinal contents moved from
the mouse cecum to the external environment, we pairwise
compared taxa abundances measured in CC and F based on
16S-MG, S-MG and MP analysis. Cladograms in Figures 1–3
illustrate in a hierarchical fashion 44, 101, and 36 differentially
abundant taxa detected according to 16S-MG, S-MG, and
MP data, respectively (the overlap among differential genera
according to the three different approaches is illustrated in the
Venn diagram of Supplementary Figure S10). As a main result,
clostridia (Gram-positive anaerobes, including many members
of Lachnospiraceae, Ruminococcaceae, and Clostridiaceae) were
found to be significantly more represented in CC compared to
F, according to all approaches. On the other hand, MG data
revealed that some Gram-positive aerobes (e.g., those belonging
to the family Lactobacillaceae) were significantly more abundant
in F compared to CC, as well as several taxa from Bacteroidetes
(including Bacteroides and Prevotella, particularly according to
16S-MG and MP).

Specific Phylum-Related Functions Differ
between Cecal and Fecal Microbiota
We then focused on the functions encoded (S-MG) and expressed
(MP) by the CC and F microbiota. Specifically, we combined
functional (retrieved from the KEGG Orthology database) and
taxonomic information (phylum) assigned to each sequence, in
order to answer to the basic questions ‘who is able to do what’
(S-MG results) and ‘who is actually doing what’ (MP results).

According to S-MG results, we found that 495
function-phylum combinations were significantly more
represented in CC than in F, while 186 were differential
in the opposite direction (Supplementary Table S1). More
interestingly, and consistently with taxonomic data, over 97%
of functions higher in CC belonged to Firmicutes, while 58, 17,
and 12% of those higher in F had been assigned to Bacteroidetes,

Proteobacteria, and Actinobacteria, respectively. On the other
hand (Table 1 and Supplementary Table S2), 49 function-phylum
combinations resulted as more abundant in CC according to
MP data, while 34 were higher in F. Again, 94% of functions
more represented in CC belonged to Firmicutes, whereas all
but one of those higher in F were from Bacteroidetes. The
overlap between the differential function-phylum combinations
detected with S-MG and MP is provided in the Venn diagram of
Supplementary Figure S11.

Since most of the observed differences seemed to be directly
dependent on changes in Firmicutes-to-Bacteroidetes ratio, we
decided to further normalize the abundance of Firmicutes
and Bacteroidetes functions based on the total amount of
each specific phylum in a given sample, with the aim of
finding those functions changing independently of the ‘structural’
(taxonomic) modification of the microbiota. When considering
S-MG data for Firmicutes, we found 45 gene functions higher
in CC (including enzymes involved in sulfur metabolism and
components of bacterial flagella) and 50 gene functions higher in
F (Supplementary Table S3), while MP data showed 10 protein
functions as more abundant in CC versus 3 more abundant
in F (Table 2). ABC transporters (with an iron transport system
protein changing >6-fold in expression), proteases/peptidases,
and enzymes involved in purine metabolism were among specific
Firmicutes functions ‘active’ in CC and ‘silenced’ in F. When
focusing on Bacteroidetes, 4 and 17 gene (mainly catalytic)
functions were detected as more abundant in CC and F,
respectively (Supplementary Table S4); furthermore, based on
MP data, 3 and 12 protein functions were enriched and depleted
in CC compared to F samples, respectively (Table 3). Several key
enzymes involved in oxalate degradation, glutamate/glutamine
metabolism, and redox homeostasis were identified among those
expressed by Bacteroidetes with increased relative abundance
in F compared to CC, often with remarkable fold-changes (up to
over 10).

Activity of Metabolic Pathways Changes
between Cecal and Fecal Microbiota
To gain insight into the metabolic activity of the microbiota,
we aggregated phylum-assigned functional data according to
the metabolic pathway to which each sequenced (S-MG) or
identified (MP) enzyme could be assigned based on UniProtKB
information. As a result (Supplementary Table S5), 110 pathways
resulted as differentially represented between CC and F
metagenomes, with 97% of those more represented in CC
being assigned to Firmicutes, while 44, 26, and 10% of those
higher in F being assigned to Bacteroidetes, Proteobacteria, and
Actinobacteria, respectively (consistently with general functional
data). Of interest, a marked drop could be observed in F in
the relative abundance of genes responsible for the degradation
of various di- and polysaccharides, as well as in the sulfur
and butyrate metabolism, counterbalanced by an increase in
genetic potential toward biosynthetic routes due to several non-
Firmicutes phyla. When normalizing on the total abundance of
Firmicutes in the samples, 19 pathways remained differential
(including 3-phenylpropanoate degradation, sulfite reduction,
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FIGURE 2 | Cladogram illustrating the distribution of taxa with differential abundance between CCs and feces, according to S-MG data. Each dot
represents an identified taxon, with taxa higher in CCs colored in green, and those higher in feces in brown. Abbreviations: A, Mortierella; a, Lachnoclostridium; AA,
Zymobacter; AB, Marinomonas; AC, Lebetimonas; AD, Candidatus Pelagibacter; AE, Microvirga; AF, Wolbachia; AG, Candidatus Paracaedibacter; AH,
Magnetospira; AI, Haematobacter; AJ, Chondromyces; AK, Thermoanaerobaculum; AL, Treponema; AM, Brachyspira; AN, Cloacibacillus; AO, Mastigocoleus; AP,
Acaryochloris; B, Cyphellophora; b, Youngiibacter; C, Beauveria; c, Clostridium; d, Oscillibacter; D, Togninia; e, Anaerovorax; E, Segetibacter; f, Dielma; F,
Phaeodactylibacter; g, Faecalitalea; G, Schleiferia; H, Algibacter; h, Mitsuokella; I, Psychroserpens; i, Selenomonas; J, Cellulophaga; j, Sporomusa; K, Flexibacter; k,
Megasphaera; l, Megamonas; L, Persephonella; m, Lactobacillus; M, Olsenella; n, Alkalibacterium; N, Pseudonocardia; o, Eremococcus; O, Microbispora; P,
Dactylosporangium; p, Saccharibacillus; q, Acidovorax; Q, Mycoplasma; r, Azohydromonas; R, Flavonifractor; S, Intestinimonas; s, Thiomonas; t, Chitiniphilus; T,
Epulopiscium; u, Conchiformibius; U, Ruminococcus; v, Anaerobiospirillum; V, Anaerotruncus; w, Budvicia; W, Dehalobacter; X, Lachnospira; x, Raoultella; Y,
Butyrivibrio; y, Methylohalobius; z, Lysobacter; Z, Shuttleworthia.

hydrogen sulfide biosynthesis and tetrahydrofolate biosynthesis
more represented in CC, and L-tryptophan degradation, lactose
degradation, starch degradation and pentose phosphate pathway
more represented in F), indicating that some differences were
not proportional to the general taxonomic modification of the
microbiota between CC and F.

As shown in Table 4, 18 pathways were found to be more
active in the CC metaproteome (89% from Firmicutes), including
tetrahydrofolate interconversion (part of the Wood–Ljungdahl

pathway), pentose phosphate pathway, as well as those related
to pyruvate and short chain fatty acid metabolism. In addition,
starch degradation from Ascomycota (fungi) and Proteobacteria
were observed to be clearly higher in CC compared to F. On
the other hand, all 14 pathways whose enzymes were more
expressed in F belonged to Bacteroidetes; among them, lipid
IV(A) biosynthesis, urea degradation, purine nucleoside salvage
and oxalate degradation (this latter pathway with a mean fold-
change > 20) were confirmed to be significantly differential even
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FIGURE 3 | Cladogram illustrating the distribution of taxa with differential abundance between CCs and feces, according to MP data. Each dot
represents an identified taxon, with taxa higher in CCs colored in green, and those higher in feces in brown.

upon normalization on the total abundance of Bacteroidetes in
the samples.

DISCUSSION

The main purpose of this study was to identify taxon-specific
functions changing between CCs and stool by means of
a metaproteogenomic approach. Information about microbial
functional traits actually changing in response to stimuli from
host, diet, or other environmental factors can be in fact only
gathered by functional meta-omics, in view of their intrinsic

sensitivity to perturbation (Heintz-Buschart et al., 2016). In
particular, metaproteomics is able to measure microbial proteins,
which represent key molecules in GM metabolism and host-
GM interaction (Xiong et al., 2015). Here, in spite of the small
sample size employed, the global analytical strategy allowed
the identification of several phylum-specific metabolic pathways
differing in activity between these two microbial communities,
confirming metaproteogenomics as a promising tool to unveil
microbiota functional variations. On the whole, the structure
of the fecal microbiota appeared to differ moderately from that
of the luminal cecal microbiota, in line with previous reports
(Gu et al., 2013), with the large majority of the taxonomic
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TABLE 1 | Functional-taxonomic features with significantly differential abundance between cecal and fecal metaproteome.

Function Phylum Adjusted p-value Mean CC/F fold-change (±SEM)

Methyl-accepting chemotaxis protein Firmicutes 2.7 × 10−33 8.36 ± 5.41

Iron(III) transport system substrate-binding protein Firmicutes 4.3 × 10−53 6.92 ± 4.80

Phosphoribosylaminoimidazole-succinocarboxamide
synthase

Firmicutes 4.4 × 10−37 5.24 ± 2.75

Acyl carrier protein Firmicutes 3.2 × 10−60 5.06 ± 1.70

ATP-dependent Clp protease, protease subunit Firmicutes 5.2 × 10−55 4.72 ± 2.01

Acetate CoA-transferase Firmicutes 7.7 × 10−52 4.44 ± 1.82

Aspartyl-tRNA synthetase Firmicutes 4.0 × 10−21 4.34 ± 2.59

3D-(3,5/4)-Trihydroxycyclohexane-1,2-dione
acylhydrolase

Firmicutes 2.2 × 10−19 4.31 ± 2.23

Phosphoglucomutase Firmicutes 9.4 × 10−39 4.27 ± 1.05

Polyribonucleotide nucleotidyltransferase Firmicutes 6.9 × 10−61 4.27 ± 0.29

Large subunit ribosomal protein L13 Bacteroidetes 2.4 × 10−10
−5.16 ± 3.06

Superoxide dismutase, Fe–Mn family Bacteroidetes 9.7 × 10−49
−5.49 ± 1.93

Peroxiredoxin (alkyl hydroperoxide reductase subunit C) Bacteroidetes 2.3 × 10−34
−5.62 ± 2.87

Flagellin Proteobacteria 7.6 × 10−24
−6.17 ± 4.44

Pullulanase Bacteroidetes 1.4 × 10−63
−9.25 ± 3.70

Molecular chaperone DnaK Bacteroidetes 6.0 × 10−15
−9.91 ± 4.81

Glutaminase Bacteroidetes 3.0 × 10−64
−11.39 ± 2.27

Oxalyl-CoA decarboxylase Bacteroidetes 2.7 × 10−66
−13.72 ± 4.33

Glutamate decarboxylase Bacteroidetes 1.3 × 10−65
−17.08 ± 6.43

Formyl-CoA transferase Bacteroidetes 6.3 × 10−65
−22.09 ± 4.62

features identified in both CC and F samples, according to all
approaches. However, some substantial changes in the functional
and metabolic activity could be observed, especially and more
effectively as microbial functionalities were evaluated by means
of an integrated metaproteogenomic approach, where the use
of matched metagenomes as sequence databases significantly
improve the protein identification yield (Tanca et al., 2016).

We chose to employ a full-length 16S rRNA amplification
due to technical reasons related to the specific sequencer used
in the study, as well as in view of preliminary tests in which
a slightly higher richness and diversity was measured when
amplifying the full-length 16S rRNA sequence rather then the
single V4 hypervariable region (data not shown). Although a
closed-reference OTU picking was applied, which is specifically
designed to allow clustering of shotgun 16S sequences (similar
to the randomly distributed 16S rRNA fragments sequenced in
this work), it has to be noted that the presence of some reads
containing highly conserved sequence portions may have led to
a slight decrease in taxonomic resolution, and/or to a minor
increase in false positive taxonomic assignments. Moreover, the
low level of comparability between 16S and S-MG taxonomic
results observed in this study might be likely due to differences in
taxonomic classification and update frequency among databases
(GreenGenes vs. NCBI).

In this study, fresh fecal pellets were collected within few
minutes from their production, while, at the same time point, the
cecal luminal contents were obtained from the ceca immediately
after mice were sacrificed. Building on all metagenomic and
metaproteomic data reported here, light might be shed on
the physical and biochemical variables that may account for

the observed modification in structure and functions of the
microbiota during the route from the cecum to the external
environment. A first, key variable is the presence of oxygen.
Clostridia cannot survive in oxic conditions, and their growth
rate is critically reduced in microxic conditions (Al-Qadiri et al.,
2015). In addition to spore formation, aerobiosis leads clostridia
to develop L-forms, a condition characterized by the arrest of cell
wall construction due to yet unknown changes in biochemical
pathways (Mearls et al., 2012). On the other hand, oxygen
stress triggers a complex and controlled response in Bacteroides
spp., allowing their survival and persistence thanks to enzymatic
reduction of oxygen-derived species via scavenging enzymes
(including thioredoxin reductase, catalase, superoxide dismutase,
peroxiredoxins, as observed in this study) (Rocha et al., 2007).
Thus, given the metabolic features of these microbial groups,
the growth rate of species belonging to anaerobic Firmicutes
appears lower than that of Bacteroidetes species when the
microbial community is exposed to the microxic milieu of the
rectum and, then, to the oxic environment of the fecal sample.
This may therefore be one of the reasons why Bacteroidetes
exhibit a relative higher persistence in fecal samples compared
to Firmicutes. The exposure to oxygen may also explain the
different behavior of the facultative anaerobic or microaerophilic
Lactobacillus spp., compared to the other Firmicutes genera,
as well as the relatively higher abundance of certain genera
belonging to facultative anaerobic Proteobacteria.

Another stress condition encountered by the microbiota when
moving from the luminal cecum to the rectum is the reduction of
water content, and the consequent variation in salt concentration.
Both Gram-positive and -negative bacteria are known to
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TABLE 2 | Firmicutes functions with significantly differential normalized
abundance between cecal and fecal metaproteome.

Function Adjusted Mean CC/F

p-value fold-change (±SEM)

Iron(III) transport system
substrate-binding protein

4.7 × 10−6 6.07 ± 4.47

Acyl carrier protein 2.9 × 10−8 4.28 ± 1.48

Phosphoribosylaminoimidazole-
succinocarboxamide
synthase

1.3 × 10−3 4.27 ± 2.08

ATP-dependent Clp protease,
protease subunit

1.7 × 10−7 4.11 ± 1.81

Acetate CoA-transferase 6.8 × 10−4 3.72 ± 1.89

Polyribonucleotide
nucleotidyltransferase

1.0 × 10−5 2.67 ± 0.33

Phosphoglucomutase 2.3 × 10−3 2.41 ± 0.46

Phenylalanyl-tRNA synthetase
beta chain

4.0 × 10−7 2.33 ± 0.17

Presequence protease 2.1 × 10−6 2.17 ± 0.33

Spermidine/putrescine
transport system ATP-binding
protein

4.5 × 10−5 2.00 ± 0.29

Peptide/nickel transport system
substrate-binding protein

1.2 × 10−2
−1.46 ± 0.13

Glyceraldehyde 3-phosphate
dehydrogenase

9.3 × 10−7
−1.46 ± 0.08

2,3-Bisphosphoglycerate-
dependent phosphoglycerate
mutase

9.2 × 10−5
−2.90 ± 0.56

orchestrate a response to osmotic shock that includes the
accumulation of compatible solutes such as glutamate (Botsford
et al., 1994). In keeping with this previous knowledge, we report
here that Bacteroidetes functions related to glutamate synthesis
(i.e., glutaminase and glutamate dehydrogenase) increase their
relative abundance in the fecal samples compared to CCs.
Another enzyme involved in glutamate metabolism, glutamate
decarboxylase (GAD), is dramatically increased in the mice
fecal samples. This variation is compatible with a pH drop
in the fecal samples compared to the distal colon (Lewis and
Heaton, 1997), since this enzyme allows the bacteria to maintain
favorable intracellular pH conditions by optimizing availability of
glutamate that, in turn, is converted to GABA by GAD, a reaction
that increases the consumption of intracellular protons (Feehily
and Karatzas, 2013).

Furthermore, our analysis of the KEGG Orthology functional
groups showed an impressive and significant differential
abundance of formyl-CoA transferase and oxalyl-CoA
decarboxylase between CC and F metaproteome. These are
the two key enzymes responsible for oxalotrophy, i.e., the
ability to use oxalate as energy source as a result of bacterial
catabolism. Oxalate is present in environments as diverse
as soils or gastrointestinal tracts. Our data show an active
role of Bacteroidetes in oxalate degradation in the fecal
microbiome, in contrast with previous reports stating that
oxalate-degrading bacteria are essentially restricted to three
phyla, namely Actinobacteria, Firmicutes, and Proteobacteria

TABLE 3 | Bacteroidetes functions with significantly differential
normalized abundance between cecal and fecal metaproteome.

Function Adjusted Mean CC/F f

p-value old-change (±SEM)

Large subunit ribosomal
protein L11

1.1 × 10−2 4.84 ± 3.08

F-type H+-transporting
ATPase subunit beta

3.8 × 10−2 3.04 ± 1.20

L-Rhamnose isomerase 5.7 × 10−4 1.76 ± 0.13

Deoxyribose-phosphate
aldolase

2.5 × 10−4
−1.65 ± 0.13

Catalase 2.7 × 10−3
−1.67 ± 0.17

Prolyl-tRNA synthetase 5.5 × 10−3
−1.67 ± 0.17

Thioredoxin reductase
(NADPH)

2.9 × 10−7
−2.33 ± 0.44

4-Alpha-glucanotransferase 9.8 × 10−9
−2.83 ± 1.09

L-Asparaginase 9.6 × 10−8
−3.28 ± 0.43

Superoxide dismutase,
Fe–Mn family

2.1 × 10−2
−3.75 ± 1.59

Pullulanase 9.0 × 10−10 −6.60 ± 2.55

Glutaminase 5.5 × 10−12
−8.33 ± 1.69

Formyl-CoA transferase 1.4 × 10−12
−9.53 ± 1.65

Oxalyl-CoA decarboxylase 7.4 × 10−11
−10.18 ± 4.18

Glutamate decarboxylase 2.0 × 10−11
−12.99 ± 6.15

(Herve et al., 2016). It needs to be noted, however, that most
of the Bacteroidetes formyl-CoA transferase and oxalyl-CoA
decarboxylase sequences matching with those identified in this
study were added to the UniProt repository only in the last
few years. Consistently with our results, 50 OTUs belonging to
the uncultured Bacteroidales family S24-7 and detected in the
woodrat gut microbiota were found to correlate significantly
with oxalate consumption (Miller et al., 2016). The reason for
this relatively increased abundance of oxalate degradation is not
clear, since our experimental approach did not include specific
metabolite analyses. A possible explanation might be found in the
increased abundance in feces of Ascomycota (as clearly measured
by S-MG and, specifically concerning Saccharomycetaceae,
also by MP), as some members of this phylum are known to
actively produce oxalate (Guimaraes and Stotz, 2004). In turn,
Bacteroidetes survival and replication in the fecal sample would
benefit by the degradation of this organic acid. A number of
studies have pointed out that the extent of oxalate degradation in
the intestine by the resident microbiota has an important impact
on oxalate absorption and excretion (Li et al., 2015), as well as
on crystal formation in the urinary tract (urolithiasis) (Knight
et al., 2013). In addition to Oxalobacter and Bifidobacterium spp.,
Bacteroidetes might also be involved in these processes given
their capability to degrade oxalate.

CONCLUSION

This metaproteogenomic study allowed the identification of
taxon-specific functions and metabolic pathways significantly
differing in activity between the cecal luminal microbiota and
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TABLE 4 | Differential pathway-phylum combinations between cecal and fecal metaproteome.

Pathway Phylum Adjusted p-value Mean CC/F fold-change (±SEM)

Tetrahydrofolate interconversion Firmicutes 1.5 × 10−3 6.00 ± 3.80

IMP biosynthesis via de novo pathway Firmicutes 4.7 × 10−16 4.92 ± 1.51

Diglucosyl-diacylglycerol biosynthesis Firmicutes 1.1 × 10−19 4.62 ± 1.11

Pentose phosphate pathway Firmicutes 1.0 × 10−4 3.86 ± 1.57

Starch degradation Ascomycota 1.4 × 10−5 3.83 ± 2.13

Pyruvate fermentation Firmicutes 1.6 × 10−6 3.53 ± 1.24

1,2-Propanediol degradation Firmicutes 1.0 × 10−12 3.22 ± 0.89

Galactarate degradation Firmicutes 4.4 × 10−12 3.18 ± 1.06

(R)-Mevalonate biosynthesis Firmicutes 6.5 × 10−4 2.84 ± 0.87

Propanoyl-CoA degradation Firmicutes 4.9 × 10−6 2.67 ± 0.60

L-Tryptophan degradation via pyruvate pathway Firmicutes 2.7 × 10−4 2.36 ± 0.22

L-Isoleucine biosynthesis Firmicutes 9.4 × 10−17 2.23 ± 0.32

Glycogen biosynthesis Firmicutes 4.0 × 10−9 2.23 ± 0.31

UMP biosynthesis via salvage pathway Firmicutes 5.2 × 10−14 2.17 ± 0.67

Starch degradation Proteobacteria 2.3 × 10−15 2.17 ± 0.33

L-Arabinose degradation via L-ribulose Firmicutes 1.1 × 10−14 2.02 ± 0.25

Glycolysis Firmicutes 2.4 × 10−13 1.98 ± 0.28

Butanoate metabolism Firmicutes 5.5 × 10−22 1.87 ± 0.06

Glycolysis Bacteroidetes 2.9 × 10−10
−1.79 ± 0.22

Tricarboxylic acid cycle Bacteroidetes 1.8 × 10−17
−1.80 ± 0.12

Xyloglucan degradation Bacteroidetes 1.1 × 10−9
−2.31 ± 0.36

Selenocysteinyl-tRNA(Sec) biosynthesis Bacteroidetes 1.8 × 10−11
−2.44 ± 0.29

L-Lysine biosynthesis via DAP pathway Bacteroidetes 4.9 × 10−8
−2.60 ± 0.31

Starch degradation Bacteroidetes 6.3 × 10−19
−2.74 ± 0.42

2-Dehydro-3-deoxy-D-gluconate degradation Bacteroidetes 3.4 × 10−18
−3.00 ± 0.76

L-Isoleucine biosynthesis Bacteroidetes 1.4 × 10−8
−3.04 ± 0.69

IMP biosynthesis via de novo pathway Bacteroidetes 5.2 × 10−7
−3.20 ± 1.20

2-Deoxy-D-ribose 1-phosphate degradation Bacteroidetes 3.3 × 10−21
−3.37 ± 0.29

Lipid IV(A) biosynthesis Bacteroidetes 2.0 × 10−20
−4.44 ± 1.56

Urea degradation Bacteroidetes 3.3 × 10−25
−5.67 ± 1.09

Purine nucleoside salvage Bacteroidetes 2.2 × 10−24
−7.22 ± 2.69

Oxalate degradation Bacteroidetes 4.9 × 10−26
−22.15 ± 8.10

the fecal microbiota. Our results open the way to new and
deeper metaproteogenomic investigations aimed at elucidating
functional dynamics of the microbial communities inhabiting the
intestinal tract.
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