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Forty-two oenological strains of Lb. plantarum were assessed for their response to

ethanol and pH values generally encountered in wines. Strains showed a higher variability

in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10

or 14%). The study allowed to individuate the highest ethanol concentration (8%) and

the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth

rate (µmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11)

preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth

than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of

the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or

3.0 showed only for GT1 a sensitive µmax increment when it was cultivated in MRS at pH

3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer’s

solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS

with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was

evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The

impact of the physiologic state (exponential phase vs stationary phase) on the survival

was also evaluated. Preadapted cells showed the same behavior of non-preadapted

cells only when cultures were recovered in the stationary phase. Mathematical functions

were individuated for the description of the survival of GT1 and LT11 in MRS at 14%

ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of

Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC.

Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant

values of microbial counts after incubation for 15 days at 20◦C. In addition, after 15 days

the L-malic acid resulted completely degraded and the pH value increased of about 0.3

units.
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INTRODUCTION

Useful microorganisms or antimicrobial natural substances are
commonly used in the manufacture of various fermented
products to ensure a more controllable fermentation, to shorten
the ripening, to improve the safety or to enhance the flavor
(Tremonte et al., 2007, 2010, 2016a; Sorrentino et al., 2013; Di
Luccia et al., 2016). Specifically, in winemaking processes some
lactic acid bacteria (LAB) are able to perform the malolactic
fermentation (MLF), a desirable transformation occurring by
means of the malolactic enzyme, constitutive only in some
LAB species naturally selected during the alcoholic fermentation
(Lonvaud-Funel, 1999). MLF is a biological deacidification
characterized by the decarboxylation of tricarboxylic L-malic
acid to dicarboxylic L-lactic acid and CO2 (Lerm et al., 2010;
Testa et al., 2014). Oenococcus oeni is the main LAB species
frequently isolated at the end of the fermentation process and its
ability to survive the harsh conditions of wine and to perform
the malolactic transformation are the main important features
for the use in commercial starter cultures for winemaking.
However, other LAB species, mainly Lactobacillus plantarum, are
frequently found in wine (Cañas et al., 2009; Ruiz et al., 2010;
Iorizzo et al., 2016). Strains belonging to this species are widely
diffused and often isolated from different environmental niches
such as grape, must, wine, dairy, bakery, and probiotic products
(Beneduce et al., 2004; Ribéreau-Gayon et al., 2006; Cañas et al.,
2009; Ruiz et al., 2010; Reale et al., 2011, 2013; Ricciardi et al.,
2014; Succi et al., 2014; Testa et al., 2014). In wine, apart from
the aptitude to cope with stress conditions, mainly represented by
high alcohol concentration and low pH (Spano and Massa, 2006;
López et al., 2008; Miller et al., 2011), some Lb. plantarum strains
are also able to perform the MLF. Moreover, several strains
belonging to this species hold enzymes encoding important genes
(e.g., citrate lyase, phenolic acid decarboxylase, esterase) for the
production of wine aroma compounds (Matthews et al., 2004;
Spano et al., 2005; Mtshali et al., 2010; duToit et al., 2011),
thus being considered as the most interesting candidate to act as
starter cultures in winemaking.

Lb. plantarum, due to the facultatively heterofermentative
properties, is homo-fermentative for hexoses, which decreases
the risk of acetic acid production and the consequent increase in
the volatile acidity of the wine (Lonvaud-Funel, 1999; Ribéreau-
Gayon et al., 2006). For this reason, it can be also recommended
for coinoculation with yeasts when used in the presence of sugars
(duToit et al., 2011).

Moreover, the market offers a mixed formulation for MLF,
which consists in a blend of O. oeni and Lb. plantarum, assuring
the winemaker an optimal fermentation course.

The ability of Lb. plantarum to survive to specific stress
factors encountered in wine (e.g., acid pH, cold), as well as other
stress factors in various foods (e.g., bile, osmotic, heat, high
pressure) was widely explored (van de Guchte et al., 2002; De
Angelis and Gobbetti, 2011). Moreover, in recent years some
Authors (Bravo-Ferrada et al., 2013, 2014, 2015, 2016) reported
the positive effect of acclimation to ethanol concentrations lower
than that of wine on the viability and malic acid consumption of
oenological Lb. plantarum strains. Other studies (Brizuela et al.,

2017) showed that no pre-acclimation treatment at sub-lethal
ethanol concentration was required for Patagonian Lactobacillus
plantarum strains used in winemaking.

However, to our knowledge no study reported the effect of
preadaptation to low pH on the survival andMLF of Lactobacillus
plantarum. For this reason, the present work was planned to
investigate the effect of preadaptation conditions, in terms of pH
and ethanol, on the ability of oenological Lactobacillus plantarum
to survive and to perform MLF in wine-like medium.

MATERIALS AND METHODS

Screening Assay
Forty strains of Lb. plantarum, previously isolated from
traditional red wines and available in the culture collection of the
DiAAA (Dept. of Agricultural, Environmental and Food Science,
University of Molise), were screened in order to assess the cell
survival under acid or ethanol stress conditions. The commercial
strain Lb. plantarum v22 (Lallemand Inc., Montreal, Canada) and
the type strain Lb. plantarum DSMZ 20174 (Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany) were used as controls. Strains, stored at
−80◦C in SkimMilk (Succi et al., 2007), were propagated twice in
MRS broth at 28◦C prior their use. Then, 50 mL of each culture,
grown in MRS broth (Oxoid, Milan, Italy) at 28◦C, were taken
in the mid-exponential phase (OD600 = 2–3), standardized at an
OD600 = 2 (corresponding to 1× 109 CFU/mL) and centrifuged
at 7,500 rcf for 15 min at 4◦C. The pellet was washed 2 times with
1X phosphate buffer (1X PBS) and resuspended in 50 mL sterile
Ringer’s solution (RS) (Oxoid, Milan, Italy) containing ethanol
(10 or 14%, v/v), or acidified with HCl up to pH 3.5 or 3.0.
Inoculated broths were incubated for 2 h at 28◦C and the viable
count was performed in order to assess the cell survival. The
results were expressed as Ln (N/N0), where N are the CFU/mL
after 2 h of incubation and N0 are the CFU/mL at time 0.

At the end of the screening assay, 10 strains were selected on
the basis of their different response to ethanol or acid stress and
they were used in the subsequent experiments.

Effect of Ethanol and Low pH on the
Growth of Lb. plantarum
Batch fermentations were carried out at 28◦C in Erlenmeyer flaks
containing 500 mL of MRS broth containing 2, 4, 8, 10, or 14%
(v/v) of ethanol. For this purpose, 1% of each overnight culture
was inoculated into sterile MRS broth added with filter-sterilized
ethanol (Filter Unit Red 0.22-µm pore size; Schleider & Schuell,
Dassel, Germany) at different concentrations. A fermentation in
MRS broth without ethanol was performed as control for each
strain.Microbial growth was followed over the time bymeasuring
the optical density at 600 nm (OD600). The maximum specific
growth rate (µmax) was calculated by linear regression of Ln
(OD/OD0) as a function of the time, where OD0 is the optical
density at the beginning of the exponential growth phase.

Similarly, the effect of low pH on the growth of Lb. plantarum
strains was assessed. In short, overnight cultures (1%) were
inoculated in Erlenmeyer flaks containing 500 mL of sterile MRS
broth acidified with HCl until pH 3.0, 3.5, 4.0, 4.5, 5.0, or 5.5. A
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fermentation in MRS broth at pH 6.5 was performed as control
for each strain. The microbial growth was followed over time as
reported above.

Effect of Long-Term Adaptation to Ethanol
and Low pH on the Growth of
Lb. plantarum
Strains of Lb. plantarum, cultivated in MRS broth containing 2
and 8% of ethanol as described above, were transferred (1%) at
the beginning of the stationary phase in MRS broth containing
8, 10, or 14% of ethanol. A fermentation in MRS broth without
ethanol was performed as control for each strain.

Similarly, strains cultivated in MRS broth at pH 4.0 and
5.0 as described above, were collected by centrifugation at the
beginning of the stationary phase, and transferred (1%) in MRS
broth acidified at pH 3.5 or 3.0 with HCl. A fermentation in
MRS broth at pH 6.5 was performed as control for each strain.
Microbial growth was monitored over time by measurement of
the optical density at 600 nm (OD600) of the cultures. For each
experiment, the microbial growth and the maximum specific
growth rate (µmax) were obtained as described previously.

Effect of Sub-optimal pH and Ethanol
Concentration on the Growth of
Lb. plantarum
Two strains of Lb. plantarum (GT1 and LT11) were cultivated
at 28◦C in MRS broth containing 2% of ethanol, in MRS
broth at pH 5.0, both prepared as reported above, and in MRS
broth containing 2% of ethanol and acidified at pH 5.0 (both
conditions, BC). MRS at pH 6.5 without alcohol was used
as control. The microbial growth was estimated over time by
measuring the optical density at 600 nm (OD600) and reported as
Ln (OD/OD0), where OD0 is the optical density at the beginning
of the exponential growth phase.

Effect of Long-Term Adaptation to Ethanol
and Low pH on the Survival of
Lb. plantarum
Lb. plantarum GT1 and LT11 were cultivated at 28◦C in MRS
broth containing 2% of ethanol, in MRS broth at pH 5.0 and
in MRS broth BC. MRS at pH 6.5 without alcohol was used as
control. In the middle of the exponential growth phase or at
the beginning of the stationary phase, cultures were centrifuged
(7,500 rcf for 15 min at 4◦C), the supernatant was discarded
and the pellet was washed twice with a phosphate buffered saline
(PBS). Cellular pellet was suspended (about 3.0 × 108 CFU/mL)
in RS containing 14% of ethanol or in RS acidified at pH 3.5 and
incubated for 24 h at 28◦C. At regular time intervals, an aliquot
of cultures was recovered and enumerated by plate counts on
MRS agar (Oxoid). Plates were incubated at 28◦C for 72 h under
anaerobic conditions using an anaerobic system (Oxoid). Three
replicates were made for each experiment.

Fitting of Survival Data
The log-transformed survival data were modeled using the
linear or the non-linear regression approach. For this purpose,
the Geeraerd and Van Impe Inactivation Model Fitting Tool

(GInaFiT) was used, comprising nine different models (Geeraerd
et al., 2005). In particular, the biphasic-linear model (Cerf,
1977) Equation 1, the Log-linear model with shoulder and tail
(Geeraerd et al., 2000) Equation 2, and the double Weibull model
(Coroller et al., 2006) Equation 3 are reported in the following
formulae.

log10(N) = log10(N0)+ log10(f .e
−kmax1 .t + (1− f ).e−kmax2 .t) (1)

where N0 is the initial population (CFU/mL), N is the residual
population at time t (CFU/mL), f is the fraction of the initial
population in a major sub-population, (1 − f ) is the fraction of
the initial population in a minor sub-population (which is more
resistant than the previous one), and kmax1 and kmax2 (h

−1) are
the specific inactivation rates of the two populations, respectively.

log10(N) = log10

(

(10log10(N0) − 10log10(Nres)).e−kmax .t .

(

e−kmax .Sl

1+ (e−kmax .Sl − 1).e−kmax .t

))

+ 10log10(Nres)

(2)

whereN,N0, and Kmax have identical meaning as that reported in
Equation 1, Nres is the residual population (CFU/mL), and Sl (h)
is the parameter that represents the shoulder length.

log10(N) =
log10(N0)

(1+ 10α)
(10

−

(

t
δ1

)p+α

+ 10−( t
δ2 )

p

) (3)

where N, N0, and t have identical meaning as that reported
previously, p is an adimensional shape parameter, α is the ratio
of the fraction of sub-population 1 to the fraction of the sub-
population 2 at time 0, δ1 is the time (h) required for the first
decimal reduction of sub-population 1, δ2 is the time (h) needed
for the first decimal reduction of sub-population 2.

The detection limit (DL) was fixed to 1. In order to assess the
goodness of fit of each model, the sum of square error (SSE),
the root mean square error (RMSE), the adjusted coefficient of
determination (adj-R2) were used.

Survival and L-Malic Acid Degradation in
Synthetic Wine
The strains Lb. plantarum GT1 and LT11 were selected on the
basis of their acid and ethanol stress response with the purpose
to investigate the effect of acid and ethanol adaptation on the
survival and consumption of L-malic acid in a model system at
14% ethanol and pH 3.5 (Synthetic Wine, SW). The synthetic
wine was prepared as described by Bravo-Ferrada et al. (2013)
and inoculated (about 1 × 108 CFU/mL) with Lb. plantarum
GT1 or LT11 preadapted in MRS containing 2% of ethanol
or in MRS at pH 5.0 or in MRS BC. Cells were recovered in
the mid-exponential phase as well as at the beginning of the
stationary phase and then inoculated in SW. Microbial growth,
pH and L-malic acid concentration were monitored during the
incubation period (15 days at 20◦C). Analogous experiments
were performed using non-adapted cells as control.
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RESULTS

Screening Assay
Figure 1 displays the survival of 42 strains of Lactobacillus
plantarum evaluated in Ringer’s solution (RS) containing 10 or
14% of ethanol (Figure 1A) and in RS acidified at pH 3.5 or 3.0
(Figure 1B). A higher variability among strains resulted from
the exposure to low pH than that to ethanol. Specifically, the
exposure at 10% of ethanol did not affect the survival, whereas in
presence of 14% of ethanol a reduction of about 4 Log CFU/mL
was observed for the assayed strains, with the exception of v22
and GT1, which were inhibited to a lower extent. A different
scenario was observed when the strains were exposed to low
pH (Figure 1B). In this case, Lb. plantarum strains were divided
into 4 groups, arbitrarily individuated on the basis of the ability
to survive in acid condition: group I collected 23 strains with
high susceptibility to the pH; group II gathered 6 strains with a
medium-high susceptibility; group III collected 9 strains with a
moderate sensitivity; group IV convened 4 strains with the lowest
susceptibility. On the basis of their different response to ethanol
and acid stress, 10 strains (LM27, TSC11H, LM28, LP6, LT11,
v22, LM25, LM29, PCQA, and GT1), randomly chosen from each
group, were selected and used in the following experiments.

Effect of Ethanol and Low pH on the
Growth of Lb. plantarum
The effect of different concentrations of ethanol on the growth
of 10 strains of Lb. plantarum was tested. Results (Figure 2A)
showed that no strain was able to grow in MRS containing 10
or 14% of ethanol, whereas all strains were able to grow up to
8%. However, the maximum specific growth rate (µmax) resulted
significantly reduced (p < 0.05) when strains were cultivated in
MRS containing 8% of ethanol, and a significant reduction was
also appreciated in presence of 4%. Contrarily, the growth was
little affected by the presence of 2% of ethanol, as evidenced by
theµmax (0.55± 0.04) which did not vary significantly (p> 0.05)
if compared with the control.

The effect of low pH on the growth of the selected Lb.
plantarum strains is reported in Figure 2B. No strain was able
to grow at pH 3.0, and a slight growth was appreciated at pH
3.5 and 4.0. Starting from pH 4.5, most of the strains showed
the ability to grow, even if the corresponding µmax (0.22) was
significantly lower than the control. The kinetic of growth at pH
5.5 or 5.0 showed in both cases a reduction of the µmax of about
2-fold in comparison with the control (pH 6.5), but between the
two conditions (pH 5.5 and pH 5.0) no significant difference was
recognized (p > 0.05).

Effect of Long-Term Adaptation to Ethanol
and Low pH on the Growth of
Lb. plantarum
The 10 selected strains of Lb. plantarum, pre-cultivated in MRS
broth containing 2 or 8% of ethanol until the stationary phase
(long-term adaptation), were subsequently cultivated in the same
medium containing 8, 10, or 14% of ethanol to investigate if
a non-lethal alcohol concentration was able to improve the
cellular growth in presence of a high ethanol concentration.

Results showed that the growth in MRS containing 10 or 14%
of ethanol was inhibited independently by the preadaptation
to 2 or 8% (data non shown). Strains preadapted to 8% of
ethanol and then transferred in the same medium with the same
alcohol concentration showed identical kinetics of growth with
the controls (data not shown). Instead, a higher growth than that
obtained in control conditions was observed when the strains
were cultivated with 8% of ethanol after a preadaptation to 2%.
Results are reported in Figure S1A, where a significant (p <

0.05) higher µmax of preadapted strains was detected compared
with their controls. This datum was particularly evident for the
preadapted strains GT1 and LT11, having µmax values 1.4- and
1.3-fold higher than those of their controls, respectively.

The impact of the long-term adaptation to low pH (5.0 and
4.0) on the growth at pH 3.5 or 3.0 of the selected Lb. plantarum
strains was also evaluated. Results showed that the growth in
MRS at pH 3.0 was inhibited independently by the preadaptation
to pH 4.0 or 5.0 (data non shown). Moreover, strains preadapted
to pH 4.0 (data non shown) or 5.0 (Figure S1B) and then
transferred in the samemedium at pH 3.5 showed similar kinetics
of growth then their controls. A sensitive increment of the µmax

was detected only for the strain GT1 preadapted to pH 5.0 and
subsequently cultivated in MRS at pH 3.5.

Effect of Sub-optimal pH and Ethanol
Concentration on the Growth of
Lb. plantarum GT1 and LT11
On the basis of previous results, sub-optimal conditions (pH
5.0 or ethanol 2%) and their combination (BC) were chosen
to assess the effect on the growth of selected strains GT1 and
LT11. Results (Figure S2) highlighted that the two strains had
similar behaviors in the assayed growth conditions. Conversely,
significant differences in the maximum specific growth rate
(µmax) were detected depending on the different growth
conditions. The presence of 2% of ethanol did not affect the
growth of both strains (Figures S2A,B), as showed byµmax values
substantially similar to those detected in the respective controls.
The growth was instead significantly affected when GT1 and
LT11 were cultivated at pH 5.0 or in BC. In fact, both situations
caused a significant µmax decrease (p < 0.05) which assumed
values of 1.6- and 2.5-fold lower then the controls, respectively.

Effect of Long-Term Adaptation to Ethanol
and Low pH on the Survival of
Lb. plantarum GT1 and LT11
In this step, the survival of strains GT1 and LT11 in Ringer’s
solution (RS) containing 14% of ethanol after a long-term
adaptation to ethanol 2% or to BC (pH 5.0 and ethanol 2%) was
evaluated. The survival of preadapted cells was compared with
the survival of non-preadapted cells. Moreover, the impact of
the physiologic state (exponential phase vs stationary phase) of
cells on the survival in ethanol 14% was evaluated (Figure 3).
Analogously, the survival of GT1 and LT11 in RS at pH 3.5 after
a long-term adaptation to pH 5.0 or to BC was compared with
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FIGURE 1 | Survival of 42 strains of Lb. plantarum after 2 h of exposure (A) to 10% (•) and 14% (�) of ethanol and (B) to pH 3.5 (•) and pH 3.0 (�).

FIGURE 2 | Maximum specific growth rate (µmax) of 10 Lb. plantarum strains cultivated in MRS broth containing ethanol at different concentrations

(A) and in MRS broth at different pH values (B). Groups with different letters are significantly different (p < 0.05).

the survival of non-preadapted cells used in both exponential and
stationary phase (Figure 4).

In all the analyzed conditions, the physiological state had
a strong influence on the survival of the two strains. In fact,
preadapted cells showed the same behavior of non-preadapted
cells only when the cultures were recovered at the beginning of
the stationary phase, and this fact concerned both ethanol and pH
tests (Figures 3, 4). In detail, regardless to the ethanol sensitivity,
the microbial load of the strains GT1 and LT11 withdrawn in
the stationary phase did not decrease after 24 h of incubation in
RS containing ethanol 14% (Figure 3). On the other hand, when
strains collected in the stationary phase were tested at pH 3.5
(Figure 4), our results showed a decrease of about 1 Log CFU/mL
only for LT11 (Figure 4B).

Conversely, cells recovered in the exponential phase showed
a survival decay, which was more marked in the case of non-
preadapted cells or cells preadapted to BC. Additionally, a
different trend in the survival curves was appreciated between
the two strains preadapted in different conditions. In fact, the
exposure to 14% of ethanol or to pH 3.5 caused the lowest
cell decrease (about 1 Log CFU/mL in both conditions) for
GT1 preadapted in ethanol 2% or at pH 5, respectively, whilst
the corresponding non-preadapted strain and that preadapted
to BC showed a marked reduction in 14% ethanol (about 4
Log CFU/mL) and a minor decrease at pH 3.5 (about 2.5 Log
CFU/mL) (Figures 3A, 4A).

The strain LT11 withdrawn in the exponential phase and
exposed to 14% of ethanol or to pH 3.5 showed a different
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FIGURE 3 | Survival curves of Lb. plantarum GT1 (A) and LT11 (B) exposed to ethanol 14% into RS. Symbols represent the mean of experimental data obtained

by three independent experiments and lines represent the models carried out with the add-in GInaFiT. Full symbols and continuous lines refer to cell recovered in the

stationary phase; empty symbols and dotted lines indicate cells withdrawn in the exponential growth phase; circles (•, ◦) indicate cells non-long-term preadapted to

ethanol (0%) prior to exposure; triangles (N, 1) refer to cells submitted to a long-term adaptation to ethanol 2%; diamonds (�, ♦) indicate cells preadapted to BC

(ethanol 2% and pH 5.0).

FIGURE 4 | Survival curves of Lb. plantarum strains GT1 (A) and LT11 (B) exposed to pH 3.5 into RS. Symbols represent the mean of experimental data

obtained by three independent experiments and lines represent the models carried out with the add-in GInaFiT. Full symbols and continuous lines refer to cell

recovered in the stationary phase; empty symbols and dotted lines indicate cells withdrawn in the exponential growth phase; circles (•, ◦) indicate cells non-long-term

preadapted to acid (pH 6.5) prior to exposure; triangles (N, 1) refer to cells submitted to a long-term adaptation at pH 5.0; diamonds (�, ♦) indicate cells preadapted

to BC (ethanol 2% and pH 5.0).

behavior compared to GT1. In detail, cells of LT11 had an
overall microbial reduction of about 2.5 Log CFU/mL when
preadapted in ethanol 2% and exposed to 14% of alcohol, and
the highest drop was appreciated in the first 3 h of incubation
(Figure 3B). LT11 preadapted to pH 5 and exposed to pH
3.5 had an overall microbial drop of about 4 Log CFU/mL
(Figure 4B).

LT11 non-preadapted or preadapted to BC was strongly
injured by the presence of high alcohol concentration or by the
low pHwhen collected in the exponential phase, as highlighted by

a decrease of about 7.5 or 5.5 Log CFU/mL registered at the end
of the incubation with 14% of ethanol or at pH 3.5, respectively
(Figures 3B, 4B).

The survival data were modeled using GInaFiT tool (Tables 1,
2). Out of 9 inactivation models fitted with the GInaFiT tool, 3
showed the finest statistical parameters (SSE, RMSE, and adj-R2).
Specifically, considering the survival in the medium containing
14% of ethanol, the Log-linear model with shoulder and tail and
the double Weibull model were the two mathematical functions
that better described the survival of strains GT1 (Figure 3A)
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TABLE 1 | Survival kinetic parameters of strains GT1 and LT11 withdrawn in the exponential phase and evaluated in RS containing ethanol 14% after

non-preadaptation (Non-preadapt), preadaptation ethanol 2% (Preadapt_Et2) or preadaptation to BC (ethanol 2% and pH 5.0) (Preadapt_2/5).

Strain Preadapt/Non-preadapt Model Log(N0) Log(N_res) Sl Kmax α δ1 p δ2 4D SSE RMSE Adj-R2

GT1 Non-preadapt Log_lin+S+T 8.6 4.4 1.18 4.15 ±3.8 0.039 0.075 0.998

SE 0.0 0.0 0.07 0.26

Preadapt_Et2 Log_lin+S+T 8.5 7.5 1.86 1.74 >24 0.040 0.067 0.974

SE 0.0 0.0 0.23 0.43

Preadapt_2/5 Log_lin+S+T 8.4 4.1 1.11 4.65 ±3.4 0.224 0.158 0.993

SE 0.1 0.1 0.12 0.37

LT11 Non-preadapt Double_Weibull 8.1 3.78 1.3 1.8 12.4 ±5.5 0.072 0.095 0.999

SE 0.1 0.13 0.1 0.1 0.6

Preadapt_Et2 Double_Weibull 8.5 1.60 2.5 1.7 23.3 >24 0.029 0.064 0.996

SE 0.0 0.06 0.1 0.2 1.1

Preadapt_2/5 Double_Weibull 8.1 4.74 1.1 1.6 13.5 ±2.6 0.174 0.158 0.997

SE 0.1 0.27 0.1 0.2 1.3

Log_lin+S+T, Log linear model with shoulder and tail; N0, initial population (Log CFU/mL); N_res, residual population (Log CFU/mL); Sl , shoulder length (h); Kmax , specific inactivation

rate; α is the ratio of the fraction of sub-population 1 to the fraction of the sub-population 2 at time 0, p, dimensionless shape parameter; δ1, time (h) required for the first decimal

reduction of subpopulation 1; δ2, time (h) required for the first decimal reduction of subpopulation 2; 4D, time (h) required for the population reduction of 4 Log CFU/mL; SSE, sum of

square error; RMSE, root mean square error; Adj-R2, adjusted coefficient of determination.

TABLE 2 | Survival kinetic parameters of strains GT1 and LT11 withdrawn in the exponential phase and evaluated in RS at pH 3.5 after non-preadaptation

(Non-preadapt), preadaptation to pH 5.0 (Preadapt_5) or preadaptation to BC (ethanol 2% and pH 5.0) (Preadapt_2/5).

Strain Preadapt/Non-preadapt Model Log(N0) Log(N_res) Sl Kmax/Kmax1 Kmax2 f 4D SSE RMSE Adj-R2

GT1 Non-preadapt Log_lin+S+T 8.4 5.8 3.21 2.90 >24 0.138 0.152 0.984

SE 0.1 0.1 0.25 0.53

Preadapt_5 Log_lin+S+T 8.5 7.4 4.31 2.03 >24 0.017 0.056 0.987

SE 0.0 0.0 0.18 0.49

Preadapt_2/5 Log_lin+S+T 8.2 5.5 3.12 2.99 >24 0.116 0.139 0.988

SE 0.1 0.1 0.22 0.46

LT11 Non-preadapt Biphasic 8.5 2.63 0.25 0.9990 ±9.4 0.054 0.088 0.998

SE 0.1 0.13 0.02 0.0005

Preadapt_5 Biphasic 8.2 1.72 0.17 0.9913 >24 0.047 0.082 0.997

SE 0.1 0.14 0.03 0.0047

Preadapt_2/5 Biphasic 8.6 2.84 0.25 0.9997 ±4.8 0.095 0.116 0.997

SE 0.1 0.15 0.04 0.0002

Log_lin+S+T, Log linear model with shoulder and tail; N0, initial population (Log CFU/mL); N_res, residual population (Log CFU/mL); Sl , shoulder length (h); Kmax , specific inactivation

rate (h−1 ); Kmax1 and Kmax2, specific inactivation rates (h
−1 ) of the subpopulation 1 and 2 respectively; f, fraction of the initial population in major subpopulation; 4D, time (h) required

for the population reduction of 4 Log CFU/mL; SSE, sum of square error; RMSE, root mean square error; Adj-R2, adjusted coefficient of determination.

and LT11 (Figure 3B), respectively. Regarding to the survival in
the medium at pH 3.5, the Log-linear model with shoulder and
tail and the biphasic linear model were individuated as the best
functions to describe the behavior of GT1 (Figure 4A) and LT11
(Figure 4B), respectively.

The kinetic parameters obtained by the models highlighted
different responses of the two strains to 14% of ethanol (Table 1).
In detail, during the first hours of exposure to ethanol, a
population fraction of non-preadapted cells of LT11 was reduced
of 4 Log units (4D) in 5.5 h, about 1.5-foldmore than GT1 (3.8 h).
A further reduction of LT11 was observable when the exposure
was prolonged. In fact, after 24 h of exposure to 14% of ethanol,

the strain LT11 was no more detectable, whereas the microbial
load of GT1 was about 4 Log CFU/mL.

The datum regarding the preadaptation effect in 2% of ethanol
on the survival of LT11 and GT1 was particularly interesting.
The results (Table 1) showed that when the strain LT11 was
preadapted to ethanol, the 4D value was > 24 h, and the
kinetic parameters δ1 and δ2 were 2-fold higher than those
of non-preadapted cells. These parameters represent the time
to obtain a decimal reduction of the first (δ1) and second
(δ2) fraction of the microbial population. The most important
improvement of the kinetic parameters was also observed in the
model representing the survival of GT1 after ethanol-adaptation.
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Among all, the Log(N_res) parameter, that represents the “tail” of
model, resulted about 2-fold higher than that of non-preadapted
cells. Moreover, the microbial load corresponding to the tail was
reduced of 1 Log unit compared with the microbial load at the
beginning of the exposure (Log_N0).

The long-term adaptation to BC did not positively affect the
kinetic parameters. In fact, the 4D value and the Log(N_res)
parameters for both strains were similar or even lower than those
observed for non-preadapted cells.

Considering the survival at low pH, the results regarding
the kinetic parameters (Table 2) highlighted that non-preadapted
LT11 had a decay of the survival with a kmax1 of 2.63 and a kmax2

of 0.25. These parameters were substantially reduced (−1.5-fold)
for cells preadapted to pH 5.0. A similar behavior was observed
for the strain GT1. In detail, when the cells adapted to pH 5.0
where exposed to pH 3.5, the kinetic parameter representing the
shoulder (Sl) of the curve increased of 1.3 units compared to that
recorded for non-preadapted cells. Moreover, the kmax value was
reduced of about 1.5 units for the preadapted cells compared
to non-preadapted ones. The kinetic parameter regarding the
residual population (Log_Nres) after 24 h of exposure to pH 3.5
was also noticeable. In this case, the microbial load was higher
than 7 Log CFU/mL for sub-optimal pH preadapted cells and
lower than 6 Log CFU/mL for non-preadapted cells. Finally, no
improvement was observed when the strains were preadatpted
to BC.

Survival of Lb. plantarum GT1 and LT11
and L-Malic Acid Degradation in Synthetic
Wine
In this final step, a synthetic wine (SW) at 14% ethanol and
pH 3.5 was used to assess the behavior of the strains GT1 and
LT11 preadapted in MRS containing ethanol 2%, or acidified
at pH 5.0, or BC. Cells were collected in the exponential phase
or at the beginning of the stationary phase and incubated in
SW for 15 days at 20◦C. As expected, both strains recovered
in the exponential phase showed a very high survival decay
in SW, regardless of the preadaptation conditions (data not
shown). Better performances were appreciated when the cells
were collected at the beginning of the stationary phase (Figure 5).
In detail, considering the strain GT1 collected at the beginning
of the stationary phase, the preadaptation to pH 5 significantly
improved the survival in SW (Figure 5A). In fact, after 15 days
of incubation, the microbial load was substantially unaffected
(about 108 Log CFU/mL). However, an improvement of the
survival in comparison with non-preadapted cells was also
observed for cells preadapted to BC, whereas cells preadapted to
ethanol 2% resulted more sensitive than the control. Considering
the tests carried out on LT11, the strain highlighted a complete
decay in spite of preadapation conditions (Figure 5B).

The trend of L-malic acid concentration and pH of the SW
inoculated with GT1 recovered at the beginning of the stationary
phase and preadapted to ethanol 2%, or to pH 5.0, or to BC is
displayed in Figure 6A. The results revealed that the L-malic acid
concentration and the pH values remained unaffected when the
SW was inoculated with non-preadapted GT1, with GT1 cells

preadapted to ethanol 2% or with cells preadapted to BC. On
the contrary, the L-malic acid resulted completely degraded after
15 days of incubation with acid-preadapted GT1. Moreover, the
pH value increased of about 0.3 units only when the SW was
inoculated with acid-preadapted cells.

Instead, no changes were observed in L-malic acid
concentration and in pH values when preadapted or
non-preadapted LT11 cells were inoculated in SW (Figure 6B).

DISCUSSION

The success of Lb. plantarum as starter in the MLF depends
mainly on the strain used, whose metabolic activities are strongly
linked to the ability to adapt to the main hurdles of wine
(mainly high content of ethanol and low pH). As reported by
several Authors (duToit et al., 2011; Tremonte et al., 2017) both
ethanol and pH tolerance are strain-dependent features. So, in
our study 42 Lb. plantarum strains were preliminary screened
for their ability to survive at different ethanol and pH values.
In detail, conditions characterizing wines from cool (10% of
ethanol and pH 3.0) and warm (14% of ethanol and pH 3.5)
climates (Henick-Kling, 1993; Liu, 2002) were chosen for the
preliminary screening, which highlighted that the cell survival
is strongly influenced by the highest ethanol level (14%) and,
more markedly, by the low pH (both pH 3.0 and 3.5). Our study
also allowed to individuate limit growth values for 10 selected
strains (pH 3.5 and ethanol 8%). The inability to grow in the
presence of more than 8% of ethanol was in agreement with
several Authors (Guerzoni et al., 1995; Berbegal et al., 2016),
even if other Authors (G-Alegría et al., 2004; Iorizzo et al., 2016)
reported that some strains of Lb. plantarumwere able to grow not
only in the presence of 13% ethanol, but also at pH values ranging
from 3.2 to 3.5.

In our opinion, the most important result was obtained from
the data related to the long-term adaptation to sub-optimal
pH and ethanol content. In fact, specific strains showed an
improvement in the µmax when exposed to acid (pH 3.5) or
ethanol (8%) stress conditions after a long-term adaptation to pH
5.0 or in ethanol 2%, respectively. Similar results were already
reported for Oenococcus oeni by G-Alegría et al. (2004), who
evidenced the positive effect of low ethanol content (3–4%) on
the growth of strains belonging to this species. However, the
favorable impact of the log-term adaptation to ethanol 2% was
not observed when the strains were cultivated at higher ethanol
content (10 or 14%).

On the contrary, the survival ability of specific Lb. plantarum
strains (GT1 and LT11) in media with ethanol 14% or acidified
at pH 3.5 was positively affected by the long-term adaptation to
ethanol 2% and at pH 5.0, respectively. So, as also highlighted
by several Authors (Broadbent et al., 2010; Bravo-Ferrada et al.,
2013; Tremonte et al., 2016b) we found that culture adaptation to
sub-optimal stress conditions led to an improvement of tolerance
to the same stress but in more extreme conditions.

Interestingly, van de Guchte et al. (2002) stated that cells
exposed to a sub-lethal stress could improve the resistance
against other type of stress (cross-protection). Moreover, in a
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FIGURE 5 | Survival curves of Lb. plantarum GT1 (A) and Lb. plantarum

LT11 (B) in synthetic wine (SW) after recovering in the stationary phase.

Different symbols indicate cells non-preadapted (•) or long-term preadapted to

ethanol 2% (�), pH 5.0 (N), or to BC (ethanol 2% and pH 5.0) (�).

recent study Huang et al. (2015) reported that the exposure of
Lb. plantarum ZDY2013 to acid stress induced cross-protection
against oxidative stress. Recently, van Bokhorst-van de Veen et al.
(2011) showed that the long-term adapted cells of Lb. plantarum
to ethanol 8%, lead a cross-protective effect versus high
temperatures but not versus other stress conditions including
acid. Similarly, we found that the sole ethanol adaptation or
the concurrent adaptation to 2% of ethanol and pH 5.0 did not
improve the survival of the assayed strain in synthetic wine.
These results evidence that the adaptation to low levels of ethanol
does not induce a cross protective effect against low pH. On
the contrary, the preadaptation to pH 5 strongly improved the
survival of GT1 in synthetic wine, that is, a cross protective effect
against high ethanol content.

Different molecular mechanisms were suggested for the
response of Lb. plantarum to long-term exposure to sub-optimal
pH or to ethanol. With reference to the acid stress response, a
large spectrum of different cellular functions was proposed in the
maintenance of the intracellular pH homeostasis (pHi) and of the
proton-translocation. They include the F1F0-ATPase complex,
the arginine deaminase (ADI), the glutamate decarboxylase

FIGURE 6 | L-malic acid degradation (full symbols) and pH evolution

(empty symbols) in synthetic wine (SW) inoculated with Lb. plantarum

GT1 (A) or with Lb. plantarum LT11 (B). Cells were collected in the stationary

phase after non-long-term preadaptation (•, ◦), or after a long-term

preadaptation to ethanol 2% (�, �), to acid (pH 5.0) (N, 1), or to BC (ethanol

2% and pH 5.0) (�, ♦).

(GAD) pathways and the expression of general stress proteins
(GSPs) and molecular chaperones that repair (e.g., dnaK, groES,
groEL) or degrade (e.g., ClpL, ClpC, ClpP) damaged DNA and
proteins (van de Guchte et al., 2002; De Angelis and Gobbetti,
2011). Regarding the ethanol response, several Authors reported
that lactic acid bacteria are able to rearrange the membrane lipid
composition (Bravo-Ferrada et al., 2015) or the citoplasmatic and
membrane protein pattern which can also involve the expression
of small heat shock proteins (Silveira et al., 2004; Spano et al.,
2004; Fiocco et al., 2007).

Previous data should be taken into account during the
selection or the use of MLF starter. In fact, several Authors
suggest to add MLF starter at the beginning of alcoholic
fermentation with the aim to allow a gradual adaptation of the
starter to the increasing alcohol concentration in the wine (Jussier
et al., 2006; Zapparoli et al., 2009; Bartowsky et al., 2015; Tristezza
et al., 2016). Instead, our data suggest that a preadaptation to a
sub-optimal pH value is a valuable tool to improve the survival of
oenological Lb. plantarum strains.

Moreover, the survival kinetic parameters resulted highly
affected by the physiological state of cells. In fact, the cells
recovered in the stationary phase showed a higher tolerance to
stressors (ethanol 14% and pH 3.5) than that exhibited by cells
collected in the exponential phase.
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In this context, it is known that LAB generally display an
increase in stress resistance during the stationary phase (van
de Guchte et al., 2002; Zotta et al., 2008). This behavior could
be attributed to a complex stress response mechanism that
involves the synthesis of several general stress proteins to cope
the starvation stress (van de Guchte et al., 2002).

On the other hand, cells recovered in the exponential phase
showed a decay of survival with a non-linear kinetic mainly
strain-dependent. In fact, the strain GT1 displayed survival
curves compatible with the log-linear model with shoulder and
tail (Geeraerd et al., 2000) when exposed to ethanol 14% or at
pH 3.5. Instead, the strain LT11 produced curves with a shape
compatible with the biphasic model (Cerf, 1977) in the presence
of acid stress conditions (pH 3.5) and curves that show a trend
matching the Double Weibull model (Coroller et al., 2006) in
presence of ethanol stress conditions (14%). These results are in
agreement with other studies highlighting that bacterial strains
display different non-thermal inactivation curves depending on
several factors including the physiological state (exponential or
stationary phase) and the type of stress (Phan-Thanh et al., 2000;
Greenacre et al., 2003; Coroller et al., 2006; Hajmeer et al., 2006;
Pragalaki et al., 2013). These Authors evidenced that the shape of
curves could change according to the intensity of the stress and
to the adaptation conditions before the stress exposition. Instead,
in our study we did not observe differences between the shape of
the survival curves related to long-term adapted and non-adapted
strains.

Furthermore, a high efficiency, in terms of acid malic
consumption and pH increase was observed in acid-adapted cells

recovered in the stationary phase. This last observation is in
agreement with Miller et al. (2011) who described a relation
between the low pH and the expression of the malolactic enzyme
gene (mle) in Lb. plantarum.

Finally, it is possible to state that the use of Lb. plantarum
strains long-term adapted to sub-optimal pH values and collected
in the stationary phase could represent a valid technological
strategy to optimize the course of the malolactic fermentation.
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