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Modulates Gut Microbiota of
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Jing Lit, Qiangchuan Hout, Jiachao Zhangt, Haiyan Xu, Zhihong Sun, Bilige Menghe *
and Heping Zhang*

Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P R. China, Department of Food Science and
Engineering, Inner Mongolia Agricultural University, Hohhot, China

Gut microbiota is a determining factor in human physiological functions and health. It is
commonly accepted that diet has a major influence on the gut microbial community,
however, the effects of diet is not fully understood. The typical Mongolian diet is
characterized by high and frequent consumption of fermented dairy products and
red meat, and low level of carbohydrates. In this study, the gut microbiota profile
of 26 Mongolians whom consumed wheat, rice and oat as the sole carbohydrate
staple food for a week each consecutively was determined. It was observed that
changes in staple carbohydrate rapidly (within a week) altered gut microbial community
structure and metabolic pathway of the subjects. Wheat and oat favored bifidobacteria
(Bifidobacterium catenulatum, Bifodobacteriumbifidum, Bifidobacterium adolescentis);
whereas rice suppressed bifidobacteria (Bifidobacterium longum, Bifidobacterium
adolescentis) and wheat suppresses Lactobaciilus, Ruminococcus and Bacteroides.
The study exhibited two gut microbial clustering patterns with the preference of
fucosyllactose utilization linking to fucosidase genes (glycoside hydrolase family
classifications: GH95 and GH29) encoded by Bifidobacterium, and xylan and
arabinoxylan utilization linking to xylanase and arabinoxylanase genes encoded by
Bacteroides. There was also a correlation between Lactobacillus ruminis and sialidase,
as well as Butyrivibrio crossotus and xylanase/xylosidase. Meanwhile, a strong
concordance was found between the gastrointestinal bacterial microbiome and the
intestinal virome. Present research will contribute to understanding the impacts of the
dietary carbohydrate on human gut microbiome, which will ultimately help understand
relationships between dietary factor, microbial populations, and the health of global
humans.

Keywords: intestinal microbiome, carbohydrateutilization, shotgun-metagenomic-sequencing, Mongolians,
staple food

INTRODUCTION

The sequencing-based assessment of microbial communities in human feces has uncovered
a large quantity (>10'*) and types (>1,000) of microbial species colonizing the human gut.
A growing body of research has indicated that the microbial communities are associated with
the digestion of dietary macronutrients, production of nutrients and vitamins and maintenance
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of the host immunity. Thus, the gastrointestinal microbiota can
be considered a highly active metabolic organ to complement
the human metabolic activities. Wu et al. (2011) found that
two enterotypes (‘Prevotella-type’ community and ‘Bacteroides-
type’ community) were defined among human communities in
different geographical regions. The ‘Prevotella-type’ community
and the ‘Bacteroides-type’ community were associated with fiber
intake and high protein intake, respectively. The dietary fibers,
proteins and peptides, which escape digestion by host enzymes
in the upper gut, are metabolized by the microbiota in the
colon, thus determine the microbiota in the lower reach of
the gut and feces (Macfarlane and Macfarlane, 2012). The
metabolites, such as short-chain fatty acids, that are produced
by gut bacterial fermentation are available to the hostenterocytes
and can influence host physiological processes. The balance of the
gut microbial community is a major determining factor in human
physiological functions.

Many reports have demonstrated determining factors of the
gut microbial community, these includehost genotype, diet, age,
body-mass-index, disease and use of antibiotic (Yatsunenko et al.,
2012). It is commonly accepted that diet has a major influence on
the gut microbial community. The structure of the gut microbial
community can be changed by long-term consumption of a
habitual diet (Ley et al., 2006; Walker et al., 2011; Wu et al., 2011)
as well as short-term consumption of certain diets (David et al.,
2014). Dietary alteration in the gut microbiota profile could be
temporal (David et al., 2014) or irreversible (Sonnenburg et al.,
2016).

In China, the dietary habit is significantly different from
the western diets: Chinese diet revolves around a plant-based
diet, such as cereal, vegetable, and fruit, supplemented with
animal-based protein, such as dairy products, seafood and
meat. The grain (wheat, rice and naked oats) is generally
called staple food and accounts for a high proportion of the
daily diet. In different areas of China, people have different
dietary habit: the general staple food for people living south
of Yangtze River is rice (Oryza sativa var.sinica); in the area
north of the Yangtze River, people subsist chiefly on wheat
(Triticum spp.); whereas people in the north of the Yellow
River, one of the major staple food is naked oats (Avena
sativa). The wheat, rice and naked oats contain different
content of non-digestible carbohydrates (resistant starch, non-
starch polysaccharides and oligosaccharides). For example, the
wheat contains about 1.7% (dry matter) of non-digestible
carbohydrates, mainly as xylose and arabinose, the naked
oats contain 7.2% (dry matter) of arabinose, and PB-glucan,
whereas rice contains 0.2% non-digestible carbohydrate (Bednar
et al., 2001). The different grain intake may have an influence
on the gut microbiota. A diet intervention study based
on administration of p-glucans showed changes in the gut
microbial composition (De Angelis et al., 2015). The effects of
carbohydrate staple diet on the gut microbial community have
been little studied. A recent study comparing fecal microbiota
profile of central Asian (China and Japan) and Southeast
Asia (Indonesia and Thailand) speculated that non-digestible
carbohydrates and meat consumption are determining dietary
factors in the Bacteroides-enterotype (Nakayama et al., 2015).

It is the aim of this study to investigate the effect of the three
staple food grains on the gut microbial communities via diet
intervention.

The typical Mongolian diet is characterized by a high and
frequent consumption of fermented dairy products and red
meat and a low level of the grain intake. The result of
the diet intervention based on the type of carbohydrates for
Mongolian may be more obvious than that of the Chinese.
In our previous study (Sci. Bull. 61(20): 1605-1614), by using
the PacBio single molecule real-time sequencing technology, we
revealed the changes in intestinal microbiota of 26 Mongolian
volunteers based on 16S rRNA variable regions response to
staple carbohydrate. The intestinal microbiome was composed
of the microbial taxonomy, microbial function and metabolic
pathway. So, previous research only focused on the microbial
taxonomic level couldn’t meet our further understanding of
the interaction between the intestinal microbiome and diet.
Accordingly, in present research the shotgun metagenomic
sequencing approach was applied to generate huge sequencing
reads of microbial whole genomes. Following procedure analysis
involving assembling, gene prediction and pathway annotation
enabled us to pay more attention to changes in intestinal
microbial functional genes and metabolic pathways. Meanwhile,
a robust network based on species, metabolic pathway and
food nutrition was constructed for helping us understanding the
impacts of the dietary carbohydrate on human gut microbiome,
which will ultimately help understand relationships between
dietary factor, microbial populations, and the health of global
humans.

MATERIALS AND METHODS

Study Design and Sample Collection

In present research, 26 Mongolian subjects (22-35 years old)
started the three-week experiments on day 1 upon arrival in
China. All subjects had no gastrointestinal disorder and did not
take any antibiotics for three months before the experiment
started and until the end of the experiment. During the
experiment, dietary staple food was replaced each week (the
first week: wheat, the second week: rice and third week: oat),
and the amount and species of food intake for each individual
was the same every day. The information was shown in the
Supplementary Table S5. And the diet was prepared by a
restaurant according to the designed recipes. All volunteers
were instructed to eat only the provided foods or allowable
beverages (water or unsweetened tea). They also confirmed
that no remarkable changes occurred in their diet intake and
no medication was taken during the experiment. The fecal
samples of each individual in 4 time points (from week 0
to week 3) were collected for further sequencing. The study
protocol was approved by the Ethical Committee of the Inner
Mongolia Agriculture University (Hohhot, China). Sampling and
all subsequent steps described in the Materials and Methods
have been conducted in accordance with the approved guidelines.
After obtaining the written informed consent, we collected
habitual long-term dietary information from all participants
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using a food frequency questionnaire (Supplementary Table S6).
All subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Metagenomic DNA Extraction

The QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany)
was used for DNA extraction from the fecal samples. The quality
of the metagenomic DNA was assessed by 0.8% agarose gel
electrophoresis. All of the DNA samples were stored at -80°C
until further processing.

Shotgun Metagenomic Sequencing and

Quality Control

The Illumina HiSeq2500 platform was used for shotgun
metagenomic sequencing. Paired-end reads were generated with
100 bp in the forward and reverse directions. The length of each
read was trimmed with Sickle. This set of high-quality reads was
then used for a further analysis. An average of 10.34 gigabases
(Gb) of paired-end reads were obtained for each sample, totalling
more than 1 Tb of high-quality data free of host genomic and
adaptor contaminants.

Shotgun Metagenomic Reads, De novo
Assembly, Gene Prediction, and
Construction of the Non-redundant Gene
Catalog

The Illumina reads were assembled into contigs using IDBA-UD
(Peng et al., 2012) with default parameters. Genes were predicted
on the contigs with MetaGeneMark (Zhu et al., 2010). A non-
redundant gene catalog was constructed with CD-HIT (Li and
Godzik, 2006) using a sequence identity cut-off of 0.95, with a
minimum coverage cut-off of 0.9 for the shorter sequences. This
catalog contained 1,617,412 microbial genes.

Computation of Relative Gene

Abundance

To assess the abundance of genes profile, reads were aligned to

the gene catalog with Bowtie2 (Langmead et al., 2009) using the

following parameters: -p 12 -x nt -1 R1.fastq -2 R2.fastq -S R.sam.

Then, for any sample N, we calculated the abundance as follows:
Step 1: Calculation of the copy number of each gene:

Xj
b, = — 1
=L (1)
Step 2: Calculation of the relative abundance of gene i:
b;
: ibi @

ai: the relative abundance of gene i

bi: the copy number of gene i from sample N
Li: the length of gene i

xi: the number of mapped reads

Construction of the Taxonomic Profiling
We use MetaPhlAn2 (Segata et al., 2012) to produce organism
abundance profiling with default parameters, which relied

on about 1 million unique clade-specific marker genes
identified from about 17,000 reference genomes. Meanwhile, the
metagenomic reads were annotated by the NCBI virus database
to build the virome profile.

Annotation of KEGG, CAZy, and ARGs

Database

We aligned the amino acid sequences that were translated
from the gene catalog against the proteins/domains to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
antibiotic resistance genes (ARGs) databases using BLASTP
(e-value < 1le-5 with a bit-score higher than 60). Each
protein was assigned to the KEGG ortholog group (KO)
or ARG number by the highest scoring annotated hit.
CAZymes (Carbohydrate-Active Enzymes) were predicted
from amino acid sequences by against to family-specific
HMM of CAZymes in dbCAN database (Yin et al, 2012)
using Hmmscan program in HMMER 3.0 package (Eddy,
2009).

KEGG Pathway Analysis

Differentially enriched KO modules and pathways were identified
according to the reporterscores (Patil and Nielsen, 2005) from the
Z-scores of individual KOs. Accordingly, the Z adjusted pathway
of each KEGG module and pathway was calculated as previously
described (Patil and Nielsen, 2005). Then, the Z adjusted pathway
was used as the final reporter score for evaluating the enrichment
of specific pathways or modules. A reporter score of >2.3
(90% confidence according to the normal distribution) could
be used as a detection threshold for significantly differentiating
pathways.

Statistical Analysis

All statistical analyses were undertaken using the R software.
PCoA and a kernel density distribution analysis were performed
using the ade4 (Zapala and Schork, 2006) package of R
software. Differential abundance of species, genes and
KOs were tested by the Wilcoxon rank sum test, and the
significantly different (p < 0.01). The heatmap was built in
R using the “pheatmap” package. The correlation between
the dietary components, metabolic pathways and relative
genera were calculated by Spearman’s rank correlation
coefficient and visualized by network in Cytoscape (Version
3.2.1).

Accession Numbers
The sequence data reported in this paper have been deposited in
the NCBI database (Metagenomic data: SRP080787).

RESULTS

Dynamic Profile of Gut Microbiome in

Response to Changes in Staple Food
The fecal samples for all subjects were collected weekly on 4
time points, at week 0, 1, 2, and 3. Subsequently, microbial
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DNAs from a total of 104 fecal samples were extracted for
metagenomic analysis. By employing the shotgun metagenomic
sequencing, we obtained more than 1Tiga base (Tb) of
pair-end reads (averagely 61,225,132 high-quality reads for
each microbiota). The high-quality reads were assembled
into contigs, and the genes were predicted onthe contigs.
Then, a non-redundant gene catalog including 1,617,412
genes was constructed. Annotated by HMP database, thus
taxonomy profile of each sample was obtained. Meanwhile,
the reads were mapped to the collective gene catalog to
reconstruct sample-specific gene profile, as well as the
profiles for the associated KEGG database Orthologs (KO;
Supplementary Table S1).

At the taxonomy level, Principal Coordinates Analysis
(PCoA) was performed based on the unweighted UniFrac
(Figure 1), weighted UniFrac (Supplementary Figure S1A)
and Bray-Curtis distances (Supplementary Figure S1B) at
the species level. No significant apparent clustering pattern
was identified among samples in different time points, and
the fluctuation in gut microbiota was limited by individuals.
It is indicated the staple food-induced change was smaller
than the inter-individual difference. This conclusion held
true when the data was analyzed at microbial functional
feature level (Supplementary Figure S2). By extracting and
comparing the first principal component of Bray-Curtis distance
matrices representing taxonomic and functional features in
gut community structure among subjects at each time point,
we found that changed staple food rapidly altered microbial
community structure and metabolic pathway (Figure 2) for each
individual. Then we concluded that the intestinal microbiota
could be rapidly altered by staple food, however, the changes
was limited at individual’s level. Additionally, in comparing
the influence of the three-staple food on gut microbiome, it
can be observed from the Weighted UniFrac distance between
groups at different time points that the impact of wheat on
intestinal microbiota was the largest, followed by rice and oat
(Figure 3).

We identified differences in specific species at taxonomy level
and metabolic pathway at functional level after the consumption
of the respective staple food. As it is shown in Table 1, the species
Lactobacillus  delbrueckii, Ruminococcus gnavus, Bacteroides
vulgatus, and Bacteroides massiliensis decreased significantly
but the Bifidobacterium catenulatum, Bifidobacterium bifidum,
and Alistipes indistinctus increased significantly when subjects
consumed the wheat as staple food for one week. When rice
and oat was assigned as the staple food in the second and third
week, respectively, Bifidobacterium adolescentis, Bifidobacterium
longum, Weissella cibaria, and Rothia mucilaginosa declined
sharply in the second week whereas the Bifidobacterium
adolescentis risen sharply in the third week. At the functional
level, we calculated the reporter Z scores of each pathway or
module by using the reporter feature algorithm (Figure 4).
A reporter score = 2.3 (90% confidence according to the
normal distribution) was used as the detection threshold for
significantly differentiating modules or pathways. In particular,
we found a significant decline in the microbial biosynthesis
of amino acids (including valine, leucine, and isoleucine)
in the first week. In contrast, the microbial metabolism of
carbohydrate kept growing during experiment. Interestingly,
it exhibited a high concordance of changes in microbial
capacity for fructose metabolism and glycolysis and the changes
in relative content of fructose and glucose in wheat, rice
and oat. And these results could be confirmed by changes
in metabolic models among different staple food intake

group.

Functional Correlation of Species with
Changes in the Staple Food

Using Wilcoxon sum ¢-test, we identified species which showed
significant difference in each staple food group. We focused
on the correlation between functionality and changes in the
staple food. The species which showed correlations included
Bacteroidesovatus, — Faecalibacteriumprausnitzii, Lactobacillus

Unweighted Unifrac PCoA1(11.71%)
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FIGURE 1 | A principal component (PCoA) score plot based on unweighted UniFrac metrics for all samples. (A) The sample represented points were
connected and colored by individuals; (B) the sample represented points were colored by time points.
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Time point (Week)

ruminis,  Bacteroidesstercoris, —and  Phascolarctobacterium
succinatutens. We determined the correlation among the
species and their typical metabolic pathway/model according
to Spearman’s rank correlation coefficient (R > 0.4, Figure 5).
Interestingly, a general positive correlation was observed
between the species above and the phosphotransferase system
(PTS) and the Aminoacyl-tRNA biosynthesis, and a negative
correlation with the FoxO signaling pathway and Cyanoamino
acid metabolism.

Concordance of the Gastrointestinal

Bacterial Microbiome and Virome

All high-quality sequences were annotated by a virus protein
database, and then we selected and constructed the phage
or bacterial virus profile. A total of 144 species of phages
were identified (Supplementary Table S2), and the quantity
of phage of Enterobacteria, Bacteriophage, Shigella, Klebsiella,
Escherichia, Streptococcus, Salmonella, Bacteroides, Lactococcus,
Lactobacillus,  Clostridium, — Haemophilus,  Staphylococcus,
Brochothrix, and Bacillus accounted for more than 0.001% of
the total microbiota (Supplementary Figure S3A). Meanwhile
the correlations among the above phages were determined based
on Spearman’s rank correlation (Supplementary Figure S3B),
and a general positive correlation was found. Additionally, to
test the degree of consistency between the observed clustering
patterns for bacterial structure and phage structure, respectively,
Procrustes analysis was performed based on the PCA matrix
of bacterial genus-level organismal profile and that of genus
level phage profile (Supplementary Figure S4). The results
revealed a strong correspondence between the two profiles above
(P < 0.001, using 10,000 Monte Carlo label permutations),
which also indicated a potential synergistic interaction between
the bacteria and bacterial virus in human gastrointestinal
tract.

The Functional Specificity of Intestinal

Microbiota for Carbohydrate Utilization

As the main component of the staple food in the present study
was carbohydrate, we focused on the functional specificity
of intestinal microbiota for carbohydrate utilization. The
non-redundant gene catalog in our study was annotated by
carbohydrate-active enzymes database (CAZy), and a total of
383 carbohydrate metabolism related enzymes were identified
(Supplementary Table S3). By applying the Kruskal-Wallis
test, we observed significant difference in enzymes among the
different staple food groups, and these enzymes were mainly
related to the metabolism of glucose (Supplementary Figure S5).
Meanwhile, by clustering analysis, we exhibited the correlation
profile between the microbial species and the carbohydrate-
active enzymes (Supplementary Figure S6), and two apparent
clustering patterns could be found in the profile which indicated
two groups of intestinal microbiota with preference for specific
carbohydrates utilization. Accordingly, we reconstruct the
network between the species and their metabolic enzymes for
each group (Figure 6). The first group including the species
of Alistipe sputredinis, Bacteroides intestinalis, Bacteroides
massiliensis, ~Bacteroides  plebeius, Bacteroides salyersiae,
Bacteroides  vulgutas, Bacteroides uniformis, Butyrivibrio
crossotus, Megaspha eraelsdenii, Parabacteroides merdae, and
Paraprevotella clara, and they were closely related to the
carbohydrate-active enzymes of arabinofuranosidase, pectin
lyase, polygalacturonaseand xylanase. The second group
including the species of Alistipesonderdonkii, Bacteroides
fragilis, Bifidobacterium adolescentis, Bifidobacterium breve,
Bifidobacterium  pseudocatenulatum, Lactobacillus — ruminis,
Ruminococcus gnavus, and Streptococcus thermophilus, and
they were closely related to the carbohydrate-active enzymes
of beta-glucosidase, mannosidase, trehalose phosphorylase,
fucosidase, and sialidase.
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The Linear Relationship between
Intestinal Microbial Phylum and Main

Nutrient Elements

The results above based on the impacts of changes in staple food
on intestinal microbiome offered us an excellent opportunity
to reveal the linear relationship between intestinal microbial
phylum and main nutrient elements, which was also the basic
mechanism related to the interaction between the diet and
gut microbiome. According to the fitted curves, we observed
a declined in phylum Actinobacteria but an increase in
phylum Firmicutes with the gradually increasing non-digestible
carbohydrates (dietary fiber) content in diet (Figure 7A). At
the same time, the phylum Bacteroidetes and Proteobacteria
presented a positive correlation with the dietary fat and digestible
carbohydrate, respectively (Figure 7A).

The Relationship between Intestinal
Microbiota, Dietary Nutrition, and ARGs

To further understand the dietary effects on human microbiome,
we annotated our non-redundant gene catalog with the
ARGs database, and constructed the ARGs profile of each
individuals. By merging and classifying, 290 annotated ARGs
were clustered into 53 antibiotic catalog (Supplementary
Table S4). We found that the ARGs related to vancomycin
were most abundant, followed by the ARGs related to
macrolide, tetracycline, bacitracin, tigecycline, penicillin,
chloramphenicol, lincosamide, and aminoglycoside, which
gene abundance were more than 0.001%. To describe the
relationship among the dietary nutrition, microbial phylum
and ARGs above, a Circos on line diagram was constructed
(Figure 7B).
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TABLE 1 | Significantly different intestinal species among different time points.

Species Abundance (%) Enriched  P-value Species Abundance (%) Enriched  P-value
1 week vs. 0 week Oweek 1week Enriched P-value Bifidobacterium catenulatum 0.616 0.137 1 week 0.0245
Actinomyces odontolyticus 0.000 0.001 1 week 0.0360 Bifidobacterium longum 2.282 0.482 1 week 0.0004
Alistipes indistinctus 0.054 0.148 1 week 0.0300 Clostridium asparagiforme 0.005 0.049 2 week 0.0075
Bacteroides massiliensis 1.088 0.515 0 week 0.0280 Coprobacter fastidiosus 0.008 0.454 2 week 0.0360
Bacteroide svulgatus 3.645 1.708 0 week 0.0090 Dorea formicigenerans 0.479 0.727 2 week 0.0215
Bifidobacterium bifidum 0.373 1.191 1 week 0.0420 Eubacterium eligens 0.682 1.635 2 week 0.0049
Bifidobacterium catenulatum 0.32 0.616 1 week 0.0210 Odoribacter splanchnicus 0.685 1.168 2 week 0.0045
Eubacterium biforme 0.242 0.596 1 week 0.0430 Roseburia hominis 0.228 0.828 2 week 0.0047
Eubacterium hallii 0.015 0.036 1 week 0.0440 Roseburia inulinivorans 0.746 1.924 2 week 0.0040
Lactobacillus delbrueckii 0.079 0.000 0 week 0.0010 Rothia mucilaginosa 0.022 0.008 1 week 0.0361

Parasutterella excrementihominis 0.143 0.061 0 week 0.0070 Ruminococcus torques 0.698 1.501 2 week 0.0016
Ruminococcus bromii 0.408 1.615 1 week 0.0300 Weissella cibaria 0.006 0.000 1 week 0.0346
Ruminococcus gnavus 0.513 0.078 0 week 0.0010 3 week vs. 2 week 2week 3 week Enriched  P-value
Streptococcus parasanguinis 0.079 0.181 1 week 0.0300 Anaerotruncus colihominis 0.016 0.006 2 week 0.0216
Weissella cibaria 0.000 0.006 1 week 0.0350 Bacteroides cellulosilyticus 0.328 0.179 2 week 0.0086
2 week vs. 1 week 1 week 2 week Enriched P-value  Bacteroides thetaiotaomicron 1.233 0.473 2 week 0.0320
Anaerostipes hadrus 0.005 0.01 2 week 0.0365 Bifidobacterium adolescentis 1.778 2.843 3 week 0.0321

Anaerotruncus colihominis 0.007 0.016 2 week 0.0045 Clostridium asparagiforme 0.049 0.017 2 week 0.0382
Bacteroides cellulosilyticus 0.109 0.328 2 week 0.0254 Clostridium leptum 0.381 0.140 2 week 0.0357
Bacteroides dorei 0.336 0.641 2 week 0.0111 Eubacterium eligens 1.635 0.799 2 week 0.0074
Bacteroides intestinalis 0.028 0.385 2 week 0.0143 Eubacterium ventriosum 0.417 0.045 2 week 0.0011

Bacteroides thetaiotaomicron 0.412 1.233 2 week 0.0121 Gordonibacter pamelaeae 0.041 0.019 2 week 0.0267
Bacteroides uniformis 2.233 4.064 2 week 0.0184 Roseburia hominis 0.828 0.323 2 week 0.0268
Bacteroides vulgatus 1.708 5.207 2 week 0.0001 Roseburia inulinivorans 1.924 1.306 2 week 0.0135
Bifidobacterium adolescentis 8.286 1.778 1 week 0.0002 Ruminococcus callidus 0.512 0.227 2 week 0.0041

Bifidobacterium angulatum 0.929 0.308 1 week 0.0185 Ruminococcus torques 1.501 0.724 2 week 0.0009
Bifidobacterium bifidum 1.191 0.27 1 week 0.0025 Streptococcus thermophilus 0.063 0.025 2 week 0.0455

*Adjusted P-values (P < 0.05) for the Wilcoxon rank-sum test (paired) are listed.

1 week:

0 week

-1 week
= 2 week

2 week-|

1 week-|

3 week-|

2 week-|

FIGURE 4 | The reporter Z scores of each metabolic module among different staple foods groups by using the reporter feature algorithm. (A) O week
vs. 1 week; (B) 1 week vs. 2 week; (C) 2 week vs. 3 week.
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DISCUSSION

By employing the shotgun metagenomic sequencing, we
described the dynamic profile of gut microbiome in response to
changes in staple food. The composition of the gut microbiome
can be considered as a complex trait, with the quantitative
variation in the microbiome affected by a large number of host
and environmental factors, each of which may have only a small
additive effect, making it difficult to identify the association
for each separate item. A research study of 1135 participants
from a Dutch population-based cohort showed relations between
the microbiome and 126 exogenous and intrinsic host factors,
including 31 intrinsic factors, 12 diseases, 19 drug groups, 4
smoking categories, and 60 dietary factors (Zhernakova et al.,
2016). They observed that fecal chromogranin A (CgA), a protein
secreted by enteroendocrine cells, was exclusively associated with
61 microbial species whose abundance collectively accounted
for 53% of microbial composition. Even so, the diet and the
genotype were also considered as the main force for shaping
human intestinal microbiome, although it remains unclear if this
is primarily driven by host genetics or by extrinsic factors like
dietary intake. To address this, another recent study (Carmody
et al,, 2015) examined the effect of dietary perturbations on
the gut microbiota of five inbred mouse strains, and revealed
the consumption of a high-fat, high-sugar diet reproducibly
altered the gut microbiota despite differences in host genotype.
Repeated dietary shifts demonstrated that most changes to the gut
microbiota are reversible, which emphasize diet dominates host
genotype in shaping the murine gut microbiota. Nevertheless, in

the present study, we observed the staple carbohydrate-induced
change was much smaller than the inter-individual difference,
which indicated the complexity of the interaction between the
baseline microbiota and diet change. Besides, we also found
that changes in staple food rapidly altered microbial community
structure and metabolic pathway for each individual. Recent
research also confirmed gut microbiome can rapidly respond to
altered diet within 1 day (David et al., 2014), and an animal-based
diet had a greater effect on the microbiota than a plant-based
diet.

In our previous study, the effect of subjects’ gut microbiota
communities by the diet intervention of carbohydrate-rich meals
composed principally of wheat, rice and oats was investigated
by the PacBio single molecule real-time sequencing technology
based on 16S rRNA variable region. During the diet switch
within a 3-week period, the bacterial richness and diversity
decreased apparently along the diet intervention. And the
structure of subjects’ gut microbiota communities after the diet
switch was found to be different from those before the diet
switch. The previous research only focused on the changes in
the microbial taxonomic level, but the intestinal microbiome
including the microbial taxonomy and microbial function
and metabolic pathway. Accordingly, in present research we
pay more attention to the changes in intestinal microbial
functional genes and metabolic pathways response to staple
carbohydrate. To probe for the potential metabolic mechanism
underlying the dominant species (Including Bacteroides ovatus,
Faecalibacterium prausnitzii, Lactobacillus ruminis, Bacteroides
stercoris, an Phascolarctobacterium succinatutens) which thrive
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in the gut environment, we analyzed the functional features in
these bacteria, and revealed that these microbes were enriched
in the metabolic pathway of PTS. PTS is an active sugar uptake
method in low nutrient environment. The bacterial PTS is a
perfect example of both the opportunistic nature of bacterial
life, and their thrifty use of resources. In the present study, the
up-regulation of the metabolic pathway of phosphotransferase
efficiently provide the source of energy for the species involved
so that they can effectively and stably proliferated in human gut.

The human enteric microbiome contains viruses, bacteria,
archaea, fungi, and other eukaryotic organisms (Norman et al.,
2014; Virgin, 2014). Enteric human virome and bacterial
microbiome alterations have been linked to inflammatory bowel
disease (IBD), obesity, and changes in host behavior (Backhed
et al., 2012; Lyte, 2013; Norman et al., 2015). In the present
study, we observed a robust synergistic interaction between the
bacteria and bacterial virus in human gastrointestinal tract in
dynamic equilibrium with all components of the microbiome.
Accordingly, an emerging concept is that the virome may
contain mutualistic symbiotes with some effects that benefit
the host and others by modulating the population of their
bacterial host. Bacteriophages regulate the bacterial microbiome
via gene transfer, killing competing bacteria to allow invasion of
prophage-containing bacteria to fill a partly emptied niche, or by
encoding toxins that alter the host intestine to foster bacterial
pathogenesis (Duerkop and Hooper, 2013).

The ability to utilize complex dietary and host glycans
is central to the survival of prominent members of the
gut microbiota. Plants in the form of fruits, vegetables,
and cereals are major components of the human diet (EI
Kaoutari et al., 2013b). They provide carbohydrates that are
readily digested by human intestinal enzymes, as well as
dietary fibers, which are resistant to digestion and absorption
in the human small intestine. Carbohydrate-active enzymes
encoded by the human gut microbiome catalyze the breakdown
of glycoconjugates, oligosaccharides and polysaccharides to
fermentable monosaccharides (El Kaoutari et al., 2013a). Here,
we exhibited two apparent gut microbial clustering patterns
with the preference of specific carbohydrates utilization. For
instance, the fucosyllactose utilization was linked tofucosidase
genes (glycoside hydrolase family classifications: GH95 and
GH29) encoded by Bifidobacterium (Milani et al, 2015)
and the xylan and arabinoxylan utilization was linked to
xylanase and arabinoxylanase genesencoded by Bacteroides (Wu
et al., 2015). Furthermore, we revealed the robust correlation
between the Lactobacillus ruminis and sialidase as well as the
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