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Oenococcus oeni is the main responsible agent for malolactic fermentation in wine, an

unpredictable and erratic process in winemaking. To address this, we have constructed

and exhaustively curated the first genome-scale metabolic model of Oenococcus oeni,

comprising 660 reactions, 536 metabolites and 454 genes. In silico experiments revealed

that nutritional requirements are predicted with an accuracy of 93%, while 14 amino acids

were found to be essential for the growth of this bacterial species. When the model

was applied to determine the non-growth associated maintenance, results showed that

O. oeni grown at 12% ethanol concentration spent 30 times more ATP to stay alive than

in the absence of ethanol. Most of this ATP is employed for extruding protons outside

of the cell. A positive relationship was also found between specific consumption rates

of fructose, amino acids, oxygen, and malic acid and the specific production rates of

erythritol, lactate, and acetate, according to the ethanol content of the medium. The

metabolic model reconstructed here represents a unique tool to predict the successful

completion of wine malolactic fermentation carried out either by different strains of

Oenococcus oeni, as well as at any particular physico-chemical composition of wine.

It will also allow the development of consortium metabolic models that could be applied

to winemaking to simulate and understand the interactions between O. oeni and other

microorganisms that share this ecological niche.

Keywords: genome-scale metabolic model, malolactic fermentation, lactic acid bacteria, Oenococcus oeni,

physiological ethanol response

INTRODUCTION

Malolactic fermentation (MLF) is a key step in the production of most red wines, as well as
some white and sparkling wines. This process is primarily responsible for lowering the acidity of
wine, and also generates other benefits, such as improving aroma and flavor complexity; as well
as increasing the biological stability of the resulting wines (Davis et al., 1985; Henschke, 1993;

Abbreviations: ATP, Adenosine triphosphate; dFBA, dynamic Flux Balance Analysis; EPS, Exopolysaccharide; FBA,

Flux Balance Analysis; FN, False Negative; FP, False Positive; FVA, Flux Variability Analysis; GAM, Growth Associated

Maintenance; GEM, Genome-scale Model; GENRE, Genome-scale Reconstruction; LAB, Lactic Acid Bacteria; LP, Linear

programming; MLF, Malolactic Fermentation; NGAM, Non-Growth Associated Maintenance; TN, True Negative; TP, True

Positive; PPP, Pentose Phosphate Pathway.
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Bartowsky et al., 2002). This secondary fermentation, mainly
carried out by lactic acid bacteria (LAB), involves the NAD+

and manganese-dependent decarboxylation of L-malate to L-
lactate and CO2 (Kunkee, 1974; Williams et al., 1984). Failures
in the onset and completion of malolactic fermentation are
commonplace worldwide, which inconveniently delays the
overall process of winemaking and therefore results in significant
economic losses.

Oenococcus oeni is the main species involved in MLF due
to its ability to grow in harsh environments, such as wine.
This bacterial species is characterized by its ability to grow
at high ethanol content (>13% v/v), low pH (<3.5), limited
nutrient availability and high sulphite concentration (<50 ppm)
(Bauer and Dicks, 2004; Bartowsky, 2005; Zapparoli et al.,
2009). Consequently, the success of this secondary fermentation
depends on the ability of O. oeni to cope with these hostile
conditions (Gockowiak and Henschke, 2003; Le Marrec et al.,
2007). Several studies have been conducted to understand the
metabolism of O. oeni under oenological culture conditions.
Despite these efforts, MLF remains an unpredictable, capricious
and precarious operation of the winemaking process. Indeed, its
onset and completion can take weeks or even months (Bartowsky
et al., 2015).

Genome sequencing has paved the way to a deeper
understanding of this microorganism. Mills et al. (2005) reported
that the circular chromosome of O. oeni strain PSU-1 contained
1,780,517 nucleotides, with a guanine–cytosine (GC) content
of 38%. Borneman et al. (2012) found important genomic
differences among several O. oeni strains through a comparative
analysis of the O. oeni pan genome, employing O. oeni PSU-
1 strain as a reference. More recently, Campbell-Sills et al.
(2015) reviewed the population structure of many O. oeni
strains using comparative genomics, and confirmed that the
distribution of 50 strains can be divided into two major
groups, according to their ecological niche: wine or cider.
Transcriptomic and proteomic analyses of O. oeni strains
cultivated under wine-simulated conditions showed that the
environment strongly affects O. oeni stress-responses at both
levels (Costantini et al., 2015; Olguín et al., 2015). Despite the
bioinformatic tools employed for these studies, a full systemic
understanding of the metabolic capabilities and behavior of
this malolactic bacterium under extreme environments would
strongly benefit from the reconstruction of a genome–scale
metabolic model able to integrate the current knowledge of this
LAB.

Genome annotation, databases and primary literature (Feist
et al., 2009), along with specific collection of biochemical
reactions and associated genes that describe the cell metabolism
of a specific organism, can be employed for the reconstruction
of the metabolic network at the genome scale (Thiele and
Palsson, 2010). A genome-scale metabolic model (GEM) is
a mathematically structured format of different types of
biological knowledge that is used to perform computational and
quantitative queries to answer questions about the capabilities
of an organism and its likely phenotypic states. GEMs have
primarily focused on six applications: (1) metabolic engineering,
(2) model-driven discovery, (3) prediction of cellular phenotypes,
(4) analysis of biological network properties, (5) studies

of evolutionary processes, and (6) models of interspecies
interactions (McCloskey et al., 2013). Initially, these models
only considered well -characterized organisms; nevertheless,
the interest in the generation of metabolic models of less
characterized and complex biological systems has progressively
increased, including the GEMs of several lactic acid bacteria,
such as Lactococcus lactis (Oliveira et al., 2005; Oddone et al.,
2009; Verouden et al., 2009; Flahaut et al., 2013), Lactobacillus
plantarum (Teusink et al., 2006) and Streptococcus thermophilus
(Pastink et al., 2009).

In this work, we constructed the first genome-scale metabolic
model of an O. oeni strain (named iSM454 model) to provide
a tool for simulating the metabolism, nutritional requirements,
and specific growth rate of this microorganism under the
harsh conditions of winemaking. Here we report the general
features of the model, as well as its prediction performance. The
resulting metabolic model was employed to assess the metabolic
capabilities, limitations and potential of this LAB to successfully
accomplish malolactic fermentation in wine.

MATERIALS AND METHODS

Construction of the GEM
The model was constructed following the protocol described by
Thiele and Palsson (2010) (Figure 1). As a starting point, we
generated a draft reconstruction with Pathway ToolsTM version
16.5 (Karp et al., 2002) from the NCBI reference genomic
sequence NC_008528.1 of O. oeni PSU-1. The model was
then manually curated consulting scientific literature and the
online databases KEGGTM1 (Kyoto Encyclopedia of Genes and
Genomes, Kanehisa, 2000), MetaCycTM2 (Caspi et al., 2014) and
TransportDBTM3 (Membrane Transport Database, Ren et al.,
2007). Comparison with other genome annotations such as
RAST4, as well as with previous models MG1363 (Flahaut
et al., 2013) and WCFS1 (Teusink et al., 2006) from Lactococcus
lactis and Lactobacillus plantarum respectively, was conducted in
order to find missing reactions (Table 1). The presence of the
enzyme(s) responsible for carrying out these reactions in the
genome were subsequently checked using the online available
version of Basic Local Alignment Tools5 (BLASTTM, Madden,
2002).

For proper network visualization, the model was then
manually exported into OmixTM version 1.8 (Droste et al., 2011).
Then, it was exported to MATLABTM version 2013b, as an SBML
file, and curated using Cobra Toolbox version 2.0. Flux Balance
Analysis (FBA), Flux Variability Analysis (FVA), single gene
deletion and single reaction deletion were performed to explore
the metabolic capabilities of the network.

Mathematical Formulation
FBA is a widely used approach for studying biochemical
networks. Among its many uses, FBA has been applied for
predicting gene essentiality, quantifying the cellular growth

1http://www.genome.jp/kegg/
2https://metacyc.org/
3http://www.membranetransport.org/transportDB2/index.html
4http://blog.theseed.org/servers/
5https://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 1 | Genome-scale reconstruction of the metabolic network in Oenococcus oeni PSU-1, and model validation.

under cultivation conditions and identifying by-product
secretion (Park et al., 2009). This approach allows us to calculate
the flow of metabolites through the network (Orth et al., 2010).
Specifically, FBA quantifies the flux distribution by linear
programming (LP) on the basis of stoichiometry of metabolic
reactions and mass balances around metabolites under the
pseudo-steady state, or stationary assumption (Park et al.,
2009).

We employed FBA to calculate the optimal distribution of
metabolic fluxes of an underdetermined system of stoichiometric
equations (Orth et al., 2010). Following formal procedures, the
GEM iSM454 was represented by a stoichiometric matrix S, in
which the row i represents the ith reaction and the column j
the jth metabolite of the network. Under a pseudo-steady state
assumption, the concentration of metabolites was considered
to be constant, which is stated by the equation S × v = 0,
where v is the vector of reaction fluxes. To determine the flux
distribution, biomass formation was defined as the objective
function and optimized through LP (Equation 1). Gurobi 6.56

(Gurobi Optimization Inc, 2016) was chosen as the optimization
solver.

Max µ (1)

Subjet to S× v = 0

vl ≤ vi ≤ vu ∀ i = 1 . . . n

6http://www.gurobi.com/company/news/highlights-of-gurobi-optimizer-6.5

Where µ is the specific growth rate [1 h−1], vi is the flux through
reaction i, vl , and vu are the lower and upper bounds for that
reaction, and n is the number of reactions of the reconstruction.

Network Evaluation
Determination of Nutritional Requirements
We ran in silico experiments to determine the nutritional
requirements of the O. oeni PSU-1 strain and then we compared
the results with experimental data to validate iSM454. For this
purpose, we used the 44 single omission experiments described
by Terrade and Mira de Orduña (2009) and the 17 experiments
for alternative carbon sources described by Beelman et al.
(1977). Specific restrictions were set to simulate each medium
(Supplementary Data Sheet 1). For each medium, we defined
the restrictions required to simulate the nutrients included in
the medium by allowing flux only through exchange reactions
corresponding to those nutrients. Otherwise, lower and upper
bounds of exchange reactions representing substrate uptake were
set to zero.

For single omission experiments, each of the 44 nutrients
was removed, one by one, and an optimization run was carried
out each time. Nutrients that inhibited growth when removed
were considered to be essential. We considered that growth
was inhibited when the specific growth rate of the auxotrophic
mutant was less than 20% that of the wild type. For the second
set of experiments, the 17 alternative carbon sources were tested
independently by performing an optimization run in each case.
Carbon sources that allowed growth without the presence of
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TABLE 1 | Comparison between GEM of Oenococcus oeni PSU-1, Lactobacillus plantarum WCFS1 and Lactococcus lactis IL1403.

Common reactions with Unique reactions Total reactions

Lb. plantarum Lc. lactis both models in O. oeni in O. oeni

Amino acids metabolism 39 (21) 40 (20) 32 13 60

ATP maintenance 1 (0) 1 (0) 1 0 1

Beta-oxidation 0 (8) 3 (5) 0 5 8

Biomass assembly 0 (1) 0 (1) 0 1 1

Carbohydrates metabolism 49 (26) 43 (32) 34 17 75

Citrate degradation 5 (2) 7 (0) 5 0 7

Exchange reactions 66 (44) 55 (55) 44 33 110

EPS biosynthesis 5 (5) 4 (6) 4 5 10

Fatty acid biosynthesis 40 (23) 4 (59) 2 21 63

Glycolipids metabolism 10 (9) 13 (6) 9 5 19

Glutathione redox reactions 1 (3) 1 (3) 1 3 4

Inorganic metabolism 5 (7) 2 (10) 1 6 12

Macromolecules assembly 2 (4) 4 (2) 2 2 6

Malolactic fermentation 1 (0) 1 (0) 1 0 1

Menaquinol metabolism 2 (3) 1 (4) 1 3 5

Nucleotides metabolism 53 (19) 53 (19) 47 13 72

Peptidoglycan biosynthesis 9 (4) 10 (3) 7 1 13

Terpenes biosynthesis 9 (6) 11 (4) 9 4 15

Thioredoxin redox reactions 0 (1) 0 (1) 0 1 1

Transport 30 (101) 24 (107) 15 92 131

Ubiquinol metabolism 0 (3) 0 (3) 0 3 3

Vitamins metabolism 27 (16) 20 (23) 15 11 43

TOTAL 354 (306) 297 (363) 230 239 660

The table shows common reactions between models, unique reactions, and total reactions in the model of O. oeni. Figures in parentheses indicate unique reactions in the model respect
to Lb. plantarum or Lc. lactis models.

other carbon sources were considered to sustain growth by
themselves.

For both sets of experiments, results were classified as true
positives (growth observed both in vivo and in silico), true
negatives (no growth observed neither in vivo nor in silico), false
positives (growth in silico but not in vivo) and false negatives
(growth in vivo but not in silico).

From these predictions, we calculated critical statistical
parameters that define model performance, i.e., sensitivity,
specificity, precision, negative predictive value, accuracy, and the
F-score, as follows:

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

Precision (PPV) = TP/(TP + FP) (4)

Negative predicted value (NPV) = TN/(TN + FN) (5)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (6)

F − score = 2(precision × sensitivity)/(precision + sensitivity)
(7)

Prediction of ATP-maintenance
Following standard procedures, we added an equation
(Equation 7) to represent non-growth associated maintenance

(NGAM).

ATP +H2O → ADP + Pi +H+ (8)

The values of NGAM were determined from the model for
each experimental condition. For this purpose, we first fixed the
consumption and production rates of different metabolites and
then we progressively increased the NGAM from 0 to 5 mmol
gDW−1 h−1. At each iteration, the growth rate was maximized
and the error between the experimental and predicted growth
rate was calculated. The value that minimized the error between
the experimental and predicted growth rate was chosen as the
ATP required for maintenance of cellular processes.

The experimental rates included in the model were specific
consumption rates of glucose, fructose, citrate, L-malate,
L-cysteine, L-serine, L-threonine; it also included specific
production rates of D-mannitol, L-lactate, D-lactate, acetate,
erythritol, and ethanol. They were calculated from experimental
data of two batch cultures containing 0 and 12% ethanol,
respectively, run in duplicate (see below).

Experimental Determination of Specific Growth Rates

and Consumption/Production Rates
An O. oeni PSU-1 preculture was prepared from a frozen stock
by inoculating 100-ml Erlenmeyer flasks containing 75 ml MRS
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(Man, Rogosa, and Sharpe) medium (De Man et al., 1960),
supplemented with 0.5 g L−1 of cysteine. Before inoculation, the
cells were subjected to ethanol adaptation. For this purpose, we
serially passaged every culture, starting from 1% ethanol (v/v) to
reach 0 or 12% ethanol concentration (v/v) in each culture.

The adapted cells were inoculated in 50 mL flasks containing
35 mL of a chemically defined, wine-like, culture medium
to achieve an initial optical density at 600 nm (OD600) of
approximately 0.2. We employed the modified culture medium
described by Terrade and Mira de Orduña (2009), at an initial
pH adjusted to 4.8.

The flasks were incubated at 25◦C, without stirring. OD600
was periodically measured to calculate the specific growth rate.
At the same time, the content from each flask was centrifuged,
the supernatant was collected and an aliquot was injected in a
Lachrom L-700 HPLC system (Hitachi, Japan) equipped with a
Diode Array and a Refractive Index detectors (Merck Hitachi,
Japan). Organic acids, alcohols and sugars were separated using
an Aminex HPX-87H ion exchange carbohydrate-organic acid
column (Bio-Rad, USA) and quantified, as described previously
(Varela et al., 2003).

Amino Acids Essentiality Assay
An O. oeni PSU-1 preculture was prepared from a frozen stock
as described above. The cells (not pre-adapted in ethanol) were
inoculated in 50 mL flasks containing 35 mL of the same
chemically defined, wine-like, culture medium, but lacking the
amino acids evaluated for essentiality (glutamate, glutamine,
asparagine, and threonine), one amino acid per flask, in
duplicate. The flasks were incubated at 25◦C during 13 days,
without stirring, and OD600 was periodically measured to
calculate the specific growth rate.

Sensitivity Analysis
For each optimization using experimental data, non-zero
reduced costs were extracted from the solver solution and
employed for quantifying the impact of changing a capacity
constraint on the objective flux. Scaled reduced costs were
calculated as follows:

Wi = wi × qi/µ (9)

Where wi represents the reduced cost, qi the flux through
exchange reaction i, and µ the specific growth rate. Wi, the
scaled reduced cost of the exchange reaction i, represents the
fractional change in biomass obtained by a fractional variation
in compound i. Reactions that showed both, a non-zero reduced
cost and a non-zero scaled reduced cost, were further analyzed.

Flux Variability Analysis
FVA was carried out by minimizing and maximizing the
flux through each reaction, under either unconstrained or
constrained conditions. Span range was sorted by magnitude and
plotted.

Reactions unable to carry flux were considered blocked. For
each of these, the cause of the obstruction was investigated by
finding dead-end metabolites; these were determined searching
for those metabolites that were only consumed or produced
in the stoichiometric matrix. Additionally, we determined

dead-ends by adding a demand (maximizing the flux) or a sink
(minimizing the flux) reaction for each metabolite. Metabolites
were considered dead-ends if the model was unable to produce,
nor consume them.

Random Sampling
We conducted a random sampling analysis using optGpSampler
(Megchelenbrink et al., 2014), an efficient algorithm based on
the Monte Carlo procedure hit and run (Smith, 1984). For each
experimental condition, we set the algorithm parameters in order
to sample 100.000 points using 500 steps between each point.

We applied the algorithm to explore the solutions at an
optimal specific growth rate for each experimental condition.
For this purpose, the model was restricted with the calculated
optimal growth rate and the corresponding experimental
consumption/production rates. Then, we applied the algorithm
for determining the 100,000 flux distributions that accomplished
these restrictions. For every condition, we found the 50 reactions
that showed the greatest flux variations among the distributions.
We classified these reactions according to pathways and then we
sorted pathway frequency.

We also applied this algorithm to explore the solutions near
the optimal specific growth rate, by following the same procedure
described above. For this purpose, the lower bound for specific
growth rate was fixed at 90% of the optimal, and the upper bound,
at the optimal specific growth rate.

RESULTS

General Features of the GEM of
Oenococcus oeni PSU-1 Strain
The iSM454 model (Supplementary Data Sheet 2 and
Supplementary Figure 1) consists of 660 reactions, 536
metabolites and 454 genes. 24% of the 1864 genes described in
the genome annotation (Makarova et al., 2006) were included
in the model. 68% of the reactions are associated at least to
one gene. The model includes 132 transport reactions, 110
exchange reactions, 3 extracellular reactions (dextran synthesis,
heteropolysaccharide synthesis and cellulose degradation) and
411 intracellular reactions. It contains 148 blocked reactions,
i.e., reactions that do not carry flux, including 107 dead-ends
(Table 2).

Connectivity corresponds to the number of reactions where a
metabolite participates. As shown in Table 3, the iSM454 model
presents a similar connectivity, in relation to key metabolites,
with WCFS1 (Lb. plantarum), IL1403 (Lc. Lactis), and Yeast 7 (S.
cerevisiae) models (Oliveira et al., 2005; Teusink et al., 2006; Aung
et al., 2013). The connectivity analysis (Supplementary Figure 2)
indicates that 240 out of the 536 metabolites included in the
iSM454model participate in twometabolic reactions: 100 in three
reactions, and only 40 in more than seven reactions.

Metabolic Refinement of the iSM454 Model
The metabolism of carbohydrates, amino acids, and fatty
acids, as well as macromolecular assembly, transport, and ATP
production, were thoroughly checked at this stage, as described
below.
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TABLE 2 | Main features of genome scale metabolic model of Oenococcus

oeni PSU-1.

Total Genes 1864

Included genes 454

Total Pathways 91

Total Reactions 660 (448)a

Intracellular 413 (340)a

Extracellular 3 (2)a

Transport 133 (106)a

Exchange 111

Spontaneous 8

Assembly 7

Non-genes associatedb 101

Blocked 148

With dead-ends 107

Without dead-endsc 41

Total Metabolites 536

Intracellular 434

Extracellular 102

a In brackets, number of reactions associated to genes.
bExchange reactions are not considered.
cWithout dead-ends, but associated to reactions with dead-ends.

TABLE 3 | Comparison of key metabolites connectivity between iSM454

model (O. oeni), WCFS1 (Lb. plantarum), IL1403 (Lc. lactis) and Yeast 7

(S. cerevisiae) models.

Connectivity

O. oeni Lb. plantarum Lc. lactis S. cerevisiae

iSM454 WCFS1 IL1403 Yeast 7

NADPH 32 34 37 58

NADP+ 33 35 39 58

NADH 39 57 36 36

PPi 43 63 50 69

NAD+ 43 62 40 42

Pi 96 93 101 155

ADP 111 113 113 121

ATP 128 148 130 158

H2O 162 165 141 269

H+ 230 382 110 433

Carbohydrates Metabolism
Oenococcus oeni is a heterofermentative bacterium. It consumes
hexoses through the 6-phospho-gluconate pathway and produces
carbon dioxide, D-lactate, acetate, and/or ethanol. The main
metabolized hexoses are glucose and fructose. The latter can
also be transformed into mannitol or erythritol to fulfill the
demand for NAD+ required in the heterolactic fermentative
pathway. Even though the genes related to mannitol and
erythritol biosynthetic pathways were not found in the PSU-
1 genome, these pathways were included in the model to
account for reported experimental data (Beelman et al., 1977).
The membrane transporters of these and other carbohydrates—
arabinose, ribose, melibiose, mannose, fucose, xylose, and

galactose—were found using PathoLogic (Dale et al., 2010),
which is provided by Pathway Tools, and included in iSM454.

Meanwhile, as O. oeni synthesizes exopolysaccharides (EPS)
(Ciezack et al., 2010; Dimopoulou et al., 2012, 2014), we included
7 reactions responsible for EPS biosynthesis, associated with 22
genes annotated in the genome.

Finally, we also curated the pathways related to peptidoglycan
biosynthesis. The draft reconstruction contained three alternative
pathways to synthesize peptidoglycan (pathways I, III, or V). We
only left pathway I in themodel because it was themost complete,
i.e., 9 out of the 10 reactions of this pathway were associated with
genes.

Amino Acids Metabolism
The iSM454 model contains the whole biosynthetic pathways
for 6 amino acids (alanine, aspartate, glutamine, lysine, proline,
and glycine), as arisen from genome annotation (Mills et al.,
2005). In particular, the gene dapX encoding for the enzyme
diaminopimelate epimerase was absent in the genome annotation
and therefore, was added to iSM454 in order to complete
lysine biosynthesis pathway (Rodionov et al., 2003). The
biosynthetic pathways of the remaining 14 amino acids are
incomplete (arginine, asparagine, cysteine, glutamate, histidine,
isoleucine, leucine, methionine, phenylalanine, serine, threonine,
tryptophan, tyrosine, and valine), in accordance with genomic
analysis (Mills et al., 2005).

Fatty Acids Metabolism
Oenococcus oeni does not store triglycerides as an energy reserve.
Instead, fatty acids are mainly utilized for the construction of
the cytoplasmic membrane. The lipid fraction of O. oeni is
mainly composed by saturated fatty acids (laurate, myristate,
palmitate, stearate), unsaturated fatty acids (palmitoleate, oleate,
cis-vaccenate) and cyclopropane fatty acids (lactobacillate and
dihydrosterculate) (Tracey and Britz, 1989b; Lonvaud-Funel
and Desens, 1990; Garbay et al., 1995; Guerrini et al., 2002).
Biosynthesis of saturated fatty acids was automatically included
into the model by Pathway Tools. Meanwhile, the biosyntheses of
unsaturated and cyclopropane fatty acids weremanually added to
the model with their respective gene associations.

The synthetic routes for cardiolipin, 3-D-glucosyl-
1,2-diacylglycerol, L-1-phosphatidyl-glycerol, and
lysophosphatidylglycerol, starting from dihydroxyacetone
phosphate, were also included.

In relation to β-oxidation of fatty acids, Pathway Tools
assigned two genes, OEOE_1366 and OEOE_1263, to the same
acyl-CoA synthetase (EC number 6.2.1.3) associated with a
generic acyl fatty acid. We therefore manually included these
genes and reactions for the canonical catabolism of the above-
mentioned saturated fatty acids.

Assembly of Macromolecules
A modified version of the reported biomass equation of L. lactis
(Oliveira et al., 2005) was included in iSM454, according to
some unique features reported in the literature for O. oeni.
For example, deoxyribonucleotide content was taken from the
genomic analysis for O. oeni PSU-1 (Makarova et al., 2006).
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Fatty acid composition was determined as the average of each
individual molecule (Tracey and Britz, 1989b; Lonvaud-Funel
and Desens, 1990; Garbay et al., 1995; Guerrini et al., 2002).
Amino acids, ribonucleotides and lipids composition correspond
to L. lactis biomass composition (Oliveira et al., 2005). Similarly,
macromolecular elements (proteins, lipids, DNA, and RNA) were
included (Oliveira et al., 2005). Finally, the lipoteichoic acid
(LTA) synthetic pathway present in the L. lactis genome was
eliminated because the genes for its synthesis were absent in the
O. oeni’s genome and its presence has not been described in this
microorganism (Ribéreau-Gayon et al., 2006).

Energy
Malate metabolism was added to the model, considering the
transformation of malic acid to lactic acid by the malolactic
enzyme (malate decarboxylase), codified by the OEOE_1564
gene. In this reaction, a cytosolic proton is consumed, and lactic
acid diffuses outside of the cell (Figure 2) (Salema et al., 1996;
Konings et al., 1997). The net result of this process is a decrease
in the concentration of intracellular protons, contributing to
the formation of an electrochemical gradient. Additionally,
the citrate lyase complex was lumped into one reaction,
directly allowing the conversion of citrate to oxaloacetate. A
stoichiometric equation to account for the diffusion of citrate
inside O. oeni was also added. The model also contains a
functional ATP synthase system.

Model Validation
With the aim of determining the functionality of the model, we
contrasted the results predicted by iSM454 with experimental
data.

FIGURE 2 | Electrochemical gradient formation in Oenococcus oeni

toward the malolactic fermentation.

Determination of In vivo Amino Acids Requirements
Model outputs of the essentiality of some amino acids differed
from literature data (Garvie, 1967; Tracey and Britz, 1989a;
Fourcassie et al., 1992; Mills et al., 2005; Terrade and Mira de
Orduña, 2009). Therefore, we addressed these differences by
experimentally evaluating their role on cell growth (Figure 3).

For example, Mills et al. (2005) reported that the genes
related to the threonine biosynthetic pathway were all present
in PSU-1. However, we identified a pseudogene within this
pathway and experimentally demonstrated its essentiality for
O. oeni PSU-1. On the contrary, even though several genes
of the asparagine biosynthetic pathway were not found in the
genomic sequence, our experimental results confirmed that O.
oeni PSU-1 could synthesize this amino acid (Figure 3); and
the whole pathway was included in the reconstructed model. In
the case of glutamine, both our experimental results and model
reconstruction confirmed that this amino acid is not essential, at
least for this strain. Finally, O. oeni PSU-1 showed auxotrophy
for glutamate, in agreement with previous results (Garvie, 1967;
Tracey and Britz, 1989a; Fourcassie et al., 1992; Mills et al., 2005;
Terrade and Mira de Orduña, 2009).

Determination of In silico Nutritional Requirements
First, we carried out an in silico single omission experiment to
compare the nutritional requirements predicted by the model
with the experimental data obtained after growth of O. oeni in
the culture medium of Terrade and Mira de Orduña (2009).
Second, we tested alternative and independent carbon sources
to evaluate growth and then we compared these results with the
ones obtained by Beelman et al. (1977) (Table 4). Additionally, a
confusion matrix was constructed to measure the performance of
our predictions (Figure 4). This approach has been used before
to assess the GEM quality of S. cerevisiae iIN800 (Nookaew
et al., 2008) and iLL672 (Kuepfer et al., 2005), as well as for L.
plantarum (Teusink et al., 2006) and Y. lypolitica (Loira et al.,
2012).

The in silico analysis of nutritional requirements showed that
at least one carbon source is required for growth. Thus, one
out of the 9 following carbon sources could be employed to
sustain growth: glucose, fructose, ribose, galactose, arabinose,
cellobiose, trehalose, melibiose, or gluconate. Additionally,

FIGURE 3 | Amino acids essentiality analysis of O. oeni PSU-1. The

amino acids studied are those with controversy with literature. Bacterial growth

was compared with the complete medium (and the medium lacking

asparagine (- Asn), glutamate (- Glu), glutamine (- Gln), and threonine (- Thr).
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TABLE 4 | Experimental validation of the iSM454 metabolic model.

Nutrient In vivo In silico Result References Nutrient In vivo In silico Result References

Carbon sources Amino acids

D-Glucose + + TP 1 L-Alanine + + TP 2

Fructose + + TP 1 L-Arginine − − TN 2,3,4,5

D-Ribose − − TN 2 L-Asparagine + + TP 2

Threhalose + + TP 1 L-Aspartic acid + + TP 2,3,4,5

Cellobiose + + TP 1 L-Cysteine − − TN 2,3,4,5

D-Deoxyribose − − TN 1 L-Glutamic acid − + FP 2,3,4,5

D-Xylose − − TN 1 L-Glutamine + + TP 2

L-Arabinose − − TN 1 L-Glycine + + TP 2,3,4,5

L-Rhammose − − TN 1 L-Histidine − − TN 2,3,4,5

D-Mannose − − TN 1 L-Isoleucine − − TN 2,3,4,5

Esculin + − FN 1 L-Leucine − − TN 2,3,4,5

Salicin + − FN 1 L-Lysine + + TP 2,3,4,5

Glycerol − − TN 1 L-Methionine − − TN 2,3,4,5

D-Mannitol − − TN 1 L-Phenylalanine − − TN 2,3,4,5

L-Sorbitol − − TN 1 L-Proline + + TP 2,3,4,5

L-Malic acid − − TN 1 L-Serine + − FN 2,3,4,5

Citric acid − − TN 1 L-Threonine − − TN 2,3,4,5

Fumaric acid − − TN 1 L-Tryptophan − − TN 2,3,4,5

Nucleotides L-Tyrosine − − TN 2,3,4,5

Adenine + + TP 2 L-Valine − − TN 2,3,4,5

Guanine + + TP 2 Vitamins

Xanthine + + TP 2 4-Aminobenzoic acid + + TP 2

Cytosine + + TP 2 Biotin + + TP 2

Thymine + + TP 2 Choline + + TP 2

Uracil + + TP 2 Cyanocobalamin + + TP 2

Minerals Folic acid + + TP 2

MnSO4 · 4 H2O − − TN 2 Nicotinic acid − − TN 2

MgSO4 · 7 H2O + + TP 2 D-Pantothenate − − TN 2

K2HPO4 − − TN 2 Pyridoxine + + TP 2

CaCl2 + + TP 2 Riboflavin + + TP 2

CuSO4 · 5 H2O + + TP 2 Thiamine + + TP 2

FeSO4 · 7 H2O + + TP 2

ZnSO4 · 7 H2O + + TP 2

1, Beelman et al. (1977), 2, Terrade and Mira de Orduña (2009), 3, Garvie (1967), 4, Fourcassie et al. (1992), 5, Remize et al. (2006).
We compared 61 in vivo experiments with in silico simulations under different media conditions. From the 61 experiments, we obtained 30 true positives (TP), 27 true negatives (TN), 1
false positive (FP), and 3 false negative (FN). + growth is achieved by O. oeni; − growth is not achieved by O. oeni.

the model predicted that 14 amino acids are essential for
growth (arginine, cysteine, histidine, isoleucine, methionine,
phenylalanine, tryptophan, tyrosine, valine, leucine, threonine,
serine, glutamate, and asparagine), and that the 6 remaining ones
(alanine, aspartic acid, glutamine, glycine, lysine, and proline)
were not.

Single nucleotide omission experiments of iSM454 showed
that these metabolites were not essential for O. oeni. On the
other hand, nicotinic acid and pantothenate were predicted
to be essential nutrients. Moreover, several vitamins, such as
biotin, folic acid, pyridoxine, riboflavin, and thiamin were not
essential.

The model was able to identify that O. oeni was able to
grow in 91% of the cases in which growth has been observed

experimentally (sensitivity); whereas it identified correctly 96% of
the cases where O. oeni did not grow (specificity). Furthermore,
97% of the experiments in which O. oeni was predicted to
grow, O. oeni actually grew (precision). Additionally, 90% of
the experiments in which O. oeni was not predicted to grow,
O. oeni actually did not grow (NPV). The accuracy of the
model was 93%, i.e., the proportion of correct results to total
predictions. By comparison, the GEM model of L. plantarum
presents an accuracy of 86% (Teusink et al., 2005); and the
iIN800model of S. cerevisiae, 89% (Nookaew et al., 2008). Finally,
the F-score, a measure of the accuracy that can be interpreted
as a weighted average of the sensitivity and the precision,
was 94%, indicating that overall the model has a very good
performance.
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FIGURE 4 | Confusion matrix used to measure the performance of

predictions in the determination of in silico nutritional requirements.

The statistical parameters that define model performance are: sensibility of

91%, specificity of 96%, precision of 97%, negative predictive value of 90%,

accuracy of 93%, and F-score of 94%.

We obtained one false positive related to prediction of
growth in the absence of L-glutamate, because of the presence
of transamination reactions in the network, which artificially
allowed the production of this amino acid. On the other hand,
we obtained three false negatives related to growth in the absence
of L-serine, and growth with esculin and salicin as sole carbon
sources.

Applications
The reconstructed GEM can be employed to study metabolic
fluxes, as well as to identify gene or nutrient essentiality in silico.
In the following, we exemplify some potential uses of the iSM454
model.

Prediction of Non-growth Associated Maintenance

(NGAM)
In order to predict the NGAM values for each experimental
data set, we optimized the growth rate considering a range
of possible NGAM values. The value of NGAM that allowed
the minimal error at each specific growth rate prediction was
selected, reaching an average error in the biomass formation
of 0.14% in the two conditions analyzed. These NGAM values
accounted for 0.07 and 2.3 mmol of ATP gDW−1 h−1 at 0 and
12% ethanol, respectively. Thus, when exposed to 12% ethanol,
O. oeni PSU-1 spends 30 times more ATP to maintain the cellular
machinery than in the absence of ethanol.

Impact of Ethanol Concentration on the

Redistribution of Intracellular Fluxes
FBA of experimental data showed that a significant redistribution
of intracellular fluxes occurs in the cell when O. oeni is grown
in the absence of ethanol or under 12% ethanol content.
To compare these two conditions, fluxes were standardized

by growth rate. The glucose uptake rate is similar for 0
and 12% ethanol (Figure 5). On the contrary, significant
changes occur in the consumption rates of fructose, malate,
and citrate. The uptake rate of these compounds increases
102, 169, and 127%, respectively, when the bacterium is
cultivated with 12%v/v ethanol. The net result is an increase
in the fluxes through the heterolactic pathway. Consequently,
a higher production rate of D-lactate (279%), L-lactate (144%),
acetate (150%), mannitol (39%), and erythritol (7%), was
achieved.

Despite the fructose uptake rate more than double in cultures
with 12% ethanol, themannitol production rate only increased by
39%. Indeed, in the absence of ethanol, Ymannitol/fructose was 0.82;
meanwhile, at 12% ethanol, this yield decreased to 0.56. Thus,
fructose in cultures with ethanol is preferentially transformed
to fructose-6-phosphate—and then to glucose-6-phosphate—
compared to those without ethanol, which subsequently leads to
a higher production of D-lactate and acetate. In fact, considering
total carbon source as the sum of glucose, fructose, citrate, and
L-malate, resulting YD−lactate/total C and Yacetate/total C were 0.044
and 0.35 in the absence of ethanol; and 0.086 and 0.46 at 12%
ethanol, respectively.

The flux through the malolactic reaction was also much
faster in ethanol-containing cultures. The uptake rate of L-malate
increased 169%, and the concomitant production rate of L-
lactate, 144%. It is worthy to note that in both cases, not all
the L-malate was transformed to L-lactate. A minor fraction is
transformed to oxaloacetate through the malate dehydrogenase.
Interestingly, YL−lactate/L−malate slightly decreased from 0.79 to
0.71, suggesting that for cells grown at 12% ethanol, a higher part
of L-malate is destined to oxaloacetate.

Ethanol content significantly impacts the production rate of
diacetyl, which increases from 0 to 4.23 mmol gDW−1 h−1.
Regarding erythritol, even though its production remains almost
the same in both conditions Yerythritol/glucose+fructose decreased
from 0.36 to 0.25, suggesting that a higher extent of fructose and
glucose is transformed into other metabolites than erythritol.

As expected from the higher carbon flow through the
heterolactic pathway in ethanol-containing cultures, the
corresponding ATP specific production rate was 3-fold faster
than in the absence of ethanol, passing from 0.74 to 1.98 mmol
gDW−1 h−1 for 0 and 12% ethanol, respectively. These were
calculated by adding the fluxes of acetate kinase (EC 2.7.2.1),
pyruvate kinase (EC 2.7.1.40), and phosphoglycerate kinase
(EC 2.7.2.3); and subtracting the fluxes through hexokinase (EC
2.7.1.1/E.C 2.7.1.2) and fructokinase (EC 2.7.1.4). On the other
hand, by using the usual method for ATP determination through
heterolactic fermentation, which consists of adding the total
D-lactate and acetate produced, the resulting ATP production
rates were 1.38 and 2.12 mmol gDW−1 h−1, for 0 and 12%
ethanol-containing cultures, respectively.

Total ATP production increases as the concentration of
ethanol in the medium increases (Figure 6). The model includes
ATP generation by both, heterolactic fermentation and ATP
synthase. At high ethanol content, the percentage of ATP
produced via ATP synthase slightly decreases, from 48 to 45%;
while the ATP formed through the heterolactic fermentation
increases, correspondingly.
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FIGURE 5 | Metabolic flux redistribution of the central carbon metabolic pathways of O. oeni PSU-1 upon cultivation in a culture medium with 0%

(red), and 12% (blue) ethanol concentration. The number “2” in the reaction pyruvate to 2-acetolactate means that 2 moles of pyruvate generate 1 mole of

2-acetolactate.

Sensitivity Analysis
We assessed the impact of exchange reactions on the growth of
O. oeni, by conducting a sensitivity analysis (Table 5) through
estimation of the reduced costs, as well as of the scaled reduced
costs, associated with these constrained fluxes. This methodology
has been used before to assess the impact of metabolic reactions

on ATP formation in the lactic acid bacterium Lactobacillus
plantarum (Teusink et al., 2006). Reduced costs allow quantifying
how much the objective flux could be improved by changing a
capacity constraint. Scaled reduced costs represent the reduced
cost normalized by the current biomass flux and the flux
associated with the constraint. They allow computing the
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FIGURE 6 | Production of ATP at different ethanol concentrations. The

figure illustrates the total ATP produced during simulation of experimental data

at pH 4.8 and at different ethanol concentrations. Numbers indicate the ATP

production either by heterolactic fermentation (dark bars) or ATP Synthase

(light bars).

relative effect of a change in a parameter to the whole
system.

The increase of sugar uptake rate—fructose or glucose—had
a positive effect on the specific growth rate (scaled reduced costs
of 2.59 and 1.67, respectively) as well as the transport of acids -
malate or citrate uptake- (scaled reduced costs of 0.86 and 0.03,
respectively), and the export of acetate, L- and D-lactate (0.47,
0.34, 0.09 respectively). The specific uptake rate of cysteine, serine
and threonine also showed a positive effect on the specific growth
rate (scaled reduced costs of 0.05, 0.01, and 0.06, respectively). On
the contrary, the production rate of D-mannitol and D-erythritol
had a negative effect on the specific growth rate, which showed
scaled reduced cost of−2.67 and−1.48, respectively.

Exploring the Solution Space
To evaluate the robustness of our results, we employed random
sampling and FVA to identify and explore the different
phenotypes achieved at optimal specific growth rate.

FVA revealed some important differences between
unconstrained and constrained networks (Figure 7). 485
and 419 reactions were able to carry flux in the unconstrained
and constrained network, respectively. The larger differences
were found for reactions with a narrow flux range (less than
1 mmol gDW−1 h−1, i.e., a negative value for the logarithm
of the flux range in Figure 7). We found only 30 reactions
with a flux range of less than 1 mmol gDW−1 h−1 in the
unconstrained network; meanwhile, this value increased to 370
in the constrained network. Moreover, 99% of the reactions in
the constrained network showed a flux range lower than 3 mmol
gDW−1 h−1, suggesting that the constraints applied (uptake
and production rates) strongly delimit the solution space. Thus,
applying these constraints, the phenotype is well defined.

TABLE 5 | Sensitivity Analysis of the model using experimental data at

pH 4.8.

Reaction Direction Reduced cost Scaled reduced cost

β-D-fructose [ex] Consumed 0.023 ± 0.007 2.585 ± 0.824

α-D-glucose [ex] Consumed 0.031 ± 0.007 1.670 ± 0.433

D-mannitol [ex] Produced −0.035 ± 0.008 −2.671 ± 0.817

Citrate [ex] Consumed 0.005 ± 0.008 0.033 ± 0.066

(R)-lactate [ex] Produced 0.003 ± 0.005 0.089 ± 0.154

(S)-lactate [ex] Produced 0.003 ± 0.005 0.338 ± 0.586

(S)-malate [ex] Consumed 0.009 ± 0.005 0.860 ± 0.502

L-Cys [ex] Consumed 0.012 ± 0.003 0.054 ± 0.013

L-Ser [ex] Consumed 0.005 ± 0.005 0.011 ± 0.012

L-Thr [ex] Consumed 0.022 ± 0.002 0.057 ± 0.009

Ethanol [ex] Produced −0.005 ± 0.009 −0.005 ± 0.009

Acetate [ex] Produced 0.003 ± 0.002 0.468 ± 0.482

D-erythritol [ex] Produced −0.032 ± 0.010 −1.488 ± 0.412

Reactions analyzed correspond to exchange reactions of the model. Reduced cost
quantifies how much the objective flux (specific growth rate) improves by changing a
capacity constraint, and scaled reduced cost is the reduced cost normalized by the
current biomass flux and the flux associated to the constraint. Positive value indicates
an improvement in the specific growth rate, and negative value indicates a decrease.

Additionally, random sampling in the constrained network
revealed that the solution space was tight and alternative
pathways were limited. Except in the case of reactions of isomer
interconversions which could result in a futile cycle, none
of the reaction rates analyzed changed more than 1.1 mmol
gDW−1 h−1.

Interestingly, when constrained by experimental rates, FVA
shows that O. oeni requires oxygen to achieve growth at all
ethanol levels. Moreover, the oxygen consumption rates needed
for growth increase as the concentration of ethanol increases,
ranging from 0.8–1.2 to 4.1–4.2 mmol gDW−1 h−1 for 0 and 12%
ethanol, respectively.

In silico Reaction Deletion Analysis
The essential reactions of O. oeni were predicted by in silico
simulations of reaction knockouts—inhibiting the activity of
the enzyme(s) carrying away the respective reaction. This was
conducted by further constraining the model, i.e., fixing the flux
of the corresponding reaction to zero.

132 essential reactions were found by reaction deletion
analysis, which represent 20% of the 660 total reactions of the
model; of these, 28% correspond to fatty acid biosynthesis, and
14% to unsaturated fatty acid biosynthesis. The other main
essential pathways include the biosynthesis of peptidoglycan
(10%), glycerolipids (8%), and amino acid biosynthesis (8%)
(Figure 8).

DISCUSSION

In this work, we reconstructed, curated and validated the first
genome-scale metabolic model of O. oeni PSU-1. The resulting
iSM454 comprises 660 reactions, 536 metabolites and 454
genes, and is able to predict growth under different culture
conditions with 93% accuracy. An accurate prediction depends
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FIGURE 7 | Flux Variability Analysis for unconstrained and constrained

networks. The figure illustrates the flux range in mmol gDW−1 h−1 for every

non-blocked reaction of the unconstrained (blue) and constrained (orange)

network expressed as base 10 logarithm. Flux range of the constrained

network was calculated as the average flux ranges of networks applying

constraints for 0 and 12% of ethanol content.

largely on the refinement process. The draft reconstruction
was thoroughly curated pathway by pathway, evaluating the
stoichiometry, direction, and reversibility of each reaction. After
an exhaustive literature search, several pathways weremodified in
the draft reconstruction, while others were completed, removed,
or added to the iSM454 model. Several metabolisms (fatty acids,
exopolysaccharides, amino acids, and energetic) were thoroughly
curated in the model.

Regarding biosynthesis of unsaturated and cyclopropane
fatty acids, we included the reactions for the biosynthesis
of palmitoleate (C16:1 19), cis-vaccenic acid (C18:1 111),
lactobacillic acid (C19:0 cy111), and dihydrosterculic acid
(C19:0 cy19). Moreover, we discovered that the reactions
for generating cyclopropane bounds were associated with
OEOE_1176, a gene related to a generic reaction of cyclization
of unsaturated fatty acids. We identified dihydrosterculic acid,
which derives from oleic acid under stress conditions (Tracey
and Britz, 1989a; Lonvaud-Funel and Desens, 1990; Guerrini
et al., 2002), as an essential nutrient in the model. Therefore, an
equation for the transport of oleic acid was included.

EPS biosynthesis has been related to the survival of O. oeni
under stress conditions, such as those prevailing in wine during
malolactic fermentation (MLF). Moreover, these polysaccharides
have been implicated in ropiness, a wine spoilage process
(Dimopoulou et al., 2012). Therefore, we included in the
model the detailed biosynthesis of EPS based on the pathways
described by Dimopoulou et al. (2012, 2014), which consist of
two main products: heteropolysaccharide (glucosyl-rhamnosyl-
galactoside) and homopolysaccharide (dextran).

Moreover, the iSM454 model was able to correctly predict
most essential amino acids, in agreement with the analysis of
amino acids pathways reported by Mills et al. (2005). The model
predicts that 14 amino acids are essential and that O. oeni is only
able to synthesize 6 amino acids, which is supported by previous
evidence (Garvie, 1967; Fourcassie et al., 1992; Remize et al., 2006;
Terrade and Mira de Orduña, 2009). Mills et al. (2005) found
that the biosynthesis pathway of cysteine was complete, which

FIGURE 8 | Pathway distribution of 133 out of 164 essential reactions

determined by Reaction Deletion on an in silico simulation. Reactions

were classified as essential if growth was affected by at least 80%. Reactions

corresponding to non-classified reactions, exchange reactions or pathways

that have only one reaction as essential were not considered.

agrees with our reconstruction. However, cysteine has been
experimentally found as an essential amino acid in most cases
(Garvie, 1967; Fourcassie et al., 1992; Remize et al., 2006; Terrade
and Mira de Orduña, 2009). Hence, although its biosynthesis
pathway is complete, missing pathways for sulfur assimilation
could explain its essentiality for O. oeni cells.

Another important feature of the model is the representation
of different proton extrusion/energy generation pathways
employed by O. oeni, particularly the transformation of
malic into lactic acid, using the malolactic enzyme (malate
decarboxylase). Likewise, a lactic acid transporter that allows
this compound to cross the cytoplasmic membrane was
added. Citrate metabolism, another important system of energy
generation in O. oeni, was also included. Both processes allow
proton extrusion, which relates to ATP synthase, allowing more
ATP to be synthesized. These three added metabolic processes
were critical for accurate model performance, especially for the
prediction of specific growth rates. Thus, simulations strongly
suggest that proton transport is the most important process for
the survival of O. oeni under these harsh cultural conditions.

We found that accurate proton balancing and cofactor
utilization was fundamental for the successful prediction of
O. oeni phenotype by iSM455 model. For this purpose, we
ensure that the only reactions for extrusion of protons were
those related to heterolactic fermentation (efflux of lactate and
carbon dioxide); in those cases, the network properly described
the proton motive force needed to generate energy from the
ATP synthase located in the cell membrane. Additionally, a
careful revision of the metabolism was performed to account
for proper cofactor utilization. This feature was recently
reported as a critical step in improving phenotypic predictions
by genome-scale metabolic models (Pereira et al., 2016).
Therefore, we manually curated all reactions by forcing the
use of NADPH/NADP+ in anabolic reactions, e.g., fatty acid
biosynthesis, and NADH/NAD+ for catabolic reactions.
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The total ATP production rate calculated by the model was
26% less, on average, than the ATP production rate estimated
using the approach of other authors (Salou et al., 1994; Zhang
and Lovitt, 2005, 2006). This difference could result from
several reasons: (i) pyruvate, the precursor of D-lactate, can be
produced either from oxaloacetate, malate or even from some
amino acids, such as cysteine, serine, or threonine or consumed
for the synthesis of diacetyl and ethanol; (ii) acetate can be
directly produced from citrate or acetaldehyde, not yielding
any ATP; and (iii) production of erythritol requires that some
carbon leaves the heterolactic pathway to generate its precursor,
erythrose 4 phosphate; therefore, the ATP consumed by the
hexokinase could not be regenerated downstream. Mink et al.
(2015) showed that diacetyl production could be induced by
exogenous pyruvate; the authors concluded that any substrate
increasing intracellular pyruvate could induce the synthesis
of diacetyl, as observed in a manner consistent with our
results.

In general, microorganisms colonizing extreme ecological
niches need higher energetic requirements for cell maintenance,
which is not reflected in biomass formation (Russell and
Cook, 1995). Therefore, a relevant applied use of iSM454 was
the determination of m-ATP, which represents non-growth
associated maintenance (NGAM) requirements. Using our
experimental data, the model was able to predict m-ATP of 0.07
and 2.3 mmol gDW−1 h−1 for O. oeni PSU-1 grown under 0
and 12% v/v ethanol, respectively. These m-ATP values allowed
predicting biomass with an average error of 0.14%. Despite
the remarkable importance of m-ATP for visualization of cell
behavior under stress conditions, there is scarce information in
the literature about this parameter for O. oeni. Zhang and Lovitt
(2006) determined an NGAM of 0.6 mmol ATP g DW−1 h−1

for O. oeni 11,648 strain, when growing in continuous culture
at pH 4.5 with glucose and fructose as carbon sources and in
the absence of ethanol. We determined that the stress produced
by 12% ethanol in the medium required a 30-fold increment in
the m-ATP needed, compared to the cultivation without ethanol.
Interestingly, growth associated maintenance (GAM) was on
average 0.25 mmol ATP gDW−1, pointing out that under ethanol
stress (12%v/v), O. oeni spends in total almost nine times more
energy in cell maintenance than under non-stress conditions, i.e.,
absence of ethanol in the medium.

To the best of our knowledge, this is the first report
determining the ATP required for maintaining cells of O.
oeni growing in a medium with ethanol. It is worthy to note
that model predictions were performed using experimental
data obtained in a wine-simulated environment, where this
microorganism commonly develops. As a consequence, the
model can effectively be used to predict internal fluxes in cases
where there is scarce growth. This is relevant for winemakers
because many strains are able to perform MLF in spite of
achieving scarce growth in wine. The model is particularly
useful in this case because it predicts MLF, whereas other
mathematical models of O. oeni cannot (Fahimi et al., 2014;
Brandam et al., 2016). Furthermore, the model is able to
predict internal metabolic fluxes, determining the production
of mannitol, erythritol, acetate, diacetyl, acetoin, among other

compounds that could have significant organoleptic impacts on
the resulting wine.

As expected for the effect of variations in the constrained
fluxes, the sensitivity analysis showed positive reduced costs
associated with the uptake rate of D-glucose, D-fructose, and D-
malic acid, as well as an increase in the production of DL-lactate
and acetate. It is expected that a higher rate for these reactions
leads to a higher specific growth rate because more ATP can
be obtained directly through heterolactic—from D-glucose and
D-fructose—and indirectly through malolactic fermentation—
from D-malic acid. Interestingly, the uptake of D-fructose has
higher scaled reduced cost, meaning that it has the greatest
effect on growth rate, probably because of the importance of the
regeneration of redox factors. Zhang and Lovitt (2005) reported
that the specific growth rate of O. oeni NCIMB 11648 increased
when the ratio among glucose and fructose concentrations in
the medium was reduced from 0.5 to 0.3, supporting our results
related to the impact on the specific growth rate of increasing
fructose uptake rate. On the other hand, an increase in the uptake
rate of citric acid and some amino acids such as L-cysteine, L-
serine and L-threonine also leads to a higher growth rate, in
accordance with the essentiality of these amino acids. All these
metabolites have been identified as important contributors to
energy metabolism in lactic acid bacteria (Teusink et al., 2006),
which support their role in the specific growth rate.

Sensitivity analyses demonstrated that an increase in the
production of D-mannitol or D-erythritol has a negative effect
on growth rate. At first sight, this could be counterintuitive.
Nevertheless, O. oeni needs reduced redox cofactors for anabolic
processes and biomass formation, which are used during the
biosynthesis of mannitol and/or erythritol.

The iSM454 model allowed finding a direct relationship
between several metabolic fluxes and ethanol content in the
medium. Fructose and amino acid consumption rates increased
concomitantly with ethanol content. Moreover, erythritol, D-
lactate and acetate production rates also increased in ethanol-
containing cultures. As expected, the metabolic fluxes related
with malic acid consumption and L-lactic production rates
increased with ethanol. These compounds are critical for
regeneration of redox cofactors such as NADH/NAD+, which
restore the redox balance inside the cell. Our results therefore
confirm previous studies that point to redox balancing as a
survival strategy forO. oeni (Salou et al., 1994; Maicas et al., 1999;
Zhang and Lovitt, 2005).

Moreover, a redistribution of intracellular fluxes occurred
when ethanol content increased in the culture medium. FVA
revealed thatO. oeni requires oxygen to grow at all ethanol levels.
Furthermore, oxygen requirements increase concomitantly
with ethanol concentration. Although the calculated oxygen
specific consumption rates were low, they had a similar
value (6.25 mmol gDW−1 h−1) to those determined by
Aceituno et al. (2012) for the wine yeast strain Saccharomyces
cerevisiae EC1118, grown in nitrogen–limited continuous
cultures, sparged with 1.2 µM of oxygen. These results confirm
the microaerophilic behavior of O. oeni. Oxygen is mainly
used for pyruvate oxidation by pyruvate oxidase (E.C.1.2.3.3),
threonine degradation by aminoacetone:oxygen oxidoreductase
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(E.C. 1.4.3.21) and spontaneous diacetyl formation by acetoin
oxidation.

The overall good performance of the metabolic model
evidences the correct distribution of metabolic fluxes, with
or without 12% ethanol content and pH 4.8. However, it is
worthy to mention that the information about O. oeni is still
scarce; the physiological as well as proteomic and transcriptomic
responses of the bacterium grown under different environmental
perturbations are necessary to further improve the model. These
might include determination of biomass composition, exhaustive
electronic and proton balancing of stoichiometric equations and
integration of transcriptomic and proteomic data. On the other
hand, dynamic flux balance analysis (dFBA) has emerged as
a promising strategy to study batch cultures of several strains
(Sainz et al., 2003; Hanly et al., 2012; Sánchez et al., 2014). Indeed,
this methodology has been already applied to understand the
behavior of industrial Saccharomyces cerevisiae strains in wine-
like medium (Vargas et al., 2011). Therefore, a dFBA for O. oeni
could be useful to simulate the kinetics of growth and industrial
MLF extension.

Finally, a future challenge is the development of a more
extended platform, based on the iSM454 model, allowing
the simulation and prediction of the biological interactions
occurring within the wine microbiome. For example, E. coli’s
GEM has been successfully employed as a platform to model
metabolite exchange between different organism under different
environmental conditions (Jain and Srivastava, 2009; Klitgord
and Segre, 2010; Wintermute and Silver, 2010). The consortium
metabolic models could also be applied to winemaking to
simulate and understand the interactions between O. oeni and
other microorganisms that share this ecological niche, as S.
cerevisiae and other LAB, like Lb. plantarum, Lb. kunkeii,
Pediococcus pentosaceus; and even undesirable and detrimental

wine microorganisms, like Brettanomyces spp. or Acetobacter
aceti, responsible for acetic acid production spoilage. Consortium
metabolic models might predict how each organism develops
in a shared, not isolated, scenario (Tzamali et al., 2011). The
iSM454 model would be a valuable tool to be employed for
further modeling O. oeni in coexistence with other species.

AUTHOR CONTRIBUTIONS

EA designed the research and provided guide throughout the
investigation. EA, SM, and PC coordinated the project. SM and
PC are first-authorships and developed and refined the model,
and PC developed the OMIX version of the reconstruction. SM
and MR performed the model validation and evaluation. AC
designed, performed, and coordinated the batch experiments as
well as processed the HPLC data. All the authors wrote the paper,
read, and approved the final manuscript.

ACKNOWLEDGMENTS

This work was partially supported by FONDEF Grant D11i1139.
PC and MR acknowledge CONICYT for providing scholarships
to pursue their graduate studies at Pontificia Universidad
Católica de Chile. FONDECYT Postdoctoral Research
Fellowship N◦3150151 supported AC. We are grateful to
Dr. Jorge Valdes, Fraunhofer Chile for providing valuable
feedback for model refinement.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2017.00534/full#supplementary-material

REFERENCES

Aceituno, F. F., Orellana, M., Torres, J., Mendoza, S., Slater, A. W., Melo, F., et al.

(2012). Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118

grown under Carbon-Sufficient, nitrogen-limited enological conditions. Appl.

Environ. Microbiol. 78, 8340–8352. doi: 10.1128/AEM.02305-12

Aung, H. W., Henry, S. A., and Walker, L. P. (2013). Revising the

representation of fatty acid, glycerolipid, and glycerophospholipid metabolism

in the consensus model of yeast metabolism. Ind. Biotechnol. 9, 215–228.

doi: 10.1089/ind.2013.0013

Bartowsky, E. J. (2005). Oenococcus oeni and malolactic fermentation–

moving into the molecular arena. Aust. J. Grape Wine Res. 11, 174–187.

doi: 10.1111/j.1755-0238.2005.tb00286.x

Bartowsky, E. J., Costello, P. J., and Chambers, P. J. (2015). Emerging trends in the

application of malolactic fermentation. Aust. J. Grape Wine Res. 21, 663–669.

doi: 10.1111/ajgw.12185

Bartowsky, E. J., Francis, I. L., Bellon, J. R., and Henschke, P. A. (2002). Is buttery

aroma perception in wines predictable from the diacetyl concentration? Aust. J.

Grape Wine Res. 8, 180–185. doi: 10.1111/j.1755-0238.2002.tb00254.x

Bauer, R., and Dicks, L. (2004). Control of malolactic fermentation in wine. A

review. South Afr. J. Enol. Vitic. 25, 74–88. Available online at: http://hdl.handle.

net/10019.1/78805

Beelman, R. B., Iii, A. G., and Keen, R. M. (1977). A new strain of Leuconostoc

oenos for induced malo-lactic fermentation in eastern wines. Am. J. Enol. Vitic.

28, 159–165.

Borneman, A. R., McCarthy, J. M., Chambers, P. J., and Bartowsky, E. J.

(2012). Comparative analysis of the Oenococcus oeni pan genome reveals

genetic diversity in industrially-relevant pathways. BMC Genomics 13:373.

doi: 10.1186/1471-2164-13-373

Brandam, C., Fahimi, N., and Taillandier, P. (2016). Mixed cultures of

Oenococcus oeni strains: a mathematical model to test interaction on

malolactic fermentation in winemaking. LWT - Food Sci. Technol. 69, 211–216.

doi: 10.1016/j.lwt.2016.01.045

Campbell-Sills, H., El Khoury, M., Favier, M., Romano, A., Biasioli, F., Spano,

G., et al. (2015). Phylogenomic analysis of Oenococcus oeni reveals specific

domestication of strains to cider and wines. Genome Biol. Evol. 7, 1506–18.

doi: 10.1093/gbe/evv084

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A.,

et al. (2014). The MetaCyc database of metabolic pathways and enzymes and

the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42,

459–471. doi: 10.1093/nar/gkt1103

Ciezack, G., Hazo, L., Chambat, G., Heyraud, A., Lonvaud-Funel, A., and Dols-

Lafargue, M. (2010). Evidence for exopolysaccharide production byOenococcus

oeni strains isolated from non-ropy wines. J. Appl. Microbiol. 108, 499–509.

doi: 10.1111/j.1365-2672.2009.04449.x

Costantini, A., Rantsiou, K., Majumder, A., Jacobsen, S., Pessione, E., Svensson,

B., et al. (2015). Complementing DIGE proteomics and DNA subarray

analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-

simulated conditions. J. Proteomics 123, 114–127. doi: 10.1016/j.jprot.2015.

04.019

Frontiers in Microbiology | www.frontiersin.org 14 March 2017 | Volume 8 | Article 534

http://journal.frontiersin.org/article/10.3389/fmicb.2017.00534/full#supplementary-material
https://doi.org/10.1128/AEM.02305-12
https://doi.org/10.1089/ind.2013.0013
https://doi.org/10.1111/j.1755-0238.2005.tb00286.x
https://doi.org/10.1111/ajgw.12185
https://doi.org/10.1111/j.1755-0238.2002.tb00254.x
http://hdl.handle.net/10019.1/78805
http://hdl.handle.net/10019.1/78805
https://doi.org/10.1186/1471-2164-13-373
https://doi.org/10.1016/j.lwt.2016.01.045
https://doi.org/10.1093/gbe/evv084
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1111/j.1365-2672.2009.04449.x
https://doi.org/10.1016/j.jprot.2015.04.019
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Mendoza et al. Genome-Scale Reconstruction of the Metabolic Network in Oenococcus oeni

Dale, J. M., Popescu, L., and Karp, P. D. (2010). Machine learning

methods for metabolic pathway prediction. BMC Bioinformatics 11:15.

doi: 10.1186/1471-2105-11-15

Davis, C. R., Wibowo, D., Eschenbruch, R., Lee, T. H., and Fleet, G. H. (1985).

Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic.

36, 290–301.

De Man, J. C., Rogosa, M., and Sharpe, M. E. (1960). A medium

for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23, 130–135.

doi: 10.1111/j.1365-2672.1960.tb00188.x

Dimopoulou, M., Hazo, L., and Dols-Lafargue, M. (2012). Exploration

of phenomena contributing to the diversity of Oenococcus oeni

exopolysaccharides. Int. J. Food Microbiol. 153, 114–22. doi: 10.1016/

j.ijfoodmicro.2011.10.024

Dimopoulou, M., Vuillemin, M., Campbell-Sills, H., Lucas, P. M., Ballestra,

P., Miot-Sertier, C., et al. (2014). Exopolysaccharide (EPS) synthesis

by Oenococcus oeni: from genes to phenotypes. PLoS ONE 9:e98898.

doi: 10.1371/journal.pone.0098898

Droste, P., Miebach, S., Niedenführ, S., Wiechert, W., and Nöh, K. (2011).

Visualizing multi-omics data in metabolic networks with the software Omix:

a case study. Biosystems 105, 154–61. doi: 10.1016/j.biosystems.2011.04.003

Fahimi, N., Brandam, C., and Taillandier, P. (2014). A mathematical model

of the link between growth and L-malic acid consumption for five

strains of Oenococcus oeni. World J. Microbiol. Biotechnol. 30, 3163–3172.

doi: 10.1007/s11274-014-1743-8

Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø. (2009).

Reconstruction of biochemical networks in microbial organisms. Nat. Rev.

Microbiol. 7, 129–143. doi: 10.1038/nrmicro1949

Flahaut, N. A. L., Wiersma, A., van de Bunt, B., Martens, D. E., Schaap, P. J.,

Sijtsma, L., et al. (2013). Genome-scale metabolic model for Lactococcus lactis

MG1363 and its application to the analysis of flavor formation. Appl. Microbiol.

Biotechnol. 97, 8729–39. doi: 10.1007/s00253-013-5140-2

Fourcassie, P., Belarbi, A., and Maujean, A. (1992). Growth, D-glucose

utilization and malolactic fermentation by Leuconostoc œnos strains in

18 media deficient in one amino acid. J. Appl. Bacteriol. 73, 489–496.

doi: 10.1111/j.1365-2672.1992.tb05010.x

Garbay, S., Rozes, N., and Lonvaud-Funel, A. (1995). Fatty acid

composition of Leuconostoc oenos, incidence of growth conditions

and relationship with malolactic efficiency. Food Microbiol. 12, 387–395.

doi: 10.1016/S0740-0020(95)80120-0

Garvie, E. I. (1967). The growth factor and amino acid requirements of

species of the genus Leuconostoc, including Leuconostoc paramesenteroides

(sp. nov.) and Leuconostoc oenos. J. Gen. Microbiol. 48, 439–447.

doi: 10.1099/00221287-48-3-439

Gockowiak, H., and Henschke, P. A. (2003). Interaction of pH, ethanol

concentration and wine matrix on induction of malolactic fermentation with

commercial “direct inoculation” starter cultures. Aust. J. Grape Wine Res. 9,

200–209. doi: 10.1111/j.1755-0238.2003.tb00271.x

Gurobi Optimization Inc (2016). Gurobi Optimizer Reference Manual. Houston,

TX: Gurobi Optimization, Inc.

Guerrini, S., Bastianini, A., Granchi, L., and Vincenzini, M. (2002). Effect of oleic

acid on Oenococcus oeni strains and malolactic fermentation in wine. Curr.

Microbiol. 44, 5–9. doi: 10.1007/s00284-001-0066-9

Hanly, T. J., Urello, M., and Henson, M. A. (2012). Dynamic flux balance

modeling of S. cerevisiae and E. coli co-cultures for efficient consumption

of glucose/xylose mixtures. Appl. Microbiol. Biotechnol. 93, 2529–2541.

doi: 10.1007/s00253-011-3628-1

Henschke, P. A. (1993). An overview of malolactic fermentation research. Aust.

Zeal. Wine Ind. J. 8, 69–79.

Jain, R., and Srivastava, R. (2009). Metabolic investigation of host/pathogen

interaction using MS2-infected Escherichia coli. BMC Syst. Biol. 3:121.

doi: 10.1186/1752-0509-3-121

Kanehisa, M. (2000). Post-genome Informatics. New York, NY: Oxford University

Press

Karp, P. D., Paley, S., and Romero, P. (2002). The pathway tools software.

Bioinformatics 18, S225–S232. doi: 10.1093/bioinformatics/18.suppl_1.S225

Klitgord, N., and Segre, D. (2010). Environments that induce synthetic microbial

ecosystems. PLoS Comput. Biol. 6:e1001002. doi: 10.1371/journal.pcbi.1001002

Konings, W. N. N., Lolkema, J. S. S., Bolhuis, H., Van Veen, H. W. W.,

Poolman, B., and Driessen, A. J. M. (1997). The role of transport processes

in survival of lactic acid bacteria. Antonie Van Leeuwenhoek 71, 117–128.

doi: 10.1023/A:1000143525601

Kuepfer, L., Sauer, U., and Blank, L. M. (2005). Metabolic functions of

duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430.

doi: 10.1101/gr.3992505

Kunkee, R. E. (1974). “Malo-Lactic Fermentation and Winemaking,” in Chemistry

of Winemaking Advances in Chemistry Series, ed A. D.Webb (Washington, DC:

American Chemical Society), 151–170.

Le Marrec, C., Bon, E., and Lonvaud-Funel, A. (2007). Tolerance to high

osmolality of the lactic acid bacterium Oenococcus oeni and identification

of potential osmoprotectants. Int. J. Food Microbiol. 115, 335–42.

doi: 10.1016/j.ijfoodmicro.2006.12.039

Loira, N., Dulermo, T., Nicaud, J.-M., and Sherman, D. (2012). A genome-scale

metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst.

Biol. 6:35. doi: 10.1186/1752-0509-6-35

Lonvaud-Funel, A., and Desens, C. (1990). Constitution en acides gras des

membranes des bactéries lactiques du vin Incidences des conditions de culture.

Sci. Aliments 10, 817–829.

Madden, T. (2002). “The BLAST sequence analysis tool,” in The NCBI Handbook,

eds J. McEntyre and J. Ostell (Bethesda,MD: National Center for Biotechnology

Information), 1–15.

Maicas, S., González-Cabo, P., Ferrer, S., and Pardo, I. (1999). Production

of Oenococcus oeni biomass to induce malolactic fermentation in wine

by control of pH and substrate addition. Biotechnol. Lett. 21, 349–353.

doi: 10.1023/A:1005498925733

Makarova, K. S., Slesarev, A., Wolf, Y. I., Sorokin, A., Mirkin, B., Koonin, E. V.,

et al. (2006). Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad.

Sci. U.S.A. 103, 15611–6. doi: 10.1073/pnas.0607117103

McCloskey, D., Palsson, B. Ø., and Feist, A. M. (2013). Basic and applied uses of

genome-scale metabolic network reconstructions of Escherichia coli.Mol. Syst.

Biol. 9, 661. doi: 10.1038/msb.2013.18

Megchelenbrink, W., Huynen, M., and Marchiori, E. (2014). optGpSampler: an

improved tool for uniformly sampling the solution-space of genome-scale

metabolic networks. PLoS ONE 9:e86587. doi: 10.1371/journal.pone.0086587

Mills, D. A., Rawsthorne, H., Parker, C., Tamir, D., and Makarova, K. S. (2005).

Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking.

FEMS Microbiol. Rev. 29, 465–75. doi: 10.1016/j.femsre.2005.04.011

Mink, R., Kölling, R., Sommer, S., Schmarr, H., and Scharfenberger-schmeer, M.

(2015). Diacetyl formation by Oenococcus oeni during winemaking induced by

exogenous pyruvate. Am. J. Enol. Vitic. 66, 85–90. doi: 10.5344/ajev.2014.14056

Nookaew, I., Jewett, M., Meechai, A., Thammarongtham, C., Laoteng, K.,

Cheevadhanarak, S., et al. (2008). The genome-scale metabolic model iIN800

of Saccharomyces cerevisiae and its validation: a scaffold to query lipid

metabolism. BMC Syst. Biol. 2:71. doi: 10.1186/1752-0509-2-71

Oddone, G.M., Mills, D. A., and Block, D. E. (2009). A dynamic, genome-scale flux

model of Lactococcus lactis to increase specific recombinant protein expression.

Metab. Eng. 11, 367–81. doi: 10.1016/j.ymben.2009.07.007

Olguín, N., Champomier-Vergès, M., Anglade, P., Baraige, F., Cordero-Otero,

R., Bordons, A., et al. (2015). Transcriptomic and proteomic analysis of

Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol. 51, 87–95.

doi: 10.1016/j.fm.2015.05.005

Oliveira, A. P., Nielsen, J., and Förster, J. (2005). Modeling Lactococcus lactis using

a genome-scale flux model. BMCMicrobiol. 5:39. doi: 10.1186/1471-2180-5-39

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat.

Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Park, J. M., Kim, T. Y., and Lee, S. Y. (2009). Constraints-based genome-scale

metabolic simulation for systems metabolic engineering. Biotechnol. Adv. 27,

979–988. doi: 10.1016/j.biotechadv.2009.05.019

Pastink, M. I., Teusink, B., Hols, P., Visser, S., De Vos, W. M., and Hugenholtz,

J. (2009). Genome-scale model of Streptococcus thermophilus LMG18311 for

metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75,

3627–3633. doi: 10.1128/AEM.00138-09

Pereira, R., Nielsen, J., and Rocha, I. (2016). Improving the flux distributions

simulated with genome-scale metabolic models of Saccharomyces cerevisiae.

Metab. Eng. Commun. 3, 153–163. doi: 10.1016/j.meteno.2016.05.002

Frontiers in Microbiology | www.frontiersin.org 15 March 2017 | Volume 8 | Article 534

https://doi.org/10.1186/1471-2105-11-15
https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
https://doi.org/10.1016/j.ijfoodmicro.2011.10.024
https://doi.org/10.1371/journal.pone.0098898
https://doi.org/10.1016/j.biosystems.2011.04.003
https://doi.org/10.1007/s11274-014-1743-8
https://doi.org/10.1038/nrmicro1949
https://doi.org/10.1007/s00253-013-5140-2
https://doi.org/10.1111/j.1365-2672.1992.tb05010.x
https://doi.org/10.1016/S0740-0020(95)80120-0
https://doi.org/10.1099/00221287-48-3-439
https://doi.org/10.1111/j.1755-0238.2003.tb00271.x
https://doi.org/10.1007/s00284-001-0066-9
https://doi.org/10.1007/s00253-011-3628-1
https://doi.org/10.1186/1752-0509-3-121
https://doi.org/10.1093/bioinformatics/18.suppl_1.S225
https://doi.org/10.1371/journal.pcbi.1001002
https://doi.org/10.1023/A:1000143525601
https://doi.org/10.1101/gr.3992505
https://doi.org/10.1016/j.ijfoodmicro.2006.12.039
https://doi.org/10.1186/1752-0509-6-35
https://doi.org/10.1023/A:1005498925733
https://doi.org/10.1073/pnas.0607117103
https://doi.org/10.1038/msb.2013.18
https://doi.org/10.1371/journal.pone.0086587
https://doi.org/10.1016/j.femsre.2005.04.011
https://doi.org/10.5344/ajev.2014.14056
https://doi.org/10.1186/1752-0509-2-71
https://doi.org/10.1016/j.ymben.2009.07.007
https://doi.org/10.1016/j.fm.2015.05.005
https://doi.org/10.1186/1471-2180-5-39
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.biotechadv.2009.05.019
https://doi.org/10.1128/AEM.00138-09
https://doi.org/10.1016/j.meteno.2016.05.002
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Mendoza et al. Genome-Scale Reconstruction of the Metabolic Network in Oenococcus oeni

Remize, F., Gaudin, A., Kong, Y., Guzzo, J., Alexandre, H., Krieger-Weber,

S., et al. (2006). Oenococcus oeni preference for peptides: qualitative and

quantitative analysis of nitrogen assimilation. Arch. Microbiol. 185, 459–469.

doi: 10.1007/s00203-006-0116-6

Ren, Q., Chen, K., and Paulsen, I. T. (2007). TransportDB: a comprehensive

database resource for cytoplasmic membrane transport systems

and outer membrane channels. Nucleic Acids Res. 35, D274–D279.

doi: 10.1093/nar/gkl925

Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., and Lovaud, A. (2006).

Handbook of Enology Vol. 1, The Microbiology of Wine and Vinifications, 2nd

Edn. Chichester: John Wiley & Sons, Ltd.

Rodionov, D. A., Vitreschak, A. G., Mironov, A. A., and Gelfand, M. S. (2003).

Regulation of lysine biosynthesis and transport genes in bacteria: yet another

RNA riboswitch? Nucleic Acids Res. 31, 6748–6757. doi: 10.1093/nar/gkg900

Russell, J. B., and Cook, G. M. (1995). Energetics of bacterial growth : balance of

anabolic and catabolic reactions.Microbiol. Rev. 59, 48–62.

Sainz, J., Pizarro, F., Pérez-Correa, J. R., and Agosin, E. (2003). Modeling of yeast

metabolism and process dynamics in batch fermentation. Biotechnol. Bioeng.

81, 818–828. doi: 10.1002/bit.10535

Salema,M., Lolkema, J. S., San Romão,M. V., and Loureiro-Dias,M. C. (1996). The

proton motive force generated in Leuconostoc oenos by L-malate fermentation.

J. Bacteriol. 178, 3127–3132. doi: 10.1128/jb.178.11.3127-3132.1996

Salou, P., Loubser, P., and Pareilleux, A. (1994). Growth and energetics of

Leuconostoc oenos during cometabolism of glucose with citrate or fructose.

Appl. Environ. Microbiol. 60, 1459–66.

Sánchez, B. J., Pérez-Correa, J. R., and Agosin, E. (2014). Construction of

robust dynamic genome-scale metabolic model structures of Saccharomyces

cerevisiae through iterative re-parameterization. Metab. Eng. 25, 159–173.

doi: 10.1016/j.ymben.2014.07.004

Smith, R. L. (1984). Efficient monte carlo procedures for generating points

uniformly distributed over bounded regions. Oper. Res. 32, 1296–1308.

doi: 10.1287/opre.32.6.1296

Terrade, N., and Mira de Orduña, R. (2009). Determination of the

essential nutrient requirements of wine-related bacteria from the

genera Oenococcus and Lactobacillus. Int. J. Food Microbiol. 133, 8–13.

doi: 10.1016/j.ijfoodmicro.2009.03.020

Teusink, B., van Enckevort, F. H. J., Francke, C., Wiersma, A., Wegkamp, A.,

Smid, E. J., et al. (2005). In silico reconstruction of the metabolic pathways

of Lactobacillus plantarum: comparing predictions of nutrient requirements

with those from growth experiments. Appl. Environ. Microbiol. 71, 7253–7262.

doi: 10.1128/AEM.71.11.7253-7262.2005

Teusink, B., Wiersma, A., Molenaar, D., Francke, C., de Vos, W. M., Siezen, R.

J., et al. (2006). Analysis of growth of Lactobacillus plantarum WCFS1 on a

complex medium using a genome-scale metabolic model. J. Biol. Chem. 281,

40041–8. doi: 10.1074/jbc.M606263200

Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-

quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121.

doi: 10.1038/nprot.2009.203

Tracey, R. P., and Britz, T. (1989a). The effect of amino acids on malolactic

fermentation by Leuconostoc oenos. J. Appl. Bacteriol. 67, 589–595.

Tracey, R. P., and Britz, T. J. (1989b). Cellular fatty acid

composition of Leuconostoc oenos. J. Appl. Bacteriol. 66, 445–456.

doi: 10.1111/j.1365-2672.1989.tb05114.x

Tzamali, E., Poirazi, P., and Tollis, I. G. (2011). A computational exploration

of bacterial metabolic diversity identifying metabolic interactions

and growth-efficient strain communities. BMC Syst. Biol. 5:167.

doi: 10.1186/1752-0509-5-167

Varela, C. A., Agosin, E., Baez, M. E., Klapa, M., and Stephanopoulos,

G. (2003). Metabolic flux redistribution in Corynebacterium glutamicum

in response to osmotic stress. Appl. Microbiol. Biotechnol. 60, 547–55.

doi: 10.1007/s00253-002-1120-7

Vargas, F. A., Pizarro, F., Pérez-Correa, J. R., and Agosin, E. (2011). Expanding a

dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst.

Biol. 5:75. doi: 10.1186/1752-0509-5-75

Verouden, M. P. H., Notebaart, R. A., Westerhuis, J. A., van der Werf,

M. J., Teusink, B., and Smilde, A. K. (2009). Multi-way analysis of flux

distributions across multiple conditions. J. Chemom. 23, 406–420. doi: 10.1002/

cem.1238

Williams, S. A., Hodges, R. A., and Strike, T. L. (1984). Cloning the

gene for the malolactic fermentation of wine from Lactobacillus

delbrueckii in Escherichia coli and yeasts. Appl. Environ. Microbiol. 47,

288–293.

Wintermute, E. H., and Silver, P. A. (2010). Emergent cooperation in microbial

metabolism.Mol. Syst. Biol. 6, 1–7. doi: 10.1038/msb.2010.66

Zapparoli, G., Tosi, E., Azzolini, M., Vagnoli, P., and Krieger, S. (2009). Bacterial

inoculation strategies for the achievement of Malolactic fermentation in

high-alcohol wines. South Afr. J. Enol. Vitic. 30, 49–55. doi: 10.21548/30-

1-1424

Zhang, D., and Lovitt, R. (2006). Performance assessment of malolactic fermenting

bacteria Oenococcus oeni and Lactobacillus brevis in continuous culture. Appl.

Microbiol. Biotechnol. 69, 658–64. doi: 10.1007/s00253-005-0021-y

Zhang, D. S., and Lovitt, R. W. (2005). Studies on growth and metabolism of

Oenococcus oeni on sugars and sugar mixtures. J. Appl. Microbiol. 99, 565–572.

doi: 10.1111/j.1365-2672.2005.02628.x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Mendoza, Cañón, Contreras, Ribbeck and Agosín. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Microbiology | www.frontiersin.org 16 March 2017 | Volume 8 | Article 534

https://doi.org/10.1007/s00203-006-0116-6
https://doi.org/10.1093/nar/gkl925
https://doi.org/10.1093/nar/gkg900
https://doi.org/10.1002/bit.10535
https://doi.org/10.1128/jb.178.11.3127-3132.1996
https://doi.org/10.1016/j.ymben.2014.07.004
https://doi.org/10.1287/opre.32.6.1296
https://doi.org/10.1016/j.ijfoodmicro.2009.03.020
https://doi.org/10.1128/AEM.71.11.7253-7262.2005
https://doi.org/10.1074/jbc.M606263200
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.1111/j.1365-2672.1989.tb05114.x
https://doi.org/10.1186/1752-0509-5-167
https://doi.org/10.1007/s00253-002-1120-7
https://doi.org/10.1186/1752-0509-5-75
https://doi.org/10.1002/cem.1238
https://doi.org/10.1038/msb.2010.66
https://doi.org/10.21548/30-1-1424
https://doi.org/10.1007/s00253-005-0021-y
https://doi.org/10.1111/j.1365-2672.2005.02628.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	Genome-Scale Reconstruction of the Metabolic Network in Oenococcus oeni to Assess Wine Malolactic Fermentation
	Introduction
	Materials and methods
	Construction of the GEM
	Mathematical Formulation
	Network Evaluation
	Determination of Nutritional Requirements
	Prediction of ATP-maintenance
	Experimental Determination of Specific Growth Rates and Consumption/Production Rates
	Amino Acids Essentiality Assay
	Sensitivity Analysis
	Flux Variability Analysis
	Random Sampling


	Results
	General Features of the GEM of Oenococcus oeni PSU-1 Strain
	Metabolic Refinement of the iSM454 Model
	Carbohydrates Metabolism
	Amino Acids Metabolism
	Fatty Acids Metabolism
	Assembly of Macromolecules
	Energy

	Model Validation
	Determination of In vivo Amino Acids Requirements
	Determination of In silico Nutritional Requirements

	Applications
	Prediction of Non-growth Associated Maintenance (NGAM)
	Impact of Ethanol Concentration on the Redistribution of Intracellular Fluxes
	Sensitivity Analysis
	Exploring the Solution Space
	In silico Reaction Deletion Analysis


	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


