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Chronic inflammation is recognized as a threat factor for cancer progression. Release
of inflammatory molecules generates microenvironment which is highly favorable for
development of tumor, cancer progression and metastasis. In cases of latent viral
infections, generation of such a microenvironment is one of the major predisposing
factors related to virus mediated tumorigenesis. Among various inflammatory mediators
implicated in pathological process associated with cancer, the cyclooxygenase (COX)
and its downstream effector molecules are of greater significance. Though the role
of infectious agents in causing inflammation leading to transformation of cells has
been more or less well established, however, the mechanism by which inflammation
in itself modulates the events in life cycle of infectious agent is not very much clear.
This is specifically important for gammaherpesviruses infections where viral life cycle
is characterized by prolonged periods of latency when the virus remains hidden,
immunologically undetectable and expresses only a very limited set of genes. Therefore,
it is important to understand the mechanisms for role of inflammation in virus life
cycle and tumorigenesis. This review is an attempt to summarize the latest findings
highlighting the significance of COX-2 and its downstream signaling effectors role in life
cycle events of gammaherpesviruses leading to progression of cancer.
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INTRODUCTION

Subsequent to primary infection, gammaherpesviruses follow two distinct life cycles in the human
host: a latent infection in which the virus persists in a dormant state for long periods of host’s
life, and a lytic form which results in release of infectious virions capable of de novo infection
important for spread of virus to new hosts. The latent and lytic life cycles of gammaherpesviruses
such as Kaposi’s sarcoma associated Herpesvirus (KSHV) and Epstein Barr Virus (EBV) are a result
of a highly regulated interaction of the virus with its host. Understanding the regulation of switch
between latency and lytic reactivation is an important problem in herpesvirus biology. Like other
pathogenic viruses, EBV and KSHV- encoded genes have been shown to be involved in regulation
of various cellular signaling cascades important for viral pathogenesis. One of the major cellular
enzymes which are expressed during gammaherpesvirus directed malignancies is Cyclooxygenase-
2 (COX-2). COX-2 is a key mediator of inflammatory pathways and its elevated expression has
been found in several other human cancers as well. The relation between inflammation and cancer
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in general is well documented. Several recent studies on KSHV
and EBV have pointed to the role of COX-2 in virus mediated
tumorigenesis. This review is an attempt to summarize the
latest findings highlighting the significance of COX-2 and its
downstream signaling effectors role in life cycle events of
gammaherpesviruses leading to progression of cancer.

COX-2 FUNCTIONS IN PROSTANOID
SYNTHESIS PATHWAY IN WHICH
DOWNSTREAM EFFECTOR PGE2 ACT
VIA EP1-4 RECEPTORS

Various inflammatory mediators implicated in pathological
process associated with cancer include prostaglandins (PG),
thromboxanes, and leukotrienes. Production of various
prostaglandins is directed by coordinated activity of eicosanoid
forming enzymes named Cyclooxygenase (COX). There are two
isoforms of COX which are named as COX-1 and COX-2. COX-1
functions as a housekeeping isoform of cyclooxygenase and is
constitutively expressed to serve functions such as control of
renal blood flow, imparting protection to stomach against ulcers,
production of prostaglandin E2 (PGE2) to maintain coherence
and structure of gastric mucosal surface, and production of
prostanoid thromboxane in platelets (Williams et al., 1999;
Li et al., 2002; Leng et al., 2003) (Figure 1). COX-2 is an
inducible early response gene and is activated in response to
various extracellular or intracellular physiological stimuli. These
include lipopolysaccharide (LPS), interleukin-1 (IL-1), tumour
necrosis factor (TNF), epidermal growth factor (EGF), platelet
activating factor (PAF), serum, endothelin, and arachidonic acid
(Yucel-Lindberg et al., 1999; Medeiros et al., 2010; Font-Nieves
et al., 2012). COX-2 over-expression metabolizes accumulation
of PGE2. The downstream target molecules of PGE2 up-
regulate several signaling pathways and down-regulate apoptotic
proteins and hence contribute to various physiological processes
including proliferation, survival, transformation, angiogenesis
and metastasis (Satoh et al., 2012). The up-regulation and over-
expression of COX-2 is mainly associated with inflammation,
loss of apoptosis, uncontrolled cell proliferation, growth,
metastasis, neovascularization, and angiogenesis finally leading
to cancer. COX-2 generated prostaglandins have also been
reported to function as immuno-suppressors. It has been shown
that macrophage mediated and natural killer cell mediated
cytotoxicity is suppressed by PGE2 (Williams et al., 1999;
Leng et al., 2003). The precursor molecule for prostanoids is
arachidonic acid, which is a 20 carbon unsaturated omega-6
fatty acid, usually esterified at SN-2 position of phospholipids
and dispersed throughout the lipid bilayer of the cell membrane
(Wang et al., 2007). In response to various stimuli such as growth
factors, hormones, and cytokines; arachidonic acid is liberated
from membrane and metabolized to various bioactive lipids. This
conversion involves three major steps. The first step involves
action of phospholipase A2 enzyme (secretory or cytoplasmic)
on phospholipids resulting in the release of arachidonic acid.
The second step involves addition of two molecules of oxygen

to arachidonic acid forming bicyclic peroxide prostaglandin G2
(PGG2), an unstable intermediate. Lastly, PGG2 diffuses to the
requisite site where peroxidation leads to reduction of unstable
PGG2 to stable prostaglandin H2 (PGH2) which is converted to
PGE2 by the enzyme PGE2 synthase (Smith, 1992; Park et al.,
2006).

In different types of tumors, the COX-2 regulated downstream
product PGE2 acts through prostaglandin E2 receptors (EP)
named EP1, EP2, EP3 and EP4 (Konger et al., 2005). These
receptors belong to family of G-protein coupled receptors
(Narumiya et al., 1999; Tober et al., 2006). Despite close
resemblance among all EP receptors, they exhibit different
levels of binding affinity for PGE2 molecules. All four receptors
are involved in activation of different intracellular signaling
cascades. The role of individual EP receptors in tumorigenesis
as well as malignancies has been extensively investigated. EP1 is
closely associated with melanoma, carcinogenesis of colon and
progression of breast cancer in late stage. It causes elevation
in level of intracellular Ca+2 and induces its mobilization (Irie
et al., 1994; Sugimoto and Narumiya, 2007). EP4 is coupled
with phosphatidylinositol kinase and elevated cAMP levels (Hull
et al., 2004). Antagonists of EP4 have been used in treatment
of several disease of immune system (Yao et al., 2009), and as
anti-inflammatory agents in inflammation associated diseases
(Luschnig-Schratl et al., 2011).

INFLAMMATION IS CLOSELY LINKED TO
VIRUS MEDIATED CANCERS

Inflammation has been described as an immediate response
of host’s immune system which plays a very important role
in disease conditions. In general, viral infection evokes host’s
immune system to eliminate the pathogen using inflammatory
mechanisms. Inflammation, however, has also been recognized
as one of the risk factors for progression of cancer (Sgambato
and Cittadini, 2010). There is sufficient evidence to support
the crucial role of inflammation in pathogenesis of several
types of cancer including pancreatic, breast cancer, colorectal
cancer, squamous cell carcinoma in head and neck, ovarian
cancer, gastric adenocarcinoma, lung cancer, and hepatocellular
carcinoma (HCC) (Wolff et al., 1998; Yip-Schneider et al., 2000;
Cianchi et al., 2001; Costa et al., 2002; Fujiwaki et al., 2002; Gallo
et al., 2002; Li et al., 2003; Tang et al., 2005). Several studies
have shown that chronic infections may result in development of
cancers (Ziegler and Buonaguro, 2009). Once the inflammatory
pathways are activated, the cells release several pro-inflammatory
factors including cytokines and chemokines to defend against the
pathogen. It has been recognized that the release of inflammatory
molecules can generate microenvironment which could be highly
favorable for development of tumor, cancer progression and
metastasis (Ouaguia et al., 2014). In cases of latent viral infections,
generation of such a microenvironment is one of the major
predisposing factors related to virus mediated tumorigenesis.
Though the role of infectious agents in causing inflammation
leading to transformation of cells has been more or less well
established, however, the mechanism by which inflammation
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FIGURE 1 | Arachidonic acid is converted to prostaglandins by action of cyclooxygenase 1 and 2 Cox-1 and Cox-2 enzymes. Cox-1 is important for
maintaining homeostatic functions of body like platelet formation for blood, kidney development and its functions, maintenance of gastric mucosa etc. Cox-2 derived
prostaglandin PGE2 is associated with increased inflammation, increased angiogenesis, greater metastatic and proliferative invasion, reduction in apoptosis and
formation of immunosuppressive microenvironment. NSAIDs function as cox inhibitors and serve as effective tool against Cox mediated cancer. Aspirin and several
other dual acting NSAIDs, which can block both Cox-1 and Cox-2 pathway, have several limitations and side effects associated with them and thus there was a
need to develop Cox-2 specific inhibitors. NSAIDs reduce incidences of cancer by increasing apoptosis of tumor tissue, maintaining anti-tumor microenvironment,
reducing proliferation and angiogenesis

in itself modulates the events in life cycle of infectious agent
is not very much clear. This is specifically important for
gammaherpesviruses infections such as EBV and KSHV where

viral life cycle is characterized by prolonged periods of latency
when the virus remains hidden, immunologically undetectable
and expresses only a very limited set of genes. The virus infection
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induced inflammatory response has been found to be associated
with viral pathogenesis resulting in development of cancer. The
entire process includes alterations in the cell, decreased cell death,
propagation, invasion, neo-vascularization, and metastasis (Chen
et al., 2013; Taniguchi et al., 2013). Therefore, it is important
to understand the molecular mechanisms critical for role of
inflammation in virus life cycle and tumorigenesis.

EBV INFECTION IS OFTEN ASSOCIATED
WITH ELEVATED EXPRESSION OF
MODULATOR OF INFLAMMATION COX-2

The primary infection of EBV is followed by two distinct
forms of life cycles in infected host; either a lytic infection
resulting in release of progeny virions or the virus goes into
long term latency in the infected cell. The transition between
the latent and the lytic phases of the EBV life cycle operates
through a highly efficient mechanism. The two phases of life
cycle of EBV consists of interaction between EBV and its host
which is tightly regulated, and may be separated into three
important phases: (i) interaction of EBV with human B cells
followed by uncontrolled multiplication of the infected cells; (ii)
EBV entrance into the latent phase for persistent and lifelong
infection; and (iii) EBV lytic reactivation from latent phase for
the production of infectious virions capable of infecting similar
cells or transmission of virus to a new host. Exposure to specific
stimuli can also result in lytic reactivation of EBV in latently
infected cells. Previous studies have shown that development and
progression of EBV associated cancers such as nasopharyngeal
carcinoma (NPC) and lymphoma is linked to lytic reactivation
of EBV (Geser et al., 1982; Boos et al., 1987; Mueller et al., 1989;
Lei et al., 2000; Lo, 2001; Liu et al., 2012). Extensive studies have
been done to understand the biological importance of the up-
regulated COX-2 level and subsequent increased level of PGE2
molecule and over-expression of EP receptors in development
of malignancies associated EBV and KSHV (Paul et al., 2013c).
The role of gammaherpesvirus infection in modulation COX-2,
and the role of elevated COX-2 levels on the life cycle events of
gammaherpesviruses are discussed ahead.

Several viruses induce COX-2 and PGE2 expression to
enhance and establish efficient infection, although the details
regarding cellular mechanisms explaining these observations
remain mostly unexplored (Shelby et al., 2005). COX-2 has
been constantly associated with gammaherpesviruses related
malignancies. Increased COX-2 expression is a feature reported
to be common to cancers associated with both EBV and
KSHV infections (Shelby et al., 2005). COX-2 mediated
inflammation is implicated in EBV induced tumorigenesis.
Highly elevated COX-2 expression is a characteristic feature
of EBV infected lymphoblastoid cell lines (LCLs) and EBV
positive nasopharyngeal tumors when compared to EBV negative
Burkitt’s lymphoma cells and EBV negative nasopharyngeal
cancer. During pathological conditions, such as EBV associated
Hodgkin lymphoma, over-expression of COX-2 is a critical factor
(Al-Salam et al., 2013). A positive correlation has also been
reported between EBV viral protein LMP1 and COX-2. LMP1

could mediate up-regulation of COX-2 hence accelerating lymph
node metastasis in NPC (Bai and Tang, 2009). COX-2 has been
found to be frequently expressed in tissue specimens of NPC
which are LMP1-positive, whereas it was rarely detected in
LMP1-negative NPC tissue (Murono et al., 2001; Fendri et al.,
2008). The same study further showed that VEGF production
in LMP-1 expressing cells was mediated by COX-2, suggesting
COX-2 induction by LMP1 may play a role in angiogenesis
in NPC. The LMP1 protein has been subsequently shown to
upregulate COX-2 expression contributing toward cancer spread
in lymph and progression of NPC (Yi et al., 2010). COX-
2 is considered as a potential biomarker of EBV associated
human malignant cancer (Diduk et al., 2012). Although increased
amount of antibody titre against EBV have been reported in
children suffering from asthma, a condition in which COX-
2 levels within lung are elevated, no direct associations were
seen between viral infections and the presence of allergen-
specific IgE or asthma (Veiga et al., 2011). EBV infection was
not found to be associated with COX-2 expression or survival
in gastric carcinoma (Park et al., 2009). Direct link has also
been reported between EBV latent protein EBNA3C and cellular
metastatic repressor Nm23-H1 in modulating the expression of
COX-2 enzyme (Kaul et al., 2006). In EBV positive cells the
expression of COX-2 is much elevated as compared to EBV
negative cells (Aggarwal et al., 2006; Kaul et al., 2006). Studies
have shown that EBV infection activates STAT3 and NF-kappaB
signaling pathways in NPC and upregulates pro-inflammatory
cytokines and COX-2 expression, thus protecting infected cells
from immune response and promote carcinogenesis (Lo et al.,
2006). During lytic reactivation EBV transactivator protein Zta
helps to evade immune surveillance. EBV Zta has been shown
to enhance the activity of COX-2 promoter thereby upregulating
the production of COX-2 and its downstream effector molecule
PGE2 (Lee et al., 2011). It has also been shown that EBV could
suppress PGE2 biosynthesis in LPS-activated monocytes (Savard
et al., 2000). The data showed that inhibition of PGE2 by EBV
was due to transcriptional downregulation of COX-2. It was
further shown that the reduction in protein levels of COX-
2 coincided with reduction in COX-2 mRNA transcript levels.
Both LPS treatment and EBV infection did not affect COX-
1 levels, indicating COX-2 as the major isoform involved in
inflammatory stimuli induced PG synthesis in presence of EBV
infection. However, a separate study showed that conditioned
medium of Zta-expressing NPC cells enhances IL-10 production
from monocytes which was mediated in part by elevated COX-2
levels in NPC cells (Lee et al., 2011). It has been speculated that
the IL-10 production in monocytes may play role in facilitating
local microenvironment in favor of immunosuppression (Lee
et al., 2011).

KSHV INFECTION IS ALSO
ACCOMPANIED WITH
OVEREXPRESSION OF COX-2

Kaposi’s sarcoma associated Herpesvirus positive tumor
including multicentric castleman’s disease (MCD), primary
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effusion lymphoma (PEL), and Kaposi’s sarcoma (KS) exhibit
higher expression of COX-2 (Shelby et al., 2005). Studies have
shown that KSHV can induce robust COX-2 expression within
hours in HMVEC-d cells and HFF cells, which increased for
up to 72 h post infection (Sharma-Walia et al., 2006). KSHV
infected cells also secreted PGE2 at higher levels in the culture
supernatant medium. The study further showed that COX-2 was
also induced by UV-irradiated KSHV but only at moderate levels
indicating that KSHV gene expression was essential for elevated
COX-2 expression. A study investigating the expression of COX-
1 and COX-2 in classic and epidemic forms of Kaposi Sarcoma
(KS) tissue showed that COX-1 and COX-2 were overexpressed
significantly in classic and epidemic KS compared with control
skin tissues suggesting that COXs may be involved in the
pathogenesis of KS (Rossiello et al., 2007). The over-expression of
COX-2 is also a constant factor in KSHV positive BC-3 cell lines
(Paul et al., 2011). These findings suggest critical role for COX-2
mediated inflammatory pathway in EBV and KSHV mediated
pathogenesis (Paul et al., 2013c). Studies on MHV-68 have shown
that virus infection results in the induction of COX-2 protein
and activation of the COX-2 promoter indicating association of
MHV-68 with elevated COX-2 levels (Symensma et al., 2003).

COX-2 AND ITS DOWNSTREAM
EFFECTORS EXERT CRITICAL ROLE IN
TUMORIGENESIS PROGRESSION VIA
SIGNALING PATHWAYS THAT ARE ALSO
REGULATED BY
GAMMAHERPESVIRUSES

Several studies have shown a positive correlation between COX-
2 or PGE2 expression and progression of different cancers
including the cancers of lung, stomach and colon (Nadda et al.,
2012; Shin et al., 2012). Studies have also shown that the depth
of invasion and carcinoma development correlates with COX-
2 over-expression in certain kinds of cancers (Coussens and
Werb, 2002; Fujita et al., 2002). Elevated mRNA level of COX-
2 has been detected in various human cancers like breast cancer,
colorectal cancer, and prostate cancer (Xia and Kirkman, 1990;
Chell et al., 2006; Biedrzycka et al., 2013). Over expression
of COX-2 causes accumulation of downstream effector PGE2
which acts as a key molecule in maintaining tumor survival. It
potentially increases tumor aggressiveness and inhibits apoptosis
by various mechanisms. Many of the cellular pathways regulated
by COX-2 are also regulated by EBV or KSHV coded proteins.
Although it is not always clear how these interactions proceed,
however, whatever is known may help in gaining new insights
into role of chronic inflammation in gammaherpesvirus life cycle
events leading to tumorigenesis.

Most evident effect of COX-2 downstream effector PGE2
which is seen on tumor cells is mediated by synthesis
of metastasis promoting matrix metallo-proteinases (MMPs).
MMPs are zinc-dependent proteolytic enzymes which are
linked to different aspects of tumor progression, including cell
migration, metastasis, and angiogenesis (Kessenbrock et al.,

2010). EBV latent antigen EBNA3C has been shown to upregulate
MMP-9 through interactions with the AP1 and NFkappaB
transcription factors (Kuppers et al., 2005). Another EBV protein
Zta has also been shown to upregulate MMP3 and MMP9 to
promote cell migration and invasion (Lan et al., 2013). KSHV
mediated notch1 activation also leads to upregulation of MT1-
MMP promoting cancer cell metastasis (Cheng et al., 2011). An
earlier study had shown that KSHV-infection of human umbilical
vein endothelial cells (HUVEC) resulted in upregulation of
MMP1, MMP2, and MMP9 promoting cell invasiveness (Qian
et al., 2007). It has also been documented that over-expression
of COX-2/PGE2 transforms replication in hepatitis B virus,
cytomegalovirus as well as gammaherpesviruses (Tsujii et al.,
1998; Nie and Honn, 2002; Zhu et al., 2002; Symensma
et al., 2003). Studies have shown that COX-2 is stimulated in
cancer which accelerates and intensifies tumor growth, tumor
vascularization, angiogenesis, invasion and metastasis (Cianchi
et al., 2001; Gallo et al., 2002; Li et al., 2003; Cheng et al.,
2004). It is probable that COX-2 favors phenotypic changes
that reduce apoptosis, thereby favoring tumor progression. Cells
expressing increased COX-2 levels elucidated increased adhesion
properties to extracellular matrix proteins (ECM) and also
mediate resistance to apoptosis. EBV latent protein LMP1 is also
known to mediate adhesion and motility to ECM in epithelial
cells via integrin-a5 and N-cadherin (Wasil and Shair, 2015).
These suggest that though it is possible that EBV mediated
functions may have a role for COX-2; however, no study has
shown a dire any direct evidence for this mechanism. There
have been some studies which have investigated changes in
protein profiles of ECM during the development of KS. Studies
performed with human dermal microvascular endothelial cells
(DMVEC) have shown that KSHV infection reduces expression
of tropoelastin and fibulin-2 which are important ECM proteins
(Alcendor et al., 2011; Alcendor, 2015).

It has been shown that COX-2 mediates increased expression
of Bcl-2, though direct interaction between COX-2 and
anti-apoptotic Bcl-2 protein has not yet been established.
Interestingly, COX-2 inhibitors have shown to down regulate
Bcl-2 protein expression suppressing tumorigenesis (Tsujii and
DuBois, 1995). The interactions of EBV coded proteins with Bcl-
2 protein family has been summarized elsewhere which show that
most of the Bcl-2 family members are targeted by EBV-coded
proteins (Fu et al., 2013). KSHV encodes a viral homolog of Bcl-
2 named as KS-Bcl-2, which inhibits apoptosis and autophagy
when over expressed in cancer cells have recently been found
to be essential for virus replication (Gallo et al., 2017). The
correlation between COX-2 and serine threonine kinase Akt
signaling cascade has also been investigated and is believed to
have significant implication in angiogenesis by promoting Akt
activation (Gately, 2000). Infection of EBV or expression of EBV
coded latent antigens can also result in activation of Akt1 via
sphingosine kinase 1 (SPHK1) promoting cell migration (Lee
et al., 2017). KSHV encoded microRNA miR-K12-3 (miR-K3)
downregulation of G protein-coupled receptor kinase 2 GRK2
relieve its inhibition of AktT thereby activating Akt signaling (Hu
et al., 2015). The microRNA miR-K3 has been recently shown to
induce angiogenesis and promote viral latency (Li et al., 2016).
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COX-2 has been also shown to generate immunosuppressive
tumor microenvironment. Cooperative interaction between pro-
inflammatory eicosanoids, cytokines, chemokines and carcinoma
cells contribute to formation of immunosuppressive tumor
microenvironment. PGE2 functions as immune modulator
and plays a crucial role in maintaining microenvironment
which favors tumor cell growth and invasion. It has been
reported that PGE2 switches anti-tumor TH1 microenvironment
to TH2 immunosuppressive microenvironment. It induces
down-regulation of TH1 cytokines like TNFα, IFNγ, IL-2,
IL-12, and upregulates TH2 cytokines such as IL-4, IL-10
which have immunosuppressive effect (Snijdewint et al., 1993;
Kambayashi et al., 1995; Huang et al., 1998; Stolina et al.,
2000). Studies on classical Hodgkins lymphoma (cHL) tissues
investigating the percentage of infiltrating Tregs suggested
that immune response suppression was important in both
EBV positive and EBV negative cHL (Wu et al., 2016).
KSHV vFLIP expression in mouse endothelial cells could
influence myeloid differentiation leading to pro-inflammatory,
angiogenic and immunosuppressive microenvironment (Ballon
et al., 2015).

COX-2 downstream effector PGE2 has been shown to directly
inhibit cytotoxic T cell activity. PGE2 up-regulates CD94/NKG2A
heterodimer complex which is a natural killer receptor. Cross
linking reaction between CD94 and T cells expressing this
heterodimer prevents cytotoxic T cell activity (Zeddou et al.,
2005). In a separate study, it has been reported that PGE2
indirectly eliminates anti-tumor effects of cytotoxic T cells.
It inhibits dendritic cell maturation, down-regulates antigen
presenting cells and causes abortive activation of naive CD8 (+)
T cells (Ahmadi et al., 2008). CTL have been previously tested
in clinical trials for prevention and treatment of EBV-associated
lymphomas with promising results (Liu et al., 2002; Gallot et al.,
2014). COX-2/ PGE2 mediated inhibition of CTL function can
therefore result in promotion of tumorigenesis in EBV infected
people with elevated COX-2 levels.

COX-2 IS IMPORTANT DURING De novo
INFECTION AND MAINTENANCE OF
LATENCY OF GAMMAHERPESVIRUSES

Murine herpesvirus 68 (MHV-68) can establish productive
infections in many cell culture systems and help in better
understanding of gammaherpesvirus replication and de novo
infection. It has been used to investigate cellular responses to
de novo viral infection and how they regulate gammaherpesvirus
activity. A study which investigated COX-2 induction during
MHV-68 infection suggested that COX-2 and PGE2 may have
significant roles to play during de novo infection (Symensma
et al., 2003). The study found that viral gene expression
subsequent to MHV-68 infection induces COX-2 protein
expression (Symensma et al., 2003). Their data also revealed
that viral genes that were most upregulated by exogenous PGE2
were same which showed the biggest suppression following
COX-2 inhibition by NS-398 treatment. It was observed that
MVH-68 de novo infection induced COX-2 expression which

mediated production of PGE2 which supported MHV-68 gene
expression, indicating a clear role for COX-2 mediated pathway
in MHV-68 pathogenesis. Earlier studies had indicated that
COX-2 upregulation by KSHV is also important for latent gene
expression (Sharma-Walia et al., 2006). The upregulation of
COX-2 in early stage of KSHV infection and the induction
of a moderate level of COX-2 by UV-irradiated KSHV and
envelope glycoproteins suggested that COX-2 expression is
initiated by initial attachment and entry steps of KSHV infection
(Sharma-Walia et al., 2006). It has also been shown that
KSHV gene expression early during infection and subsequent
modulation of host genes are probably essential for the increased
induction of COX-2 levels. The role of COX-2 in de novo
infection of KSHV has subsequently been extensively investigated
(Sharma-Walia et al., 2010b). That study showed that de novo
KSHV infection induced COX-2 and m-PGES-1 in endothelial
cells. The inhibition of COX-2 using NS-398 was found to
reduce KSHV latent ORF73 gene expression in TIVE-LTC
cells. In addition, the silencing of COX-2 reduced KSHV
latent ORF73 gene expression in HMVEC-d cells indicating
the importance of COX-2 in KSHV infection of host cells.
KSHV induced COX-2 was also found to regulate the expression
of a number of KSHV induced cytokines, and had a role
in capillary tube formation induced by KSHV infection in
endothelial cells. KSHV induced COX-2 was also found to
regulate the activity of MMPs in de novo infected as well
as in endothelial cells latently infected with KSHV. COX-
2 induction subsequent to de novo KSHV infection could
function through both autocrine and paracrine mechanisms
and support HUVECs endothelial cell invasion. The study
demonstrated that both PGE2 and COX-2 not only regulated
inflammation associated processes by modulating secretion of
cytokine but also controlled KSHV latency which is essential for
viral genome maintenance and survival of host cell (Sharma-
Walia et al., 2010b). Several transcription factors including
Sp1, HIF-1α and AP-1 that are activated by PGE2 have
been shown to modulate KSHV latency (ORF73) and lytic
(ORF50) promoters. Therefore, it is possible for COX-2 and
PGE2 to mediate effect on latency of KSHV through one
or more among these transcriptional factors (Sharma-Walia
et al., 2010b). Up-regulated COX-2 levels have been shown
to be sustained by KSHV gene expression (Sharma-Walia
et al., 2010a). The signaling molecules which are critical for
KSHV entry can regulate promoter activity and transcription
of COX-2, its protein expression and release of its downstream
effector PGE2. The same study also showed that attachment
and entry of KSHV into the target cells induces cross talk
between different signaling pathways leading to transcriptional
activation of COX-2 gene through its 5′ UTR region. This
activates transcription factors like NFAT and CREB bound to
the COX-2 promoter (Sharma-Walia et al., 2010a). One of
the KSHV latent oncoprotein v-FLIP also induces host COX-2
protein and its downstream inflammatory metabolite PGE2 via
NF-κB-dependent pathway to promote its tumorigenic effects
indicating that COX-2 inhibitors may be exploited to block
KSHV’s v-FLIP/K13 linked tumorigenesis (Sharma-Walia et al.,
2012).
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COX-2 HAS ROLE IN LATENCY-LYTIC
SWITCH OF GAMMAHERPESVIRUSES

It has been earlier proposed that in gammaherpesvirus associated
cancers, the infectious virions is required to be present for
tumorigenesis (Sturzl et al., 2001). Many viruses, such as
herpes simplex virus (HSV), human cytomegalovirus (HCMV),
pseudorabies virus (PRV), human herpesvirus-6 (HHV-6), EBV,

murine herpesvirus 68 (MHV-68), and human T-cell leukemia
virus type 1 (HTLV-1), have been shown to induce COX-2 and
release PGE2 that participate in viral lytic replication. It has
been recently shown that COX-2 enzyme has a critical role in
transition of EBV from latency to lytic reactivation in latently
infected cells (Gandhi et al., 2015) (Figure 2). LPS treatment of
EBV infected cells has been used to investigate role of upregulated
COX-2 levels in latency-lytic switch of EBV (Gandhi et al., 2015).

FIGURE 2 | Schematic model shows that COX-2 upregulation in response to an inflammatory signal can result in gammaherpesvirus lytic reactivation
in latently infected cells. The upregulation of COX-2 is associated with gammaherpesvirus lytic cycle reactivation. Inhibition of COX-2 with specific inhibitor
NS-398 blocks lytic reactivation. The up regulation of COX-2 results in increased secretion of the downstream effector PGE2 which works both via autocrine and
paracrine mode which is facilitated through EP receptors. The EP1 and EP4 receptors are also upregulated and their inhibition reduces viral lytic reactivation. Also,
PGE2 released from inflamed distant epithelial cell also can act via a paracrine mode of action and lead to virus lytic reactivation in co-cultivated latently infected cell.
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The study showed that the LPS treatment of gammaherpesvirus
latently infected cells resulted in up regulation of COX-2 and
also its downstream effector PGE2. The increase in levels of
COX-2 and PGE2 levels was simultaneous to expression of
EBV gp350 protein which is a key late lytic protein expressed
during virus assembly. This was accompanied with detection
of EBV virion in cell culture supernatant and increased cell
death indicating occurrence of lytic reactivation in a significant
fraction of EBV infected cells. The Akata cells, which are EBV
latently infected Burkitt’s lymphoma cells also showed similar
results suggesting a strong possibility of this phenomenon to
have biological relevance in vivo. Thus, it could be inferred
that COX-2 plays a direct and important role in the viral
lytic reactivation. Moreover, the lytic reactivation mediated by
over-expression of COX-2 generated intact and biologically
infectious progeny virions which could infect and transform
PBMCs. That study also showed the importance of PGE2 in
EBV lytic reactivation. PGE2 works in autocrine and paracrine
mode and thus is highly important during episodes of chronic
inflammation leading to development and progression of cancer.
There is a high possibility that chronic inflammation in one
part of body may lead to EBV lytic reactivation of latently
infected cells sitting at another part of the body due to paracrine
activity of prostaglandins generated due to inflammation. The
progeny virions thus released may infect naïve cells thereby
increasing the probability of transformation and tumorigenesis.
In immune-compromised individuals, such phenomenon may
lead to increased risk of generation of gammaherpesvirus related
malignancies in people with chronic inflammatory conditions
with elevated COX-2 levels.

COX-2 DOWNSTREAM EFFECTOR PGE2
AND EP RECEPTORS ROLE IN
LATENCY-LYTIC SWITCH

The PGE2 molecule binds to its specific receptors EP1 and EP4,
which are upregulated during the episodes of several human
malignancies. The overexpression of COX-2 and PGE2 in LPS
treated EBV infected cells has been shown to be simultaneous
to overexpression of PGE2 receptors EP1 and EP4 (Gandhi
et al., 2015). The significance of biological functions mediated
by COX-2 downstream signaling via PGE2 and EP receptors
has also been well studied in different virus associated tumors
specially in tumors related with oncogenic human herpes virus
(Paul et al., 2013b). The PGE2 downstream EP receptors
are G-protein coupled receptors which mediate and regulate
biochemical changes involving the immune system (De Keijzer
et al., 2013). The inhibition of EP1 and EP4 receptors using
chemical inhibitors significantly reduces lytic reactivation of
EBV even when COX-2 levels are up-regulated. It may be
emphasized that lytic reactivation of virus in EBV or KSHV
latently infected cells is commonly initiated by using a histone
deacetylase inhibitor Sodium butyrate (NaB) and a histone
acetyltransferase inducer TPA (Luka et al., 1979; Daibata et al.,
1998; Miller et al., 2007; Zhang et al., 2014). Sodium butyrate
and TPA treatment activates EP receptors linked intracellular

signaling pathways (Shelby et al., 2005). TPA activates PKC via
EP1 and Sodium butyrate activates the PKA via EP2 and EP4
pathway (Shelby et al., 2005). EP receptors regulate distinct
intracellular signaling pathways that result in the increase in
calcium levels inside the cell (Reader et al., 2011). The epigenetic
regulation of EP receptors functions has also been previously
reported (Gray et al., 2009). The intracellular PGE2 levels can
also promote cancer cell apoptosis (Lalier et al., 2011). Therefore,
it is entirely possible that similar pathways downstream of
receptors EP1 and EP4 are exploited in COX-2/PGE2 mediated
lytic reactivation of EBV and KSHV, which may need further
studies.

Cellular protein Nuclear factor E2-related factor 2 (Nrf2)
mediates global lytic gene repression via interaction with the
host transcriptional repressor KAP1 and another viral protein,
latency-associated nuclear antigen (LANA-1) in KSHV infected
cells. Hence Nrf2 has an important role in viral gene expression
of KSHV, its lytic reactivation, and survival of infected cell
(Gjyshi et al., 2015). It has been recently shown that Nrf2
transcription and protein levels are induced during KSHV latency
via COX-2/PGE2/EP4/PKC signaling. KSHV lytic reactivation
can be induced both by Nrf2 knockdown as well as brusatol-
mediated inhibition in latently infected cells. Another study has
identified MAP4K4 which is a STE20 kinase family member,
as a modulator of KSHV lytic cycle and invasive phenotype
of KSHV-infected endothelial cells. MAP4K4 has been linked
to COX-2, which also contributes to KSHV lytic replication.
MAP4K4-dependent COX-2 expression and enzymatic activity is
required for successful reactivation of KSHV and the invasiveness
of KSHV-infected endothelial cells (Gjyshi et al., 2015).

CLINICAL AND THERAPEUTIC
IMPLICATIONS

The studies on co-cultivation experiments has demonstrated that
lytic reactivation in EBV latently infected lymphoblastoid cells
can be induced by co-cultured epithelial cells with up-regulated
COX-2 levels (Gandhi et al., 2015). Mere adding of culture
supernatant from epithelial cells over-expressing COX-2 or
exogenous pure PGE2 was sufficient to induce EBV reactivation.
The progeny virions released from cells upon lytic reactivation
were also biologically active and functional when tested for their
ability to infect and transform freshly isolated PBMCs. These
observations may explain how COX-2 can possibly contribute
to the incidences of EBV associated cancers in patients suffering
from chronic inflammation. The upregulated COX-2 levels due
to inflammation may induce PGE2 release which may act on EBV
latently infected cells. The lytic reactivation of virus will release
progeny virions which may then infect naïve cells de novo. If
immune system is compromised, this may substantially increase
probability of transformation and tumorigenesis, as is clinically
apparent as well. Interestingly, it has also been previously
suggested that triggering EBV lytic reactivation may be of use as
a therapeutic intervention. EBV lytic genes’ expression in tumor
cells may induce strong immune recognition, and hence help in
killing tumor cells (Giunco et al., 2013). When the role of COX-2
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in primary effusion lymphoma (PEL) using nimesulide, a COX-
2 specific nonsteroidal anti-inflammatory drug (NSAID) was
examined, it was found to be efficacious in inducing proliferation
arrest in EBV positive as well as KSHV positive cells (Paul
et al., 2011). The use of antagonists against EP1, EP2, and
EP4 has been shown to downregulate proliferation of KSHV
positive and EBV positive cells in culture (Paul et al., 2013a).
Concurrent targeting of COX-2 and EP1/EP4 has been reported
to have anti-cancer effects due to the simultaneous inhibition
of viral and non-viral mediated tumorigenic mechanisms acting
at multiple levels such as viral-host protein interactions, host
and viral gene expression through regulation of epigenetic
mechanisms such as methylation, host signaling, immune system
activation, pro-inflammatory and cell survival processes (Paul
et al., 2013a). In addition to COX-2 being a therapeutic target
for KSHV associated malignancies, EP receptors may represent
ideal targets for pharmacologic agents as PGE2 analogs and their
blockers/antagonists possess antineoplastic activity, without the
reported gastrointestinal and cardiovascular toxicity observed
with few a NSAIDs (Paul et al., 2013c).

CONCLUSION

Numerous studies have shown that the viral infection induced
inflammatory response is associated with pathogenesis of the
virus leading to transformation of infected cells, which is followed
by increased survival, proliferation, invasion, and other pro-
cancerous effects like angiogenesis and metastasis. The role of
inflammation, if any, in regulating events in pathogenic virus’
life cycle is, however, not clearly understood. The importance
of the inflammatory response of host needs careful evaluation
in the case of gammaherpesviruses such as EBV and KSHV,
which remain latent for long time periods and subsequently
undergo reactivation. Virus reactivation is an important step
in the infection cycle of gammaherpesviruses which is critical

for dissemination of virus to novel hosts and de novo infection
of nascent cells. The infection may result in transformation
and tumorigenesis in the immuno-compromised hosts. The
upregulation of COX-2 expression and its downstream effector
molecules play a key role in life cycle events of EBV as well as
KSHV. A link between up-regulated COX-2 levels and induction
of lytic reactivation in gammaherpesvirus infected cells has
been recently shown. It is known that patients with chronic
inflammatory conditions with up-regulated COX-2 levels show
high incidences of EBV associated malignancies indicating role of
elevated COX-2 in virus mediated tumorigenesis. Recent studies
and observations add new horizon towards deeper understanding
of the relation of inflammation with the progression of oncogenic
gammaherpesviruses mediated cancers.
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