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Bamboo mosaic virus (BaMV), which belongs to the genus Potexvirus in the
family Alphaflexiviridae, has a single-stranded positive-sense RNA genome that is
approximately 6400 nucleotides (nts) in length. Positive-sense RNA viruses can use
genomic RNA as a template for translation and replication after entering a suitable host
cell. Furthermore, such viral RNA is recognized by capsid protein for packaging and by
viral movement protein(s) or the movement protein complex for cell-to-cell and systemic
movement. Hence, viral RNA must contain signals for different functions to complete the
viral infection cycle. In this review, we examine various cis-acting elements in the genome
of BaMV. The highly structured 3′ untranslated region (UTR) of the BaMV genomic RNA
plays multiple roles in the BaMV infection cycle, including targeting chloroplasts for RNA
replication, providing an initiation site for the synthesis of minus-strand RNA, signaling
for polyadenylation, and directing viral long-distance movement. The nt at the extreme
3′ end and the structure of the 3′-terminus of minus-strand RNA are involved in the
initiation of plus-strand genomic RNA synthesis. Both these regions have been mapped
and reported to interact with the viral-encoded RNA-dependent RNA polymerase.
Moreover, the sequences upstream of open reading frames (ORFs) 2, 3, and 5 are
involved in regulating subgenomic RNA synthesis. The cis-acting elements that were
identified in BaMV RNA are discussed and compared with those of other potexviruses.
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INTRODUCTION

For a positive-sense RNA virus to establish a successful infection in a host, the viral RNA must
house diverse cis-acting elements for minus-strand, plus-strand, and possibly subgenomic RNA
syntheses (Dreher, 1999; Newburn and White, 2015). Furthermore, cis-acting elements could also
be involved in cell-to-cell or systemic movement and encapsidation of viral RNA (Kwon et al.,
2005; Lough et al., 2006; Cho et al., 2012; Rossmann, 2013). Studying the mechanisms of viral
infections, localizing these cis-acting elements, and revealing their functional structures are critical
steps in understanding viral infections at the molecular level. A few approaches were used to
determine the minimum length and structures of viral cis-acting elements required for various
functions. An in vitro replication assay is one of the most frequently used strategies to define the
minimal requirement of cis-acting RNA elements for replication (Lin et al., 2005a,b; Osman et al.,
2014). However, the difficulty involved in isolating a competent replicase preparation that can
synthesize minus- or plus-strand RNAs, specifically with the cis-acting elements provided, limits
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its use. The cis-acting elements discovered using this strategy
were designated as promoters and are structured to specifically
interact with the replicase. Structures of cis-acting elements have
been computationally predicted and validated using enzymatic
or chemical structural probing (Cheng and Tsai, 1999; Sun and
Simon, 2006; McCormack et al., 2008). However, the structured
cis-acting elements must be functionally verified by mutational
analysis in either an in vitro replication assay or an in vivo
infection assay.

Bamboo mosaic virus (BaMV) has a single-stranded positive-
sense RNA genome that is approximately 6.4 kb in length with a
5′-cap structure and a 3′ poly(A) tail. The genome contains five
open reading frames (ORFs) (Figure 1). ORF1 encodes a replicase
for viral RNA replication, ORF2 encodes a 28-kDa protein (a
silencing suppressor) required for viral movement, ORF3 and
ORF4 encode membrane-anchoring proteins required for virus
movement, and ORF5 encodes a 25-kDa capsid protein for viral
encapsidation, movement, and symptom development.

The cis-acting elements of BaMV RNA involved in viral
RNA replication, intracellular trafficking, and movement have
been extensively studied in the last two decades. This report
comprehensively reviews these studies and discusses the common
theme of the roles of these cis-acting elements that could be
applied to other members of potexvirus including the Potato virus
X (PVX), one of the top 10 plant viruses in molecular plant
pathology (Scholthof et al., 2011), and even to certain animal
viruses of Alphaviruses.

VIRAL RNA INTRACELLULAR
TRAFFICKING

When a positive-sense viral RNA enters a host cell, the host
translation system is used to synthesize the viral proteins. The
newly translated viral proteins target a specific membrane,
usually an organelle-associated membrane, and modify the
membrane suitable for viral RNA replication (Ahlquist et al.,
2003; Laliberte and Sanfacon, 2010; Diaz et al., 2012; Nagy,
2016). The RNAs of Tobacco mosaic virus (Kawakami et al.,
2004; Nishikiori et al., 2006), PVX (Bamunusinghe et al., 2009),
Tomato ringspot virus (Han and Sanfacon, 2003), Cowpea mosaic
virus (Carette et al., 2000), and Tobacco etch virus (Schaad et al.,
1997) are transported to the endoplasmic reticulum membranes.
The RNA of Tomato bushy stunt virus is transported to the
peroxisomes (McCartney et al., 2005). The RNA of Melon
necrotic spot carmovirus is associated with the mitochondria
(Mochizuki et al., 2009). The RNAs of Turnip yellow mosaic
virus (Prod’homme et al., 2003) and Turnip mosaic virus (Wei
et al., 2010) are transported to the chloroplast membranes. These
observations indicate that different viruses associate with distinct
organellar membranes for replication (Laliberte and Sanfacon,
2010).

The mechanisms underlying the specific trafficking of viral
RNA to targeted organelles for replication remain less known.
In a recent study, BaMV was demonstrated to associate with
chloroplasts for replication (Cheng et al., 2013). When the
interaction between the 3′ untranslated region (UTR) of BaMV

RNA (Figure 1) and host proteins in the replicase complex
was studied, the involvement of elongation factor 1a (eEF1a)
and chloroplast phosphoglycerate kinase (PGK) was revealed
(Lin et al., 2007). A further study of the interactions indicated
that a pseudoknot, including the poly(A) sequence at the
extreme 3′ end, is the target of PGK. In vitro and in vivo
studies revealed that the interaction is required for efficient
replication (Lin et al., 2007; Cheng et al., 2013). Notably,
the chloroplast PGK can be replaced by a chimeric protein
composed of cytoplasmic eEF1a and chloroplast RuBisCo small
subunit (rbcS) (Cheng et al., 2013). These results suggest that
nuclear-encoded chloroplast proteins, such as PGK and rbcS may
serve to transport chloroplast-unrelated macromolecules into the
chloroplasts by using their transit peptide. Once inside the host
cell, the 3′-terminal pseudoknot and poly(A) sequence of BaMV
RNA interact with PGK. The chloroplast PGK transit peptide
facilitates entry into the chloroplast transport system. PGK
and its associated macromolecules (BaMV RNA and possibly
the translated replicase or the entire replicase complex) are
transported into the chloroplasts (Cheng et al., 2013).

MINUS-STRAND RNA SYNTHESIS

During initiation of minus-strand RNA synthesis, cis-acting
elements located at the 3′ end (usually in the 3′ UTR) in most
viruses play a critical role in recognition by the replicase complex.
Typically, the 3′-terminal nucleotides (nt) or penultimate nt of
non-poly(A)-tailed RNA viruses is used as the initiation site
for minus-strand RNA synthesis (Dreher, 1999, 2009). However,
the poly(A)-tailed RNA viruses have RNA genomes containing
approximately 250 adenylates at the 3′ end in the case of
BaMV (Chen et al., 2005). Thus, cis-acting elements in the
3′ UTR are far from the extreme 3′ end of the initiation
site if poly(A)-tailed viruses use a similar synthesis mechanism
as described for non-poly(A)-tailed RNA viruses. Therefore,
poly(A)-tailed RNA viruses might have a different strategy or
use initiation sites that are close to the cis-acting elements. In
vitro and in vivo studies of BaMV revealed that the extreme
5′ end of minus-strand RNA contains stretch of uridine residues
ranging from 1 to 15 nt, usually about 7–10 uridines (Cheng
et al., 2002). These results indicate that the replicase complex
assembles on the cis-acting elements in the 3′ UTR, and
that synthesis of minus-strand RNA initiates with uridylate.
The consequence of minus-strand RNA synthesis is that the
subsequently synthesized plus-strand genomic RNA would have
only a short stretch of adenylates at the extreme 3′ end (<15 nts
in length).

Cis-acting elements for minus-strand RNA synthesis, as
mentioned previously, are usually situated in the 3′ UTR and
form secondary or tertiary structures, such as the stem–loops of
Alfalfa mosaic virus (Houser-Scott et al., 1994; Reusken and Bol,
1996; Houser-Scott et al., 1997) and Turnip crinkle virus (Song
and Simon, 1995) and the tRNA-like structures of Brome mosaic
virus, Tobacco mosaic virus, and Turnip yellow mosaic virus (Kao
and Sun, 1996; Osman and Buck, 1996; Deiman et al., 1997, 1998;
Singh and Dreher, 1997).
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FIGURE 1 | Illustration of the genome organization of BaMV. BaMV genome, the minus-strand RNA indicated as (–)vRNA, three subgenomic RNAs (sgRNA),
and satellite BaMV (satBaMV) are illustrated. The promoter structures for minus- and plus-strand RNA synthesis at the 3′ UTR of BaMV genome and the 3′-end of
(–)vRNA, respectively, are indicated. The conserved sequence among the promoters of BaMV sgRNA synthesis is also indicated on the (–)vRNA.

The cis-acting elements for BaMV minus-strand RNA
synthesis were also identified in the 3′ UTR. The 3′ UTR can
be divided into three portions: the 5′ part consisting of three
stem–loops that form a cloverleaf-like structure, designated as
the ABC domain; the middle part following the ABC domain,
which is a major stem–loop with a bulge and an internal loop,
designated as the D domain; and the 3′ part of the UTR that forms
the pseudoknot, described previously that interacts with eEF1a
and PGK, covering a part of the poly(A) sequence adjoining the
3′ UTR, designated as the E domain (Figure 2). Furthermore,
results derived from ultraviolet (UV)-crosslinking and foot-
printing assays indicate that the polymerase and helicase-like
domains of the replicase (ORF1 of BaMV) interact with the D
and E domains and ABC domain of the 3′ UTR, respectively.
The potexviral conserved hexamer motif (ACXUAA) involved in
the accumulation of virus was discovered in Clover yellow mosaic
virus (White et al., 1992) and BaMV (Cheng and Tsai, 1999). This
motif is located at the apical loop of the D domain in the 3′ UTR
of BaMV (Figure 2), and was protected from RNase digestion
during interaction with the polymerase (Huang et al., 2001). The
results of mutagenesis of this motif (ACCUAA in BaMV) indicate
that the extreme 5′ adenylate is a purine-specific nt, and the
subsequent nt is by necessity a pyrimidine. The last three residues
(UAA) are unalterable. The third nt affects viral accumulation less
than the first two (Chiu et al., 2002).

Maintaining the structures of D and E domains is critical
for efficient viral RNA replication (Tsai et al., 1999). Mutations
that disrupt the stems resulted in inefficient accumulation of
viral RNAs. When compensatory mutations were introduced to
re-form the stems, viral replication was restored. Furthermore,

retaining the pseudoknot structure of the E domain required 15
adenylates downstream (Cheng and Tsai, 1999). Viral full-length
transcripts with <10 adenylates could not replicate sufficiently to
be detected in the protoplasts. Transcripts with 15 adenylates at
the 3′ end could accumulate only up to 26% of the amount of
wild-type transcripts with 25 adenylates (Tsai et al., 1999). These
results suggest that the polymerase domain of the BaMV replicase
interacts with stem–loop D specifically with the hexamer motif
(ACCUAA) and the pseudoknot for initiation of minus-strand
RNA synthesis. The initiation site for the minus-strand RNA
synthesis in BaMV is not fixed at one position, but initiation starts
at one of the 15 adenylates adjoining the 3′ UTR (Cheng et al.,
2002).

The stem–loops B and C of the ABC domain in the 3′
UTR play a lesser, but significant, role in RNA replication
(Chen et al., 2003). Accumulation of viral RNA in mutants with
deleted stem–loop B or C was approximately 30% of wild type.
Notably, accumulation of viral products of mutants with deleted
stem–loop A did not differ significantly from that of wild type
in protoplasts and inoculated leaves, but accumulation decreased
dramatically in systemic leaves. These results suggest that
stem–loop A is a cis-acting element for long-distance movement
and does not play a role in RNA replication (Figure 2).

PLUS-STRAND RNA SYNTHESIS

In an in vitro transcription assay, short transcripts of 39, 77, and
173 nts in length, corresponding to the 3′ terminus of minus-
strand RNAs, were used as templates to examine their ability
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FIGURE 2 | Tertiary structure of BaMV 3′ UTR and replicase binding sites. The tertiary structure of BaMV 3′ UTR interacts with the RNA-dependent RNA
polymerase (RdRp) and the helicase-like domains shown in light orange and light purple ovals, respectively. The functional roles of these cis-acting elements in the 3′

UTR are indicated in boxes. SL: stem–loop (adapted from Cheng et al., 2007).

to direct RNA synthesis. The 3′-terminal 77-nt RNA, designated
Ba-77, was the most efficient RNA template (Figure 3). It harbors
two complete stem–loops confirmed by enzymatic structural
probing and is required for plus-strand RNA synthesis (Lin et al.,
2005a).

The terminal UUUUC pentamer is the most critical
cis-acting element in BaMV for plus-strand RNA synthesis.
Ba-77/15, which lacks the terminal pentamer, exhibited
only 7% template activity compared with that of
Ba-77 in vitro. Ba-77 with an internal deletion of 16 or 31
nts (starting after the terminal pentamer) (Figure 3) and
retaining the terminal UUUUC preserves up to 60% of the
template activity of Ba-77 (Lin et al., 2005a). Furthermore,
the sequence and structure of the large stem–loop at the
extreme 5′ end of Ba-77 are also vital for RNA synthesis. In
mutants with altered sequences of the large stem–loop, RNA
synthesis in vitro and viral RNA accumulation in vivo decreased
significantly. Moreover, the sequence between the terminal
pentamer initiation site and the large stem–loop may also play a
significant role as mutants with shortening the sequence between

the terminal UUUUC and the stem–loop exhibited decreased
accumulation of BaMV RNA in vivo and plus-strand RNA
synthesis in vitro (Lin et al., 2005a).

At least three cis-acting elements at the 3′ end of BaMV
minus-strand RNA are required for efficient plus-strand genomic
RNA synthesis, namely the 3′-terminal UUUUC pentamer
motif, the sequence and structure of the large stem–loop, and
the distance between these two regions. Accordingly, these
cis-acting elements constitute the promoter for genomic RNA
synthesis. The replicase contains two domains that interact with
the promoter: the replicase catalytic center interacts with the
terminal UUUUC sequence, and the specificity domain interacts
with the large stem–loop (Figure 3) (Chen et al., 2010).

As mentioned previously, the extreme 5′ end of minus-strand
RNA has a short run of uridylates, copying from the poly(A) tail;
therefore, the extreme 3′ end of plus-strand RNA immediately
after synthesis accordingly has a short run of adenylates (most
frequently 7–10). However, to maintain the approximately 250
adenylates at the extreme 3′ end of genomic RNA after synthesis,
the cis-acting element AAUAAA in the 3′ UTR plays a role
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FIGURE 3 | Secondary structure of the 3′-terminal 77 nts of BaMV minus-strand RNA and replicase binding sites. The secondary structure of the
cis-acting elements for genomic RNA synthesis interacts with the polymerase (RdRp) and helicase-like domains shown in light orange and light purple, respectively.
The broken lines between base-pairing indicate that this region could be unstructured or has potentially unstable according to the probing results. The initiation site is
numbered +1 for plus-strand RNA synthesis (adpated from Cheng et al., 2007).

in polyadenylation (Chen et al., 2005). Interestingly, the cis-
acting element for polyadenlyation of BaMV RNA is identical
to that of nuclear-encoded mRNAs. Whether BaMV uses an
identical set of proteins as do nuclear-encoded host mRNAs for
polyadenylation is an interesting question. A few observations
oppose the aforementioned hypothesis on the use of identical
proteins for polyadenylation. The host poly(A) polymerase is
located mainly in the nucleus. Furthermore, the polyadenylation
of mRNAs with poly(A) polymerase is independent of the
recognition of the AAUAAA motif, whereas the polyadenylation
of BaMV is associated with the AAUAAA motif (Chen et al.,
2005).

SUBGENOMIC RNA SYNTHESIS

The genomes of many positive-sense RNA viruses are
multicistronic organizations that produce subgenomic RNAs
(sgRNAs) to serve as messengers, allowing the translation
of downstream ORFs (Sztuba-Solinska et al., 2011). A few
strategies for synthesizing sgRNAs have been demonstrated,
including internal initiation (Miller et al., 1985; Haasnoot
et al., 2000), premature termination (White, 2002; Jiwan and
White, 2011), and discontinuous synthesis (Sawicki and Sawicki,
1998; Pasternak et al., 2001). A short non-coding RNA derived
from genomic RNA generated by host exonuclease is another

strategy to synthesize subgenomic RNA (Iwakawa et al., 2008).
They commonly rely on cis-acting RNA elements to direct the
viral-encoded RdRp to transcribe these RNAs (Newburn and
White, 2015).

BaMV infection produces three sgRNAs with 3′ cotermini.
Two major sgRNAs of approximately 2 and 1 kb in length direct
translation of ORF2 and ORF5, respectively (Lin et al., 1992).
The other sgRNA, responsible for the translation of ORF3 and
ORF4, is 1.5 kb in length accumulates in infected cells at a very
low level. The satellite RNA of BaMV (satBaMV) was previously
designed to be an expression cassette for examining cis-acting
elements required for sgRNA synthesis (Lee et al., 2000). A cDNA
covering the putative promoter region of BaMV sgRNA (SGP)
was inserted into this cassette and resulted in sgRNA promoter-
directed RNA synthesis in infected cells when coinoculated with
BaMV. The cis-acting element of the SGP for synthesis of the
1-kb sgRNA covers the region between nt −91 to +52 (the
transcription start site is designated as +1). Further analysis
indicated that the SGP can be split into four elements: the
core (nt -30 to +16), two upstream enhancers (nt −59 to −31
and −91 to −60), and a downstream enhancer (nt +17 to +52).
The core sequence is the minimum region required for 1-kb
sgRNA synthesis, which folds into two stem–loops, stem–loop
(SL)1 and SL2, in minus strand (Figure 4A). Maintaining the
integrity of SL2 structure and the conserved octamer motif
(3′-CAAUUCAA-5′) in the loop are essential for 1-kb sgRNA

Frontiers in Microbiology | www.frontiersin.org 5 April 2017 | Volume 8 | Article 645

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00645 April 11, 2017 Time: 16:10 # 6

Chen et al. Cis-acting Elements in BaMV RNA Genome

FIGURE 4 | Putative long-distance RNA–RNA interactions for subgenomic RNA synthesis. (A) The predicted structure of the core sequence for BaMV 1-kb
sgRNA synthesis (adapted from Lee et al., 2000). (B) Putative interaction of the 3′-end sequence of PVX, BaMV, or satBaMV minus-strand RNA with the conserved
octamer motif upstream of the BaMV or PVX coat protein gene are indicated. The conserved octamer motif is indicated in bold font. The subgenomic RNA
transcription start site is indicated using an asterisk. The predicted complementary base pairing is denoted.

synthesis. Furthermore, the cis-acting elements of SGP for 2-kb
sgRNA synthesis are located at nt−119 to+11 (the transcription
start site of the 2-kb sgRNA is designated as +1). The minus-
strand SGP sequence for 2-kb sgRNA synthesis was predicted to
have similar stem–loops to those of the 1-kb SGP. The conserved
octamer motif (3′-CAAUUCAU-5′) is also located in the loop of
SL2 (Lee et al., 2000). Furthermore, the expected octamer motif
(3′-CAAUUCCU-5′) for BaMV 1.5-kb sgRNA is located 12-nt
upstream of the transcription start site.

Compared with the putative SGPs of ORF2 and ORF5
of potexviruses, the octamer motif is highly conserved (Kim
and Hemenway, 1997; Lee et al., 1998). The long-distance
RNA–RNA interaction between the conserved octamer motif
and the 3′-terminal sequence of minus-strand genomic RNA
was demonstrated to be required for transcription of PVX
sgRNAs (Figure 4B) (Kim and Hemenway, 1999). As in an

ortholog, a similar interaction was revealed in BaMV with shorter
complementary pairing than those in PVX (Figure 4B). Although
BaMV SGPs were inserted into the satBaMV cassette without
a BaMV minus-strand 3′-terminal sequence, the octamer motif
could also interact with the 3′-terminal sequence of minus-
strand satBaMV RNA (Figure 4B) (Lee et al., 2000). Redundant
SGPs in a PVX-based expression vector were found to lead to
genetic instability. The heterologous SGP from BaMV used in
the PVX vector improves its stability for long-term production
of proteins (Dickmeis et al., 2014). Complementarity between
the octamer motif from the BaMV SGP and the 3′-terminal
sequence of the minus-strand genomic RNA is required for
transcription of sgRNA synthesis (Figure 4B). The long-distance
RNA–RNA interaction between of the 3′-terminal sequence and
the conserved octamer motif of the SGPs observed in PVX and
BaMV favors the internal initiation mode of sgRNA synthesis.
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CONCLUDING REMARKS AND FUTURE
PROSPECTIVES

For accomplishing an efficient infection by a positive-sense
RNA virus, the viral genome consists of various cis-acting
elements for intracellular trafficking to organellar membranous
target sites, minus-strand RNA synthesis, plus-strand genomic
RNA synthesis, subgenomic RNA synthesis, viral movements,
and viral encapsidation. In this review, we summarize studies
of most of the cis-acting elements identified in the BaMV
genome, except for those involved in viral movement and viral
encapsidation. The signal for BaMV genomic RNA encapsidation
is very likely in the 5′ UTR, similar to those identified in
PVX (Kwon et al., 2005; Karpova et al., 2006; Petrova et al.,
2013, 2015). The structural elements and the functional roles for

the encapsidation of BaMV RNA will be revealed in the near
future.
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