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Vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging
of environmental and medical samples. Both Raman and Fourier-transform infrared
(FT-IR) imaging have been applied to obtain detailed information on the chemical
composition of biological materials, ranging from single microbial cells to tissues. Due
to its compatibility with methods such as stable isotope labeling for the monitoring
of cellular activities, vibrational spectroscopy also holds considerable power as a tool
in microbial ecology. Chemical imaging of undisturbed biological systems (such as
live cells in their native habitats) presents unique challenges due to the physical and
chemical complexity of the samples, potential for spectral interference, and frequent
need for real-time measurements. This Mini Review provides a critical synthesis of recent
applications of Raman and FT-IR spectroscopy for characterizing complex biological
samples, with a focus on developments in single-cell imaging. We also discuss how
new spectroscopic methods could be used to overcome current limitations of single-
cell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic
methods, we discuss how combining these approaches could enable us to obtain new
insights into biological activities either in situ or under conditions that simulate selected
properties of the natural environment.
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INTRODUCTION

Natural habitats are often physically and chemically complex, which has far-reaching consequences
for the spatial distribution of microbial taxa and the processes they mediate (Resat et al.,
2012; Vos et al., 2013; Pande et al., 2016; Ratzke and Gore, 2016). Because controlled laboratory
experiments rarely capture the heterogeneity present within natural environments, our knowledge
of microbial activities is often based on indirect observation. To address this source of uncertainty,
there is a need for methods that facilitate the in situ profiling of microorganisms and their
activities in complex environments. A full understanding of these topics also requires an ability
to study these processes at the level of single cells (Fike et al., 2008; Resat et al., 2012; Roose et al.,
2016). Due to its ability to rapidly and non-destructively probe the physiology and activities of
microorganisms, vibrational (Raman and FT-IR) microspectroscopy (a combination of microscopy
and spectroscopy) shows considerable promise in this respect (Escoriza et al., 2006; Wagner, 2009;
Lu et al., 2011). In particular, Raman and infrared imaging have emerged as useful methods for
the spatially resolved analysis of biological samples. In this Mini Review, we highlight recent
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studies that have used these techniques to image single microbial
cells within spatially and chemically complex environments.
These include pure cultures incubated in contact with physical
substrata, multi-species assemblages within their native habitats,
as well as other challenging sample types. State-of-the-art
approaches for spectral imaging are critically evaluated in
order to identify guidelines for future applications of single-cell
analyses in microbial ecology.

RAMAN IMAGING

While several types of Raman spectroscopic instrumentation
and analytical approaches have been developed, each of these
relies on measuring the scattering of monochromatic light as it
interacts with a sample. Most photons are elastically scattered and
possess the same energy as the incident light beam (also termed
Rayleigh scattering). However, a small fraction is inelastically
scattered, involving a decrease or an increase in energy compared
with the excitation wavelength (Stokes and anti-Stokes Raman
scattering, respectively). By providing information on vibrational
and other low-frequency transitions in a molecule, both types
of inelastically scattered light can be used to determine and
differentiate between the chemical composition of solids, liquids
and gases. For a more detailed introduction to this technique
(as well as infrared spectroscopy), the reader is referred to
Skoog et al. (2007) and Lu et al. (2011). Recent advances in
the design of high-speed Raman imaging instrumentation have
been summarized by Ando et al. (2016). Moreover, developments
concerning techniques including surface- and tip-enhanced
Raman scattering (SERS and TERS), as well as resonance
Raman and coherent anti-Stokes Raman spectroscopy (CARS),
are discussed in several reviews (Opilik et al., 2013; Camp and
Cicerone, 2015; Cicerone, 2016; Kano et al., 2016).

Two features that make Raman microspectroscopy an ideal
technique for single-cell analyses include its direct compatibility
with aqueous samples (due to water exhibiting only weak Raman
scattering) and its high spatial resolution (Skoog et al., 2007).
While a resolution of ∼1 µm is possible using conventional
Raman instrumentation, measurements at the nanometer scale
are achievable by TERS (Mariani et al., 2010; Opilik et al., 2013;
Rusciano et al., 2014). Raman measurements are also well-suited
for analyzing motile cells using optical tweezers, as well as
monitoring microbial activities by stable isotope probing (SIP)
(Chan et al., 2004; Wagner, 2009; Huang et al., 2010; Berry
et al., 2015; Wang et al., 2016). Although the real-time Raman
imaging of microorganisms remains non-trivial due to issues
including background autofluorescence (Polisetti et al., 2016)
and weak signal intensities (partly due to a need for low laser
excitation power to avoid photodamage), significant progress in
this field has already been made. For example, Li et al. (2012)
used resonance Raman imaging combined with 13C labeling
to identify cells that fixed carbon dioxide in culture and in
field-collected seawater samples. By reducing spectral acquisition
times to milliseconds, resonance Raman spectroscopy – a method
in which the excitation wavelength matches the electronic
transition of a selected molecule – was key to enabling the

rapid imaging of these samples. It is also possible to visualize
selected strains and their locations within habitats including
human endothelial cells (Große et al., 2015), macrophages (Silge
et al., 2015) and other environments, even when the taxa of
interest are present at low abundances (Kalasinsky et al., 2007).
Through combining imaging of Staphylococcus aureus cells with a
multivariate classification model [based on principal component
analysis (PCA) and linear discriminant analysis (LDA)], Große
et al. (2015) were further able to detect small differences in the
spectral profiles that allowed the authors to discern between
intra- and extracellular cells, due to shifts in the physiological
state of the bacteria that occur upon host invasion.

In addition, resonance Raman and SERS have been used
to directly image rhizosphere bacteria (Pantoea sp. YR343) on
Arabidopsis thaliana root surfaces (Polisetti et al., 2016). This
is of interest because Raman-based investigations of plant–
microbial interactions are often challenging or impossible due
to the strong autofluorescence originating from plant materials.
In the study by Polisetti et al. (2016), background interference
from the roots was reduced by aging them for 5–15 days. Similar
to Große et al. (2015), PCA was used to discriminate bacterial
spectra from spectra of other materials. Moreover, using SERS
allowed the authors to circumvent the need for a photo-bleaching
step which is often employed for the analysis of pigmented
cells using conventional Raman instrumentation, but which can
result in the degradation of cell components and metabolites
that are of importance to understanding bacterially mediated
processes in the rhizosphere (Polisetti et al., 2016). Taken
together, the studies highlighted above illustrate how advanced
Raman imaging techniques and multivariate analyses can be used
to generate new insights into the distribution and activities of
microorganisms within diverse environments, including systems
which have previously been difficult to visualize and where
the ability to differentiate between cells and other materials is
dependent on detecting minor differences in spectral features. By
removing the need for sample treatment steps that are likely to
introduce analytical biases, such as sample photo-bleaching prior
to the collection of Raman spectra (Polisetti et al., 2016), these
techniques can also provide increasingly accurate information
on metabolic processes occurring at multiple levels of biological
organization (from individual cells to communities).

While a limited number of studies have been published on
Raman imaging of microbial strains or uncultured cells within
their native environments, new instrumentation is likely to
lead to an expansion of this field by enabling reduced spectral
acquisition times without a loss of signal intensity (Opilik et al.,
2013; Ando et al., 2016; Kano et al., 2016). In addition, combining
this approach with well-established methods in microbial ecology
(including fluorescence in situ hybridization) (Wang et al., 2016)
as well as newer techniques such as bioorthogonal chemical
imaging (Berry et al., 2015; Wei et al., 2016) and Raman
microfluidics (Chrimes et al., 2013) are likely to find increasing
use in the analysis of microbiological samples. Several sample
types which have not yet been subjected to Raman imaging have
already been characterized using single-point measurements, and
therefore represent promising targets for future research. For
example, while the Raman-based detection of meningitis-causing
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pathogens in human cerebrospinal fluid has been achieved
(Harz et al., 2009), spatially resolved imaging of such samples
could facilitate the development of improved diagnostic tests.
One imaging modality that is particularly promising from a
microbiological perspective, but which is yet to find widespread
use in the field of microbial ecology, is CARS (Krafft et al.,
2009; Camp and Cicerone, 2015; Cicerone, 2016). This technique
can enable the acquisition of Raman spectra at a rate that
is approximately 100 times faster than conventional Raman
analyses, making it highly suitable for the real-time imaging
of biological samples (Cicerone, 2016). CARS has already been
used for the rapid profiling of microorganisms at the subcellular
level (Okuno et al., 2010; Yue and Cheng, 2016), and a single
study has also employed it to image bacteria within complex
matrices including milk and urine (Hong et al., 2016). Another
technique which has found surprisingly limited use in the field of
microbial ecology is TERS (Mariani et al., 2010; Opilik et al., 2013;
Rusciano et al., 2014). However, since this method enables Raman
measurements at sub-micron spatial scales, it could be used to
analyze microorganisms that are under the conventional size
detection limit of ∼1 µm, as well as viral particles present within
diverse environmental matrices. Indeed, TERS has already been
used for the analysis and classification of viral strains (Hermann
et al., 2011; Olschewski et al., 2015).

FT-IR IMAGING

While Raman spectroscopy relies on irradiating a sample
with a monochromatic laser beam, Fourier-transform infrared
(FT-IR) spectroscopy is based on measuring the absorption

of polychromatic infrared light. The functional groups in a
given molecule are identified according to their vibrational
modes at different IR frequencies (for detailed information,
see Skoog et al., 2007). Raman analyses depend on a shift in
the polarizability of a molecule, whereas FT-IR measurements
depend on changes in the dipole moment. Indeed, Raman-active
vibrational modes often exhibit weak IR signals and vice versa
(with symmetric and asymmetric moieties producing strong
Raman and IR spectral bands, respectively), and the two
methods provide complementary information on the molecular
composition of microbial cells (Lu et al., 2011; Ojeda and Dittrich,
2012; Tang et al., 2013; Wang et al., 2016). Infrared imaging
could, therefore, provide insights into microbial physiology in
samples that are difficult to analyze using Raman spectroscopy
alone. Indeed, high-speed imaging of large (centimeter-scale)
sample areas can be achieved using a focal plane array (FPA)
detector that enables the simultaneous acquisition of tens of
thousands of IR spectra (Dorling and Baker, 2013). Studies
employing FPA-based FT-IR analysis are common in biomedical
science and have, for example, involved chemical imaging of
tissues (Kastyak-Ibrahim et al., 2012; Miller et al., 2013) and
cancer cells (Kuimova et al., 2009). Chemical mapping by
reflectance FT-IR microspectroscopy has also been used to
characterize bacteria on opaque steel surfaces, without a need
for destructive sampling (Ojeda et al., 2009). In comparison
with Raman analyses, however, few studies have used FT-IR
microspectroscopy to investigate single microbial cells within
their native environments, potentially due to the coarse spatial
resolution (∼10 µm) of conventional FT-IR measurements and
water being a strong absorber of IR radiation. Even so, several
ways to overcome these challenges have been developed. For

TABLE 1 | Experimental goals associated with the Raman and FT-IR imaging of single microbial cells in complex biological samples.

Goal Recommended technique Notes Reference

Analysis of motile cells and/or cell
sorting

Raman microspectroscopy Optical tweezers can be used to trap or
move individual cells

Huang et al., 2010; Berry et al., 2015

Detection of cells on
autofluorescent and opaque
surfaces

Both Autofluorescence does not interfere with IR
measurements; Raman measurements
possible using resonance Raman, SERS,
sample photobleaching or aging

Ojeda et al., 2009; Polisetti et al., 2016

Addressing other sources of
background interference

Both Water is a strong IR absorber; using
microfluidics or an ATR accessory can
reduce signal interference

Kuimova et al., 2009; Birarda et al., 2016;
Loutherback et al., 2016

Stable isotope probing Both Approaches currently better-established for
Raman analyses

Wang et al., 2016

Imaging of large (cm-scale) surface
areas

FT-IR microspectroscopy FPA detectors readily available for FT-IR
instruments; Raman instrumentation also
available, but not as widely accessible

Kuimova et al., 2009; Kastyak-Ibrahim et al.,
2012; Miller et al., 2013; Ando et al., 2016

Localization of cells in 3D space Raman microspectroscopy Imaging of z-stacks possible using confocal
Raman measurements

Große et al., 2015; Silge et al., 2015

High-resolution (including
subcellular) measurements

Both Raman analyses (e.g., TERS)
better-established; also possible using
FT-IR but requires specialist equipment or
access to synchrotron beamline

Mariani et al., 2010; Opilik et al., 2013; Saulou
et al., 2013; Rusciano et al., 2014; Findlay
et al., 2015

Label-free discrimination between
individual strains or taxa

FT-IR microspectroscopy FT-IR analyses can outperform Raman
spectroscopy in terms of spectral quality
and reproducibility

AlMasoud et al., 2016; Muhamadali et al., 2016

Recommendations for analytical techniques are provided for meeting each goal.
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example, synchrotron radiation sources have enabled FT-IR
measurements at the micron scale (Nasse et al., 2011; Jamme
et al., 2013; Saulou et al., 2013) and combining this approach with
microfluidics can reduce background interference from water by
making it possible to culture cells within a thin layer of fluid
(Holman et al., 2009; Loutherback et al., 2015, 2016; Birarda et al.,
2016).

While synchrotron-FT-IR analyses require dedicated facilities,
advances in the development of high-magnification optics have
made it possible to perform FPA-based infrared imaging at a
spatial resolution comparable with Raman instruments, even
without access to a synchrotron beamline (Findlay et al.,
2015). Analyses of cells in aqueous suspensions are additionally
possible using attenuated total reflectance (ATR)-FT-IR imaging
(Kuimova et al., 2009). Where required, techniques for
nano-scale infrared imaging have been developed (Reddy et al.,
2013; Centrone, 2015; Amenabar et al., 2017) and even relatively
thick aqueous samples can be analyzed by quantum cascade
laser-based IR microspectroscopy (Haase et al., 2016). Crucially
for the in situ analysis of microbial activities, there is evidence
that FT-IR spectroscopy is compatible with SIP and can be
used to track the cellular uptake of stable-isotope-labeled carbon
(13C) and nitrogen (15N) compounds (Muhamadali et al., 2015).
FT-IR microspectropy can detect differences in the spectra

of water and heavy water (D2O), due to absorbance peaks
corresponding to O–H and O–D bending modes occurring at
different wavenumber regions (Miller et al., 2013). While we are
unaware of studies that have combined D2O labeling with FT-IR
spectroscopy to monitor the activities of individual microbial
cells, this has recently been achieved using Raman spectroscopy
(Berry et al., 2015), and it is likely that both methods can be used
to identify actively metabolizing cells within their native habitats.

Further to the studies discussed above, Muhamadali
et al. (2016) evaluated the applicability of three vibrational
spectroscopy techniques (FT-IR, conventional Raman and
SERS) for differentiating between several clinically relevant taxa
including Escherichia coli, Pseudomonas spp., Bacillus spp. and
Enterococcus faecium. Of these techniques, infrared spectroscopy
was found to provide the most consistent results for the entire
sample set (in terms of spectral quality and reproducibility),
which led the authors to suggest that FT-IR analyses could
be particularly useful for characterizing mixed cultures (also
see Wenning et al., 2005). Indeed, FT-IR microspectroscopy
has already been used to quantify compare the abundances of
bacteria and archaea within subsurface aquifer samples, based on
domain-specific CH3:CH2 absorbance ratios (Igisu et al., 2012).
In comparison with Raman spectroscopy, there is evidence to
suggest that FT-IR analyses can additionally give a higher degree

FIGURE 1 | Techniques which have or could be utilized for the in situ imaging of single microbial cells within physically and chemically complex
environments. Previously demonstrated applications of each approach are discussed in the main text. FT-IR, Fourier-transform infrared; SIP, stable isotope probing;
UV, ultraviolet; (Nano-)SIMS, nanoscale secondary ion mass spectrometry; MALDI-ToF-MS, matrix-assisted laser desorption/ionization mass spectrometry
time-of-flight mass spectrometry; CT, computed tomography.
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of confidence when there is a need to discriminate between
strains belonging to the same species (69 and 89% strain-level
prediction accuracies for Raman and FT-IR, respectively, based
on chemometric analysis; AlMasoud et al., 2016). Given these
results, we anticipate infrared imaging to become an increasingly
common technique in the field of microbial ecology, particularly
when there is a need for quantitatively analyzing multi-species
assemblages and/or in-depth physiological profiling of selected
isolates.

RECOMMENDATIONS AND OUTLOOK

The spectroscopic imaging of microbial cells in physically
and chemically complex samples involves diverse analytical
challenges. While addressing these will often require
sample-specific optimization steps (such as identifying an
appropriate laser wavelength; Edwards et al., 2003; Chan
et al., 2004; Jorge Villar et al., 2005), many of them could
be overcome by carefully selecting between Raman- and
FT-IR-based measurements or a combination of both. Based on
the case studies discussed in this Mini Review, it is possible to
identify several general guidelines for achieving this (Table 1).
The suggestions provided in Table 1 additionally highlight
the promising role that live-cell FT-IR imaging could play
in environmental microbiological research, further to Raman
measurements which have traditionally been more common in
this field. The future development of vibrational spectroscopy
instrumentation and analytical methods may serve to further
enhance the cross-compatibility of Raman and FT-IR techniques
(e.g., via improved access to advanced Raman imaging equipment
and validation of new protocols for FT-IR-SIP).

Additionally to considering the benefits and pitfalls inherent
to Raman vs. FT-IR measurements, experiments focusing on the
imaging of single cells in complex habitats can be expected to
profit from combining these techniques with other analytical
approaches (Figure 1). Synchrotron-FT-IR microspectroscopy
has been paired with synchrotron ultraviolet microspectroscopy
and time-of-flight-secondary ion mass spectrometry (ToF-SIMS)
for the analysis of human liver tissue, with each technique
yielding unique information on the chemical composition of
the sample (Petit et al., 2010). Raman microspectroscopy has
been combined with nanoscale secondary ion mass spectrometry
(NanoSIMS) to quantify the bacterial uptake of deuterium
during heavy water labeling experiments (Berry et al., 2015).
Moreover, matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-ToF-MS) is compatible with
microbiological analyses and Raman imaging (Bocklitz et al.,
2013; Pande et al., 2016; Stasulli and Shank, 2016). Although

it has not yet been applied for the imaging of cells within
complex environments such as soils, MALDI-ToF-MS been
used to characterize individual bacterial colonies (Pande et al.,
2016; Stasulli and Shank, 2016). Promisingly, the technique
can be used for strain identification (Singhal et al., 2015)
and a method for single-cell MALDI analyses has also been
developed (Xiong et al., 2016). Vibrational spectroscopic imaging
of microbial cells could be further combined with techniques
that provide information on the 3D structure of the surrounding
environment. X-ray computed tomography, for example, has
been used to visualize roots within undisturbed soil (Mooney
et al., 2012). The technique has also been used to produce micron-
scale 3D representations of soil pore space (Nunan et al., 2006).

One of the most important challenges involved in the
spectral imaging of microorganisms within their native habitats,
regardless of the techniques involved, concerns the ability to
successfully discriminate between cells and other materials.
Additionally, an ability to discern between diverse taxa is required
to understand the distribution and activities of microbial cells at
the community level. To facilitate research into these topics, we
strongly recommend that databases including relevant reference
spectra are made available as part of future publications. We
also note that using Raman and/or FT-IR spectroscopy alone
for the reliable identification of microbial taxa often remains
challenging (see FT-IR imaging), and that result using these
methods may need to be verified using additional methods.
For example, Raman-activated cell sorting has recently been
combined with single-cell genomics to identify members of
a novel cyanobacterial order within seawater samples (Song
et al., 2017). Ultimately, the approaches discussed in this Mini
Review could enable us to significantly improve our knowledge
of microbial community assembly and the contribution of
interspecies interactions to key ecosystem processes, including
the cycling of carbon within soils, sediments and other spatially
structured habitats.
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