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Viruses infect host cells releasing their genome (DNA or RNA) containing all information
needed to replicate themselves. The viral genome takes control of the cells and helps
the virus to evade the host immune system. Some viruses alter the functions of infected
cells without killing them. In some cases infected cells lose control over normal cell
proliferation and becomes cancerous. Viruses, such as HCMV and HIV-1, may leave
their viral genome in the host cells for a certain period (latency) and begin to replicate
when the cells are stressed causing diseases. HCMV and HIV-1 have developed multiple
strategies to avoid recognition and elimination by the host’s immune system. These
strategies rely on viral products that mimic specific components of the host cells
to prevent immune recognition of virally infected cells. In addition to viral proteins,
viruses encode short non-coding RNAs (vmiRNAs) that regulate both viral and host
cellular transcripts to favor viral infection and actively curtail the host’s antiviral immune
response. In this review, we will give an overview of the general functions of microRNAs
generated by HCMV and HIV-1, their processing and interaction with the host’s immune
system.
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INTRODUCTION

MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded non-coding RNA molecules
that negatively regulate gene expression at post-transcriptional level. The miRNA maturation
machinery involves several steps and multiple proteins in both nucleus and cytoplasm. miRNAs
can be transcribed as part of independent primary transcripts (pri-miRNAs), which are mainly
generated by RNA polymerase II (Lee et al., 2004; Ozsolak et al., 2008), and display all features
commonly associated with Pol II-mediated transcription, such as histone marks, CpG islands,
transcription factor binding sites (Cai et al., 2004). In the canonical miRNA biogenesis pathway, the
Microprocessor complex, a multiprotein complex with Drosha and Di George Syndrome critical
region gene 8 (DGCR8), cleaves the double-stranded pri-miRNA generating a hairpin-shaped RNA
molecule (pre-miRNA) of about 70-100 bp (Denli et al., 2004; Han et al., 2006). This process can
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be modulated by different proteins (Suzuki et al., 2009; Trabucchi
etal.,, 2009). Once generated, nuclear pre-miRNAs are exported to
the cytoplasm by the exportin-5/Ran-GTP complex to be further
processed by the RNase III enzyme Dicer (Grishok et al., 2001).
The pre-miRNA processing is finely regulated and its inhibition
affects miRNA-mediated differentiation in embryonic stem
cells, embryonal carcinoma cells and certain primary tumors.
An example is provided by Lin-28, an developing regulated
RNA binding protein, which promotes cell proliferation and
tumorigenesis of embryonic cells by affecting let-7 maturation
(Viswanathan et al., 2008). The activity of Dicer can be either
enhancing or inhibiting by A-to-I RNA editing mediated by
ADARs enzymes which convert Adenosine to Inosine (Kawahara
et al., 2008; Nishikura, 2010; Tomaselli et al., 2013). ADARI1 has
been shown to directly bind Dicer, thus increasing the maximum
rate of pre-microRNA cleavage by Dicer (Ota et al, 2013). In
human adult brain, it has been estimated that approximately
20% of pri-miRNAs can undergo A-to-I RNA editing (Nishikura,
2010; Tomaselli et al.,, 2013) by affecting miRNAs maturation
at different steps (Luciano et al., 2004; Chawla and Sokol, 2014;
Tomaselli et al., 2015).

The result of Dicer cleavage is the formation of a double
stranded RNA of 22 nt in length whose strand with the less
stability is normally chosen as guide strand and transferred to
the RNA-induced silencing complex (RISC) for the annealing
of miRNAs to the target mRNA, whereas the other strand [the
star (*)-strand] is usually degraded. The RISC complex contains
Dicer and many associated proteins such as Argonaute (Ago)
protein family and the RNA-binding protein TRBP [human
immunodeficiency virus transactivating response RNA (TAR)
binding protein] (Chendrimada et al., 2005).

Mature miRNAs recognize their target mRNAs through
6-8 nucleotides (the seed region) at the 5" end of the miRNA.
Complete complementarity between the miRNA and target
mRNA sequence directs mRNA degradation, while absent
of perfect complementarity will silence the gene target
by preventing its translation (Lim et al, 2005). A given
miRNA may have hundreds of different mRNA targets,
and a given target mRNA might be regulated by several
miRNAs. These evidences suggest that the biogenesis of

miRNAs is extremely complex and regulated at different
levels, thus highlighting the importance of these short
RNA molecules in crucial cell programs including viral
infection.

Viruses have developed multiple strategies to avoid
recognition and elimination by the hosts immune system.
These strategies rely on viral products that mimic specific
components of the host cells to prevent immune recognition
of virally infected cells. In addition to viral proteins, viruses
encode miRNAs (vmiRNA) that regulate both viral and host
cellular transcripts during viral infection. The first vmiRNAs was
identified in a cell line latently infected with Epstein-Barr virus
(EBV) (Pfeffer et al., 2004), a member of the Herpesviridae, that
in humans is associated with Burkitts lymphoma, Hodgkin’s
disease and nasopharyngeal carcinoma (Raab-Traub, 2007).
Currently, different members of Herpesviridae, Polyomaviridae
and Adenoviridae families are known to express vmiRNAs
(Skalsky and Cullen, 2010). To date, 172 viral-encoded mature
miRNAs are listed in the miRBase collection! (Kozomara and
Griffiths-Jones, 2014), the majority of which (93%) belongs to
the three subfamilies (Alphaherpesvirinae, Betaherpesvirinae and
Gammaherpesvirinae) of Herpesviridae family (Figure 1).

Biogenesis of vmiRNAs largely relies on host-derived
machineries. The common pathway of vmiRNA maturation
involves the transcription from host RNA polymerase II into
a long transcript precursor known as viral pri-miRNA (vpri-
miRNAs), which is trimmed by the host RNase III endonuclease
Drosha microprocessor into approximately 80 nt long hairpin
structures, known as viral pre-miRNAs (vpre-miRNAs). Vpre-
miRNAs are rapidly exported to the cytoplasm where a
specialized multi-domain ribonuclease III enzyme, known as
Dicer, removes the loop structure leaving the vmiRNA duplex.
Some functional vmiRNAs, such as murine y-herpesvirus 68
(MHV68) miRNAs, are produced by host RNA polymerase III
and tRNase Z, independently from the microprocessor-Drosha
component (Bogerd et al., 2010), whereas others are generated
by different additional non-canonical pathways (Pfeffer et al.,
2005; Diebel et al., 2010, 2014; Kincaid et al., 2012; Burke et al.,

Thttp://www.mirbase.org/

FIGURE 1 | Distribution of human viral miRNAs. Distribution of human viral-encoded miRNAs listed in the miRBase collection (http://www.mirbase.org/)

(Kozomara and Griffiths-Jones, 2014).
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2014; Feldman et al., 2014; Kincaid et al., 2014; Whisnant et al,,
2014).

In general, virus and the host-cell's miRNAs use different
mechanisms to interfere each other. Viruses can either block or
impair the host cells miRNA pathway by interacting with key
proteins (Lu and Cullen, 2004; Bennasser et al., 2006), synthesize
and regulate their own miRNAs (Grundhoff and Sullivan, 2011;
Harwig et al., 2014), exploit cellular miRNAs to complete their
replication cycle (Luna et al., 2015). Conversely, host cells can
target vmiRNAs with endogenous miRNAs (Lecellier et al., 2005;
Delorme-Axford et al., 2013; Bai and Nicot, 2015). The complex
interplay between viruses and host cells usually favors viral
infection by either reducing immune recognition or promoting
cell growth and lytic or latent infection. One of the best examples
of virus-host-miRNA interplay important for human infection
and diseases come from HCMV. In this review, we summarize
the general functions of miRNAs generated by HCMV and their
interactions with immune system and we discuss new finding
regarding miRNA from HIV-1.

HCMYV MicroRNAs

HCMYV is a ubiquitous and highly specific herpesvirus that
establishes lifelong latent infections, coexisting asymptomatically
with its host in a healthy immune system, with periodic and
spontaneous phases of reactivation, lytic replication and virus
shedding (Stern-Ginossar et al., 2012). In immunocompromised
individuals, such as transplant recipients, HIV-infected patients
and individuals with an immunological immaturity, as the fetus
in utero, HCMV can cause different clinical syndromes the

severity of which depends on the degree of immunosuppression
(Varani and Landini, 2011). Of note, during pregnancy HCMV
primary infections can lead to mental retardation and severe
neonatal pathologies.

To persist indefinitely within the host, HCMV has elaborated
several strategies that act to subvert host cellular immune
responses (Noriega et al., 2012). Many HCMV proteins and
vmiRNAs are known to target cellular and viral transcripts
to establish and maintain latency (Murphy et al, 2008).
The complex interplay between virus and host is further
enhanced by post-transcriptional events, such as RNA
editing. Indeed, during HCMV infection, the expression of
the short form of the RNA editing enzyme ADAR1 (ADARI-
p110) is enhanced and the host miR-376a precursor undergo
editing at specific sites. The increased edited-miR-376a during
HCMYV infection, downregulates HLA-E transcript leading
the infected cells more visible by NK cells (Nachmani et al.,
2014).

To date, 15 stem-loop precursors and 26 mature HCMV
miRNAs are deposited in the miRBase (Figure 2)!. HCMV
miRNAs are differently expressed during latent and lytic
infection. Of note, only a subset of vmiRNAs are produced
during HCMYV latency, most of which originate from the unique
long (UL) region of the HCMV genome (Meshesha et al,
2016). Interestingly, during reactivation of the virus from latency
all known vmiRNAs, including those that were absent during
latency, restored their expression. An alternative expression
of the two stands of miR-US29 was detected in the lytic
and latent infection. Specifically, miR-US29-5p prevailed during
Iytic infection, whereas miR-US29-3p dominated viral latency,
suggesting the presence of a specific mechanism that regulates
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expression of the two arms of the vmiRNA hairpins during
the viral life cycle (Meshesha et al., 2016). It is possible that
expression of vmiRNAs during latency is required to manipulate
host-signaling pathways and make the latently infected cell ready
for reactivation.

HCMV miRNAs are known to target several cellular genes to
evade immune system, control cell cycle and vesicle trafficking
(Table 1). Since this subject has been recently reviewed by
Piedade and Azevedo-Pereira (2016), in this review we will
deepen the HCMV miRNAs with proved implications in viral
evasion from innate and adaptive immune responses.

The first host cellular mRNA target reported for a HCMV
vmiRNA encodes MICB, a stress-induced ligand for the NK cell
activating receptor NKG2D critical for the NK cell killing of
virus-infected and tumor cells. VmiR-UL112 specifically binds
to MICB-3’ untranslated regions (3’'UTR) and downregulates
MICB expression during viral infection, therefore, leading to
decreased binding of NKG2D and reduced killing by NK cells

(Stern-Ginossar et al., 2007). This miRNA-mediated MICB
inhibition is not exclusive to HCMYV, but conserved in the
herpesviruses family. Other viral miRNAs encoded by EBV
and HHV-8 (miR-BART2-5p and miR-k12-7, respectively),
target MICB to escape NK cell recognition (Nachmani et al,
2009). These vmiRNAs exhibit poor sequence homology with
HCMV miR-UL112 and target MICB at different binding
sites. HCMV miR-UL112 attenuates NK cell activity also
by targeting others transcripts, such as IL-32, type I IFN
and the toll-like receptor 2 (TLR2) signaling (Landais et al.,
2015).

In addition, the HCMV miR-UL148D, one of the most
highly expressed vmiRNAs during latent infection, contribute to
immune evasion by directly targeting the chemokine (C-C Motif)
ligand 5 (CCLS5), a chemokine known to attract immune cells
to sites of inflammation and tissue damage (Kim et al.,, 2012).
This downregulation was reverted by treatment with a miR-
UL148D-specific inhibitor, supporting the role of this agent as

TABLE 1 | HCMV and HIV-1 microRNAs with potential role in viral infection and pathogenesis.

Targets Predicted role Reference
CMV-encoded miRNA
miR-UL36 uL138* Latent infection Huang et al., 2013
miR-UL36-5p ANT3 Cell survival Guo et al., 2015
miR-UL112 MICB Immune evasion Stern-Ginossar et al., 2007
IE72 (UL123, IE1), UL112/113, UL120/121 Viral infection Grey et al., 2007
IL-32 Immune evasion Huang et al., 2013
type | IFN signaling Immune evasion Huang et al., 2015
VAMP3, RAB5C, RAB11A, SNAP23, CDC42 Vesicle pathway Hook et al., 2014
TLR2 Immune evasion Landais et al., 2015
IKKa, IKKB Immune evasion Hancock et al., 2017
miR-UL148D CCL5 Immune evasion Kim et al., 2012
IEX-1 Cell survival Wang et al., 2013
CDC25B Latent infection Pan et al., 2016
ACVR1B Immune evasion Lau et al., 2016
miR-US4 ERAP1 Immune evasion Kim et al., 2011
QARS Cell survival Shao et al., 2016
miR-US5-1 us7 Viral infection Tirabassi et al., 2011
VAMP3, RAB5C, RAB11A, SNAP23, CDC42 Vesicle pathway Hook et al., 2014
IKKa, IKKB Immune evasion Hancock et al., 2017
miR-US5-2 us7z Viral infection Tirabassi et al., 2011
VAMP3, RAB5C, RAB11A, SNAP23, CDC42 Vesicle pathway Hook et al., 2014
miR-US25-1-5p VAMP3, RAB5C, RAB11A, SNAP23, CDC42 Vesicle pathway Hook et al., 2014
miR-US25-1 E2, BRCC3*, EID1, MAPRE2, CD147 Cell survival Grey et al., 2010; Fan et al., 2014
miR-US25-2-3p elF4A1 Viral infection Qietal., 2013
miR-US33-5p STX3 Vesicle pathway Guo et al., 2015

HIV-1-encoded miRNA

miR-TAR ERCCT1, IER3 NPM/B23, Caspase 8, Aiolos, lkaros
miR-88

miR-99

miR-H3 HIV-1 58" LTR

miR-N367 NEFS

miR-H1 AATF

Apoptosis
Immune evasion
Immune evasion
Viral replication
Viral replication
Apoptosis

Klase et al., 2009; Ouellet et al., 2013
Bernard et al., 2014

Bernard et al., 2014

Zhang et al., 2014

Omoto et al., 2004

Kaul et al., 2009

* In italic viral targets.
§ Hypothetical target.
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therapeutic tool against HCMV infection. VmiR-UL148D also
targets the activating receptor type-1B (ACVR1B) in monocytes,
resulting in a reduced secretion of IL-6 (Lau et al., 2016). More
recently, vmiR-US5-1 and vmiR-UL112-3p have been shown to
play important role in modulating NF-kB signaling at late time
of infection by reducing the expression of the IKK complex
and induce the release of proinflammatory cytokines (Hancock
etal., 2017). The limited or delayed secretion of proinflammatory
cytokines is thought to be one of the mechanisms of immune
evasion exploited by vmiRNAs to limit the recruitment of
immune cells and killing of infected cells.

Finally, the HCMV miR-US4-1 was shown to directly target
the endoplasmic reticulum aminopeptidase 1 (ERAP1), a key
peptidase that trims peptide precursors to their optimal length
to bind MHC class I molecules (Kim et al., 2011). The reduced
trimming due to HCMV-specific action resulted in an immuno-
evasion of HCMV-infected cells (Kim et al., 2011).

All these mechanisms focus on the possibility to enhance viral
replication by hindering viral clearance by NK cells and T cells
for the period of time necessary to virus to replicate.

HIV-1 miRNAs

HIV-1 infection cause progressive CD4" T-cell loss making
individuals susceptible to get infections and develop a wide range
of immunological abnormalities until oncological complications.
Although HIV infections are able to induce vigorous antiviral
immune responses, HIV-1 replication is not fully controlled
by the innate and adaptive immune system. Like many other
viruses, HIV-1 has evolved a number of strategies to evade
host immune responses, most notably by using viral accessory
proteins and RNA.

Recent reports have demonstrated the existence of HIV-1-
derived miRNAs from coding and non-coding regions of the
viral genome, which regulate both viral and host gene expression
(Table 1). Despite so, the presence of HIV-1 derived vmiRNAs
has been highly controversial and further studies are necessary
to better understand their potential role in viral infection and
pathogenesis. The importance of viral and cell host miRNAs in
the context of HIV-1 infection was first suggested by silencing
of Drosha and Dicer leading to significant enhancement of
HIV-1 replication (Triboulet et al., 2007). The first description
of HIV-1-derived miRNAs came in 2004 from a group that
identified a Nef-derived miRNA, named miR-N367 (Omoto et al.,
2004). MiR-N367 reduces HIV-1 transcription by blocking Nef
expression and long terminal repeat (LTR) transcription (Omoto
et al., 2004; Omoto and Fujii, 2005). The HIV-1 transactivation
RNA (TAR), which regulates viral translation, also encodes for a
vmiRNA (called TAR-miR-5p and -3p) (Ouellet et al., 2008; Klase
et al,, 2009). TAR-miR has been shown to downregulate host
genes (such as ERCCI and IER3) important for apoptosis and
cell survival, thus giving HIV-1-infected cells a survival advantage
by preventing host cell death (Klase et al, 2009). Recent
studies demonstrated that additional host substrates, including
Caspase 8, Aiolos, Ikaros and Nucleophosmin (NPM)/B23, are
modulated by TAR-miR (Ouellet et al., 2013). VmiR-H1, located

in the LTR has been reported to downregulate the apoptosis-
antagonizing transcription factor (AATF) gene product and
act as an antagonist of the anti-apoptotic effect mediated by
TAR-miR. Additionally, hivl-mir-H1 can downregulate the host
miR149 expression recognized to target HIV-1 Vpr transcript
(Kaul et al., 2009). Recently, Zhang et al. (2014) have reported
the existence of a novel HIV-1-encoded vmiRNA called miR-
H3 located in the region of the HIV-1 RNA genome that
encodes for reverse transcriptase (RT). Overexpression of miR-
H3 increases viral production and mutations within miR-H3
sequence significantly impair the viral replication of wild-type
HIV-1 viruses by targeting HIV-1 5'-LTR (TATA box) (Zhang
et al, 2014). Two additional vmiRNAs (called as vmiR88
and vmiR99) were identified in overlapping regions of HIV
LTR from viral infected human macrophages (Bernard et al,
2014). They were able to directly stimulate TNFa release by
human macrophages through TLR8 activation by a mechanism
that is partially dependent on vmiRNA sequence motifs. Of
note, vmiR88 and vmiR99 were detected in sera of HIV
infected individuals suggesting their role in stimulating recipient
macrophages in vivo and contributing to chronic immune
activation.

FUTURE OUTLOOK AND CONCLUSION

vmiRNAs have overall a protecting role for the viral infection.
By interfering with host cellular proteins and mechanisms
of immune evasion, they represent a potential target for
future specific therapies. Studies on the complex interplay
between viral miRNAs and host genes has been only recently
started and further investigations are required to identify
more efficient and less toxic therapeutic strategies. The
identification of differentially expressed miRNAs during viral
infection (for example in HIV-1 infection) may provide a new
approach to control disease progression. Finally, understanding
the mechanism of vmiRNA-mediated immune evasion will
allow us to develop novel strategies to prevent and cure
viral infections. Targeting vmiRNAs with molecules such as
antagomirs may represent a novel therapeutic strategy to
limit chronic immune activation and the progression of viral
infection.
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