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The RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of 51 GII.2

human norovirus (HuNoV) strains collected during the period of 2004–2015 in Japan

were analyzed. Full-length analyses of the genes were performed using next-generation

sequencing. Based on the gene sequences, we constructed the time-scale evolutionary

trees by Bayesian Markov chain Monte Carlo methods. Time-scale phylogenies showed

that the RdRp and VP1 genes evolved uniquely and independently. Four genotypes of

GII.2 (major types: GII.P2-GII.2 and GII.P16-GII.2) were detected. A common ancestor

of the GII.2 VP1 gene existed until about 1956. The evolutionary rates of the genes

were high (over 10−3 substitutions/site/year). Moreover, the VP1 gene evolution may

depend on the RdRp gene. Based on these results, we hypothesized that transfer of the

RdRp gene accelerated the VP1 gene evolution of HuNoV genotype GII.2. Consequently,

recombination between ORF1 (polymerase) and ORF2 (capsid) might promote changes

of GII.2 antigenicity.

Keywords: norovirus, capsid, RNA-dependent RNA polymerase, molecular epidemiology, phylogeny, molecular

evolution

INTRODUCTION

Human norovirus (HuNoV) is a major causative agent of gastroenteritis in humans (Green,
2013). The HuNoV genogroup II (GII), in particular, is frequently detected in outbreaks. The
HuNoV GII strains can be classified into 22 genotypes (Kroneman et al., 2013). Moreover, the
most worldwide prevalent HuNoV GII genotypes belong to GII genotype 2 (GII.2), GII.3, GII.4,
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GII.6, and GII.17 (Centers for Disease Control and Prevention.
CaliciNet Data [cited 2016])1. Since national surveillance began,
nearly 3 million cases of NoV gastroenteritis have been recorded,
and Japan was experiencing its second most serious norovirus
outbreak during November 2016 to February 2017 (National
Institute of Infectious Diseases. Japan. Infectious Gastroenteritis.
[cited 4th April 2017, in Japanese])2 Importantly, HuNoV GII.2
emerged as a major cause of this outbreak in Japan, although
the GII.4 strains were the most prevalent genotype during the
past 10 years (National Institute of Infectious Diseases. Japan.
Flash report of norovirus in Japan [cited 4th April 2017, in
Japanese])3.

Very recent studies suggested that the evolutionary patterns
of human and animal NoV genotypes are distinct (Kobayashi
et al., 2015, 2016). Although all viral proteins may act as antigens,
the HuNoV VP1 protein is also involved in viral infection.
Furthermore, HuNoV frequently experiences recombination at
the ORF1/ORF2 junction, resulting in new chimera viruses
with different types of the RNA-dependent RNA polymerase
(RdRp) genes and capsid (VP1) genes. Most studies have
focused on the molecular evolution of HuNoV GII.4. Only a
few examined that gene in other HuNoV genotypes, including
GII.2. To gain insight into this process, we examined the
molecular evolution of the GII.2 RdRp and VP1 genes, including
chimera viruses, based on the full genome analyses of those
detected in Japan over a period of 10 years (2004–2015
seasons).

MATERIALS AND METHODS

To investigate the molecular evolution of the HuNoV VP1
and RdRp genes, 950 stool specimens were collected from
various areas (13 prefectures) of Japan during the 2004–2015
seasons. These samples were obtained from patients with acute
gastroenteritis due to HuNoV infections, in compliance with the
Food Sanitation Law and the Law Concerning the Prevention of
Infections and Medical Care for Patients of Infections of Japan.
The personal data related to these samples were anonymized.
RNA was extracted from 10% PBS suspensions of the specimens,
and the HuNoV genomes were comprehensively analyzed by
next-generation sequencing as described (Matsushima et al.,
2015). Of 950 samples, the complete genome sequences of 538
strains were obtained (a success rate of 57%). Next, HuNoV
genotypes were confirmed with the Norovirus Typing Tool
(Version1.0), based on the nucleotide sequences of RdRp and
VP1 genes as described by Kroneman et al. (2011). GII.2 strains
were selected from these all genotyped strains, and then a few
of strains having the undetermined base sequences (e.g., N, Y,
R, and V) were omitted. Finally, 51 GII.2 strains were used
for evolutionary analyses for the present study (Supplementary
Table 1). The obtained nucleotide sequences for the GII.2
strains were deposited in GenBank under the accession numbers
LC209431 to LC209481.

1http://www.cdc.gov/norovirus/reporting/calicinet/data.html
2http://www.nih.go.jp/niid/ja/10/2096-weeklygraph/1647-04gastro.html
3http://www.nih.go.jp/niid/ja/iasr-noro.html

FIGURE 1 | Distribution of GII.2 genotype during the investigation

periods (2004–2015 seasons).

Time-scale evolutionary analyses were performed using the
Bayesian Markov Chain Monte Carlo method (MCMC) with
the BEAST package v1.8.3 (Drummond and Rambaut, 2007)
and Tracer4 as a demographic model. Substitution models were
calculated with Kakusan4 (Tanabe, 2011). The substitutionmodel
for theVP1 or theRdRp gene was the GTR-Γ or GTR-Γ invariant
model, respectively. Based on Akaike’s Information Criterion
for MCMC values, we used the random local clock as a clock
model, and used the logistic growth model (VP1 gene) or the
constant size model (RdRp gene) as a tree model. Convergence
was evaluated with an effective sample size (acceptable more than
200). The MCMC chain length was 3 × 108 steps with sampling
every 1,000 steps for the MCMC tree of the VP1 gene. To exactly
estimate the evolutionary rates and topologies of the MCMC tree
of the RdRp gene, we bound two independent data of the MCMC
chains5. The MCMC chain length was 2× 108 steps and 4× 108

with sampling every 5,000 steps for the MCMC tree of the RdRp
gene. Statistical analyses were performed with the Welch’s t-test
in Excel 2013.

RESULTS AND DISCUSSION

Distribution of GII.2 Genotype during the
2004–2015 Seasons
Four genotypes of the GII.2 strains, including GII.P2-GII.2
(13 strains), GII.Pe-GII.2 (one strain), GII.P12-GII.2 (one
strain), and GII.P16-GII.2 (36 strains), were determined by
the Norovirus Typing Tool (Figure 1). Of them, GII.P16-GII.2
strains were the most prevalent genotype after 2009. The single
GII.P12-GII.2 and GII.Pe-GII.2 strains were detected in 2004

4http://tree.bio.ed.ac.uk/software/tracer/
5http://beast.bio.ed.ac.uk/LogCombiner
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FIGURE 2 | Phylogenetic trees of VP1 (A) and RdRp (B) genes of the genotype GII.2 constructed by the Bayesian MCMC method. We analyzed VP1 gene of 50

strains, and RdRp gene of 49 strains, excluding 100%—matched homologous strains. Reference strains in these trees were indicated in bold letters. Gray bar shows

95% HPD. The scale bar represents actual time (year).
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and 2014 respectively. The GII.P2-GII.2 strains were detected
throughout the investigation periods.

Phylogenetic Analysis and Evolutionary
Rates of VP1 and RdRp Virus Genes
Based on the VP1 gene sequences, we constructed a time-scale
evolutionary tree (Figure 2A). The phylogeny of the VP1 gene
showed that GII.2 strains could be divided according to the
type of RdRp gene. GII.P16-GII.2 could be subdivided into three
clusters of strains in 2009–2010, 2010–2012, and 2012–2014.
In addition, the phylogenetic divergence of the GII.P16-GII.2
strains might be wider than that of the GII.P2-GII.2 strains. The
tree shows that the most recent common ancestor (MRCA) of
the present GII.2 strains appeared in 1956 (mean ± 95% highest
posterior densities [HPD]: 1945–1966). Subsequently, GII.P2-
GII.2 virus strain emerged in 2000 (mean ± 95% HPD: 1998–
2001).Moreover, the GII.P16-GII.2 strains detected in 2010–2012
diverged from a common ancestor of the GII.P2-GII.2 strains at
2002 (mean± 95% HPD: 2001–2004). The GII.P16-GII.2 strains
detected in 2009–2010 and 2012–2014 diverged at 2005 (mean±

95% HPD: 2004–2007). The evolutionary rate of these VP1 genes
was 2.987 × 10−3 substitutions/site/year (mean ± 95% HPD:
2.496–3.486× 10−3 substitutions/site/year).

We also constructed a time-scale evolutionary tree of theRdRp
gene (Figure 2B). The tree shows that the MRCA of RdRp of the
present GII.2 strains was in the year 1696 (mean ± 95% HPD:
1542–1837). The common ancestor of the GII.P16-GII.2 strains
diverged in 1858 (mean ± 95% HPD: 1747–1950) and formed
two clusters. Moreover, the GII.P16-GII.2 strains detected in
2010–2012 diverged at 1989 (mean ± 95% HPD: 1972–2003),
whereas the GII.P16-GII.2 strains detected in 2009–2010 and
2012–2014 diverged at 1986 (mean ± 95% HPD: 1968–2002).
The common ancestor of the GII.P2-GII.2, GII.P12-GII.2, and
GII.Pe-GII.2 diverged in 1828 (mean ± 95% HPD: 1741–1913).
The RdRp gene of GII.P2-GII.2 diverged in 1992 (mean ± 95%
HPD: 1984–2000). The evolutionary rate of these RdRp genes
was 1.314 × 10−3 substitutions/site/year (mean ± 95% HPD:
0.698–1.95× 10−3 substitutions/site/year).

Next, we compared the evolutionary rates of the GII.P16-
GII.2 and GII.P2-GII.2 strains. To gain statistical significance,
we collected the nucleotide sequences of the GII.P2-GII.2
strains (25 strains) from GenBank, but we could not collect
a sufficient number of the GII.P12-GII.2 and GII.Pe-GII.2
sequences from the GenBank to reach statistical significance.
The evolutionary rate of GII.P16-GII.2 (1.838 × 10−3

substitutions/site/year; mean ± 95% HPD: 1.237–2.456 ×

10−3 substitutions/site/year) was greater than that of GII.P2-
GII.2 (1.712 × 10−3 substitutions/site/year; mean ± 95% HPD:
0.957–2.41× 10−3 substitutions/site/year) (p= 7.891× 10−135).

A previous report suggested that the evolution of VP1
may be influenced by the activities of RdRp (Bull et al., 2010).
Collectively, our bioinformatics data also showed that the
evolution of the GII.2 VP1 gene was accelerated by a

recombination of ORF1, including the RdRp gene. However,
additional in vitro studies regarding themutation rates ofRdRp of
the GII.P2 and GII.P16may be needed to clarify the hypothesis of
the relationships between and VP1 and RdRp genes in this study.
Furthermore, GII.2 variant strains were detected in the present
season (2016/17 season), and thus, further genetic studies may be
needed to prove this hypothesis.

CONCLUSIONS

Here we report the molecular evolution of the VP1 and RdRp
genes in HuNoV GII.2. Our main findings and hypothesis are
as follows. (1) Four genotypes of GII.2 (GII.P2-GII.2, GII.P16-
GII.2, GII.P12-GII.2, and GII.Pe-GII.2) were detected in Japan
in 2004–2015. (2) A common ancestor of the current GII.2 virus
strains circulated around 1956. (3) VP1 gene evolution seems to
depend on the RdRp gene. The VP1 gene in a prevalent HuNoV
genotype GII.2 might evolve uniquely by transfer of the RdRp
gene.
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