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Accumulating data have identified the important roles of PA protein in replication and
pathogenicity of influenza A virus (IAV). Identification of host factors that interact with
the PA protein may accelerate our understanding of 1AV pathogenesis. In this study,
using immunoprecipitation assay combined with liquid chromatography-tandem mass
spectrometry, we identified 278 human cellular proteins that might interact with PA of
H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly
associated with viral translation and replication. Further KEGG pathway analysis of the
interactome profile highlighted cellular pathways associated with translation, infectious
disease, and signal transduction. In addition, Diseases and Functions analysis suggested
that these cellular proteins are highly related with Organismal Injury and Abnormalities
and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic
translation elongation factor 1-alpha 1) identified both in this study and others were
further validated to interact with PA using co-immunoprecipitation and co-localization
assays. Therefore, this study presented the interactome data of HSN1 IAV PA protein in
human cells which may provide novel cellular target proteins for elucidating the potential
molecular functions of PA in regulating the lifecycle of IAV in human cells.

Keywords: H5N1 IAV, PA protein, virus-host interaction, pathogenesis, mammalian adaptation

INTRODUCTION

Influenza A virus (IAV) is one of the most important pathogens that causes acute respiratory disease
and is responsible for relatively high morbidity and mortality every winter. In addition, IAV is
a very adaptable virus and can infect a wide range of hosts (Webster et al., 1992; Olsen et al,
2006). IAV has an enveloped negative-strand RNA genome that is composed of eight viral RNA
segments. IAV genome encodes at least 17 viral proteins, including 10 initially identified proteins
(PB2, PB1, PA, HA, NP, NA, M1, M2, NS1, and NS2) and seven newly identified proteins PB1-F2
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(Chen et al., 2001), PB1-N40 (Wise et al., 2009), PA-X (Jagger
et al., 2012), PA-N155, PA-N182 (Muramoto et al., 2013), M42
(Wise et al., 2012), and NS3 (Selman et al., 2012). The PA protein
is the third subunit of the trimeric polymerase complex which
has multiple functions in the life cycle and pathogenesis of IAV.
The N-terminal of PA possesses the endonuclease activity, cap
binding, and promoter binding functions that impact the viral
transcription and replication (Hara et al., 2006). Accumulating
studies have also shown that adaptive mutations in PA are
essential for IAV to cross host barrier (Seyer etal., 2012; Sun et al,,
2014; Song et al., 2015). In addition, the PA protein is also a key
player in virulence-determining of IAV (Hulse-Post et al., 2007;
Song et al,, 2011; Hu et al,, 2013a) as well as host protein shut
off (Desmet et al., 2013; Hu et al., 2013a; Llompart et al., 2014).
However, the potential mechanism associated with the roles of
PA in the life cycle and pathogenesis of IAV is largely unknown.

Numerous studies have demonstrated that IAV heavily
relies on host cellular proteins to complete its life cycle and
pathogenicity (Hale et al., 2006; Gack et al., 2009; Cho et al,
2013; Gao et al,, 2015). The protein-protein interaction is a
crucial manner to maintain the connection between host and
IAV. Several studies have identified some host factors interacting
with the influenza PA protein. HAX1, a cytoplasmic protein
with anti-apoptotic function, is associated with the nuclear
localization signal domain of PA (Hsu et al, 2013). In IAV-
infected cells, HAX1 can impede nuclear accumulation of PA
and inhibit IAV replication, indicating that host cells use HAX1-
PA as a defense mechanism to limit IAV infection. In addition,
hCLE is another interacting partner of PA through binding
with two domains of PA (amino acid residue 493-512 and
557-574), and this interaction involves in modulating the RNA
polymerase II activity (Huarte et al., 2001; Pérez-Gonzalez et al.,
2006). In the process of influenza virus infection, the hCLE-
PA interaction contributes to the increment of viral polymerase
activity, viral RNA transcription and replication, virus titer, and
viral particle production (Rodriguez et al., 2011). PA also has
a close interaction with MCM complex that is considered to
be a host regulator of viral genome replication (Kawaguchi and
Nagata, 2007). Furthermore, other host proteins, such as RanBP5,
AIFMI, NPM, and RIG-I also have been identified as interacting
partners of PA and influence the viral life cycle of IAV (Deng et al.,
2006; Mayer et al., 2007; Bradel-Tretheway et al,, 2011; Li et al.,
2014). However, based on the important roles of PA in the life
cycle of AV and close interplay between PA and host machinery,
other potential host factors interacting with the PA protein still
need to be identified.

In this study, immunoprecipitation (IP) technique coupled
with liquid chromatography-tandem mass spectrometry (LC-
MS/MS) was used to characterize the host cellular proteins
interacting with the PA protein of H5N1 TAV. We identified
two hundred and seventy eight human cellular proteins as
interacting factors with PA. Further in-depth functional analysis
suggested that most of these proteins involve in viral replication,
gene expression and viral infectious cycle. Moreover, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
also demonstrated the crucial roles of these proteins in
translation, infectious disease, and signal transduction. Of note,

we selected two host proteins, nucleolin (NCL), and eukaryotic
translation elongation factor 1-alpha 1 (eEF1A1) and confirmed
their interaction with the PA protein using co-IP and co-
localization tests. However, further studies are still needed to
explore the potential roles of these two proteins in the life cycle
of TAV.

MATERIALS AND METHODS

Ethics Statement

All experiments involving live viruses were performed in
negative-pressure isolators with HEPA filters in a biosafety level
3 (BSL3) facilities in accordance with the institutional biosafety
manual.

Viruses and Cells

Highly pathogenic H5N1 strain A/Chicken/
Jiangsu/k0402/2010(CK10) that shows high virulence in
mouse was isolated from a dead chicken (Hu et al., 2013b). A549
(human type II alveolar epithelial), 293T (human embryonic
kidney) and MDCK (Madin-Darby canine kidney) cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM,; Life
Technologies) supplemented with 10% fetal calf serum (FCS;
Life Technologies) and 50 KU/L antibiotics and were cultured at
37°C under 5% CO,.

Construction of Plasmids

The PA gene was amplified using high fidelity DNA polymerase
(Invitrogen) based on CK10 cDNA and cloned into pCDNA3.1
vector to generate pCDNA-PA. The NCL and eEFI1Al genes
were amplified from A549 cells. The sequences of NCL and
eEF1A1 have aligned with sequences from GenBank (accession
No: NM005381.2, KJ891086). The NCL and eEF1Algenes were
cloned into the pires-hrGFP-1a vector (with a 3 x Flag tag in the
C-terminus) to generate pires-hrGFP-1a-NCL and pires-hrGFP-
la-eEF1Al, respectively. Meanwhile, these two genes were also
cloned into the pCDNA3.1-Myc-C vector (with a 3 x Myc tag
in the C-terminus) to generate pPCDNA-Myc-NCL and pCDNA-
Myc-eEF1A1, respectively. All the positive clones were further
validated by sequencing.

Western Blot Analysis

Protein samples were separated by electrophoresis on 10% (w/v)
SDS-PAGE and transferred to polyvinylidene fluoride (PVDEF)
membranes (Bio-Rad). The membranes were then blotted with
corresponding antibodies. Subsequently, the membranes were
washed four times with TBST (0.05% tween-20 in Tris-buffered
Saline) and incubated with horseradish peroxidase (HRP)
conjugated goat-anti-mouse (Sigma-Aldrich) or goat-anti-rabbit
IgG (Sigma-Aldrich). The enhanced chemiluminescence (ECL)
system (Thermo) was utilized to detect the blotted proteins.

Determination of the PA Expression Level

A549 cells were seeded in 6-well plates and cultured overnight.
Then the cells were infected with CK10 virus at a multiplicity of
infection (MOI) of 1. CK10-infected A549 cells were harvested at
12, 24, 36, 48, and 60 h post-infection (p.i.). The protein samples
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were subjected to western blot assay using anti-PA antibody
and anti-B-actin antibody subsequently. The protein bands were
analyzed by Image J.

Statistical Analysis

Statistical analysis was performed using the SPSS statistics
software. The independent samples T-test was used for data
analysis. p < 0.05 was considered as significant.

IP and Co-IP

For IP, CK10-infected A549 cells were lysed in IP buffer
and incubated at 4°C on a shaker for 30 min, followed by
centrifugation at 12,000 rpm for 20 min. A total of 600 ul of
the supernatant was incubated with anti-PA ployclonal antibody
(GeneTex) or the irrespective IgG (Beyotime) at 4°C overnight.
Protein A+G Agarose beads (Beyotime) were then added, and
the mixture was incubated with gentle rocking at 4°C for 5
h. The beads were washed five times with cold IP buffer and
eluted with Glycline-HCL (PH = 3.0) for further LC-MS/MS
analysis.

For co-IP, the 293T cells were co-transfected with pCDNA-PA
or pCDNA3.1 alone and pires-hrGFP-1a-NCL, pires-hrGFP-1a-
eEF1Al, or pires-hrGFP-1a, respectively. The transfected cells
were then lysed in IP buffer at 48 h post-transfection. The
cells lysates were precipitated with appropriate antibodies in
conjunction with beads as described above. The beads were then
washed five times with cold IP buffer and boiled with 5 x
SDS loading buffer (Cwbio) for 5 min. The immunoprecipitated
proteins were then detected by western blot.

LC-MS/MS Analysis and Protein

Identification

The LC-MS/MS was performed on a mass spectrometer coupled
to Easy nLC (Thermo Fisher Scientific). A volume of 6l
of each fraction was injected for nanoLC-MS/MS analysis.
The peptide mixture was loaded onto a Cl18-reversed phase
column (Thermo Scientific Easy Column, 2 cm long, 100 pm
inner diameter,5 um resin) in buffer A (0.1% Formic acid) and
separated with a linear gradient of buffer B (80% acetonitrile
and 0.1% Formic acid) at a flow rate of 300 nL/min controlled
by IntelliFlow technology over 140 min. MS data was acquired
using a data-dependent on Top10 method dynamically choosing
the most abundant precursor ions from the survey scan (300-
1800 m/z) for HCD fragmentation. Determination of the
target value is based on predictive Automatic Gain Control
(pAGC). Dynamic exclusion duration was 60 s. Survey scans
were acquired at a resolution of 70,000 at m/z 200 and
resolution for HCD spectra was set to 17,500 at m/z 200.
Normalized collision energy was 30 eV and the underfill ratio,
which specifies the minimum percentage of the target value
likely to be reached at maximum fill time, was defined as
0.1%. The instrument was run with peptide recognition mode
enabled. MS/MS spectra were searched using MASCOT engine
(Matrix Science, version 2.2) against Universal Protein (UniProt)
database.

Bioinformatics Analysis

The functional annotation and classification of all the identified
proteins were performed using Gene Ontology (GO) analysis
tool in the Database for Annotation Visualization and Integrated
Discovery (DAVID) (version 6.7). KEGG pathway database
was used for pathway analysis. The Protein-Protein interaction
network was constructed using the Cytoscape software. The
Diseases and Functions analysis was conducted using Ingenuity
Pathway Analysis (IPA) software.

Confocal Microscopy Analysis

293T cells were seeded on coverslips in 24-well plates and
cultured overnight, then co-transfected with pCDNA-PA or
the empty vector (pCDNA3.1) alone and pCDNA-Myc-NCL,
pCDNA-Myc-eEF1Al, or the empty vector (pPCDNA-Myc-C),
respectively. At 24 h post-transfection, the cells were fixed with
4% paraformaldehyde for 30 min at room temperature, and
permeabilized with 0.1% Triton-X-100 for 15 min. After blocking
in 5% bovine serum albumin (BSA) for 30 min, the cells were
incubated for 1 h with the primary antibodies at 37°C. After
washing in PBS for three times, the cells were stained with Alexa
Fluor 555-conjugated goat anti-rabbit (Beyotime) and FITC-
conjugated goat anti-mouse secondary antibodies (Beyotime) for
1 h at 37°C. After washing in PBS for three times, cell nuclei were
stained with DAPI (Beyotime). The cells were then observed by
using the Leica TCS SP8 STED 3X confocal microscope.

RESULTS

Determination of the Peak of PA

expression in the Process of 1AV Infection
To determine the peak of PA expression, A549 cells that infected
with CK10 virus at a MOI of 1 were harvested at 12, 24,
36, 48, and 60 h p.i. and the samples were then subjected to
western blot assay by using anti-PA antibody as first antibody.
At the same time, the expression patttern of PB-actin protein
was served as control. Three independent experiments were
performed. The western blot protein bands were analyzed by
Image J subsequently. And the results showed that the expression
level of PA increased gradually in the process of CK10 infection,
and reached a peak at 36 h p.i. The expression level of PA at
36 p.i. was significantly higher than those of other time points
(Figures 1A,B). Therefore, we then collected the samples at 36 h
p.i. for subsequent interactome analysis.

Identification of Host Cellular Proteins

Interacting with the PA Protein

To efficiently precipitate the PA protein from the virus-
infected cells and identify the host proteins that interact
with PA, A549 cells were infected with CK10 at a MOI
of 1. The cells were then harvested at 36 h p.i. and were
immunopricicipitated with ployclonal antibody against PA or the
irrespective antibody as control. Three independent experiments
were carried out for both experimental group and control
group. Subsequently, all samples were subjected to LC-MS/MS
analysis. In addition, all proteins present in the negative controls
were excluded and only proteins appeared at least twice in
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FIGURE 1 | Determination of the peak of PA expression in the process
of 1AV infection. (A) Cell lysate from CK10-infected A549 cells at indicated
time points were subjected to Western blot using anti-PA antibody and
anti-B-actin antibody. Three independent experiments were perfomed and this
is the representative data. (B) The Image J software was used to determine
the expression level of the PA protein. Values shown are the gray level of the
PA protein bands of western blot experiments £ SD of the results from three
independent experiments. *p < 0.05 and **p < 0.01, when compared to the
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indicated group.

the triplicate analyses were reserved to generate interaction
data. As a result, 278 proteins specifically precipitated with
PA antibody were detected by LC-MS/MS analysis when
compared to those precipitated with the irrespective IgG. A
detailed summary of these proteins were given in Table 1 and
Table S1.

Functional Analysis of All PA Interacting

Proteins

To obtain an overall functional profile of the interactome
associated with the PA protein, the 278 identified proteins
were assigned for further bioinformatics analysis. As shown in
Figure 2, three major types of annotations, biological process,
cellular components, and molecular functions, were generated
in the GO consortium website. In addition, we found that
subclasses associated with gene expression, viral infectious cycle
and viral transcription were highly enriched in biological process
category (Figure 2A). As for the most enriched subclasses in
cellular component, the major types, such as cytosol, integral
to membrane, and ribonucleoprotein complex, were enriched
(Figure 2B). Moreover, molecular function analysis showed that
protein binding, ATP binding, structural constituent of ribosome
and RNA binding were highly enriched (Figure 2C). A more

TABLE 1 | PA-host interacting proteins in human cells (selected proteins).

GenBank Gene symbol Protein name

accession

P68104 eEF1A1 Elongation factor 1-alpha 1

P19338 NCL Nucleolin

P08238 HSP90AB1 Heat shock protein HSP 90-beta

Q00839 HNRNPU Heterogeneous nuclear ribonucleoprotein U
P19474 TRIM21 E3 ubiquitin-protein ligase TRIM21

P12814 ACTN1 Alpha-actinin-1

P60842 elF4A1 Eukaryotic initiation factor 4A-|

HOY3TO ATRX Transcriptional regulator ATRX

P23528 CFLA1 Cofilin-1

Q9BVA1 TUBB2B Tubulin beta-2B chain

P10914 IRF1 Interferon regulatory factor 1

POC869 PLA2G4B Cytosolic phospholipase A2 beta

Q99665 IL12RB2 Interleukin-12 receptor subunit beta-2
Q13162 PRDX4 Peroxiredoxin-4

P18124 RPL7 60S ribosomal protein L7

P25705 ATP5A1 ATP synthase subunit alpha

Q96J66 ABCC11 ATP-binding cassette sub-family C member 11
P35580 MYH10 Myosin-10

P53355 DAPKA1 Death-associated protein kinase 1
076039 CDKL5 Cyclin-dependent kinase-like 5

P62826 RAN GTP-binding nuclear protein Ran

P09529 INHBB Inhibin beta B chain

P67809 YBX1 Nuclease-sensitive element-binding protein 1
P07355 ANXA2 Annexin A2

Q96BF6 NACC2 Nucleus accumbens-associated protein 2
Q86YH2 ZNF280B Zinc finger protein 280B

QINWI7 TMEM51 Transmembrane protein 51

QIUGUO TCF20 Transcription factor 20

Q9Y2S6 TMA7 Translation machinery-associated protein 7
060861 GAS7 Growth arrest-specific protein 7

detailed summary of GO annotation of the identified proteins
was provided in Table S2.

In addition, KEGG pathway analysis revealed an enrichment
of 165 pathways related with 130 proteins of the infection
network (Table S3). Six types of pathways were covered, including
Human Diseases, Genetic Information Processing, Organismal
Systems, Metabolism, Cellular Processes, and Environmental
Information Processing (Figure 3A). To be noted, pathways
involved in translation, infectious disease (contains infecious
disease: Viral, infecious disease: Bacterial and infecious disease:
Parasitic), cancers: overview and signal transduction were highly
enriched in the PA-host interactome (Figure 3B, Table S3).

Detalied Analysis of the Two Targeted

PA-Host Interacting Proteins

After detatied functional analysis, we then focused on two
targeted novel cellular partners (NCL and eEFI1AI) that
might interact with PA, cellular proteins. As shown in
Figure 4, the interactome profile indicated the important
protein-protein interactions of the identified proteins associated
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FIGURE 2 | Pie charts showing the GO annotation of the identified cellular proteins. The GO annotation was analyzed by DAVID database and the
percentage of each GO component was shown. (A) Biological process. (B) Cellular components. (C) Molecular function.

with NCL and eEF1Al. The analysis revealed that NCL
and eEFI1Al are cross-linked with several proteins with
interesting interactions, including HNRNPA2B1-PTBP1-NCL-
RPL5 and AHR-HSP90AA1-EEF1A1-RPL5. By GO annotation,
we identified that these proteins have important functions in
RNA transport, RNA splicing, apoptotic process, and translation
which are closely asociated with IAV infection.

Meanwhile, the top Diseases and Functions analysis of the
identified 278 cellular proteins was also performed using IPA
software (Figures 5A,B, Figure S1). Surprisingly, we found that
both NCL and eEF1A1 were related with Organismal Injury and
Abnormalities. In addition, NCL was also involved in Cell Death
and Survival. It has been demonstrated that immune injury and
cell death contribute to the pathogenicity of IAV (Iwai et al., 2013;
Duan and Thomas, 2016; Sridhar, 2016). Therefore, these resluts
indicated that NCL and eEF1A1 might contribute to the virulence
of IAV.

Comparison of the Identifed PA-Host
Interacting Proteins with the Available
Interactome Data

In order to systematically analyze the screened PA-interacting
host proteins, we then made a detailed comparison of the
interactome data associated with PA from different studies. Using
affinity purification-mass spectrometry (AP-MS), Wang et al.
identified 134 H5N1 IAV PA interacting proteins in chicken
cells (Wang et al., 2016). Watanabe et al. also characterized 304
proteins that interact with the PA protein of the HIN1 influenza
virus in human cells using LC/MS (Watanabe et al., 2014). In
the present study, 278 human proteins were found to interact
with H5N1 PA protein using LC-MS/MS in A549 cells. As a
result, our dataset shared 50 and 10 host proteins with data
from HIN1-Human study and H5N1-Chicken study respectively
(Figure 6A; Table S4). It is worth noting that NCL and eEF1A1
are identifed as PA-interacting factors both in our study and
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FIGURE 3 | Pathway analysis of the cellular proteins interacting with PA based on KEGG. (A) Classification of the enriched KEGG pathways of the identified
proteins. (B) Name of the identified proteins related with the top four KEGG pathways classification.

FIGURE 4 | The interaction network of the identified proteins with NCL and eEF1A1. The open source Bioinformatics software Cytoscape 3.2.0
(http://www.cytoscape.org/) was used to visualize protein-protein interactions.
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HIN1 study (Figure 6B). These resluts further indicated that
these two proteins may play an important role in influenza virus
infection.

Validation of Interaction between NCL,
eEF1A1, and PA Using Co-IP and

Co-Localization

Considering the NCL and eEF1A1 were shared in this study
and the HINI1 study, we then verifed their interactions with
the PA protein. 293T cells were co-transfected with pCDNA-
PA or the empty vector (pCDNA3.1) alone with the Flag-tagged
NCL expression plasmid (pires-hrGFP-1a-NCL), Flag-tagged
eEF1A1 expression plasmid (pires-hrGFP-la-eEF1A1l) or the
empty vector (pires-hrGFP-1a) respectively. After 48 h post-
transfection, the co-IP assay was performed using anti-PA or

anti-FLAG antibody. The immune-complexes were detected
in western blot assay using anti-FLAG or anti-PA antibody
subsequently. The results showed that both NCL and eEF1A1
were detected only in the presence of PA, but not in the presence
of empty vector (Figures 7A,B). In addition, the PA protein was
detected only in the presence of NCL and eEF1A1, but not in the
presence of empty vector (Figures 7C,D).

To demonstrate the co-localization of NCL and PA or
eEF1A1 and PA, three plasmid-pCDNA-Myc-NCL, pCDNA-
Myc-eEF1A1, and pCDNA-PA were constructed. Cells grown
on coverslips were co-transfected with pCDNA-PA or the
empty vector (pCDNA3.1) alone with pCDNA-Myc-NCL,
pCDNA-Myc-eEF1Al, or the empty vector (pPCDNA-Myc-C),
respectively. The cells were fixed at 24 h post-transfection. Then
the cells were subjected to confocal microscopy analysis by using
primary antibodies of Myc-tag, PA and secondary antibodies
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with two different fluorophores. Co-localization of two proteins
in cells was visualized by confocal microscope. As shown in
Figure 7E, NCL and PA were co-localized both in the nucleus
and cytoplasm, while eEF1A1 and PA were only detected in the
cytoplasm of the cell. Thus, these results clearly confirmed that
the PA protein interacts well with the cellular proteins NCL or
eEF1AL.

DISCUSSION

Since the first report in Asia in 1997, H5N1 influenza viruses
have spread to many countries on different continents and caused
considerable loss to both poultry industry and human health
(Webster and Govorkova, 2006). In addition, IAV can evade the
host immune response and cause persistent infection (Quinones-
Parra et al., 2014). However, until now, the mechanism of IAV

infection is not fully elucidated. It is well-known that virus
can infect hosts and survive in host cells through interacting
with the host cellular factors, exploiting the cellular pathways,
and subverting defense systems inhibiting viral propagation
established by host cells (Lamkanfi and Dixit, 2010; Watanabe
et al,, 2010). PA, a subunit of RNA polymerase of IAV, possesses
pleiotropic effects: (1) plays important roles in viral transcription
and replication (Kawaguchi et al., 2005; Regan et al., 2006). (2)
contributes to the adaption of IAV in mammalian host (Gabriel
et al., 2005; Sakabe et al., 2011; Seyer et al., 2012). (3) increases
the virulence of IAV (Hulse-Post et al., 2007; Song et al., 2011;
Hu et al.,, 2013a). (4) involves in host protein shut off (Rodriguez
et al., 2007; Desmet et al, 2013; Llompart et al., 2014). (5)
participates in immune regulation in the process of IAV infection
(Huang et al,, 2013; Sakabe et al., 2013). Furthermore, three novel
ORFs derived from the PA gene encoding PA-X (Jagger et al,
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FIGURE 7 | Confirmation of the interaction of IAV PA with NCL and eEF1A1. 293T cells were transiently co-transfected with the PA-expressing plasmid or the
empty vector and the tagged NCL, eEF1A1 or the empty vector for co-immunoprecipitation and co-localization studies. (A=D) Cell lysates were prepared at 48 h
post-transfection and the proteins were immunoprecipitated with anti-PA or anti-FLAG antibodies. Proteins in cell lysates (input) and immunoprecipitated samples
were detected with the antibodies against FLAG or PA in Western blot. (A) Co-precipitation of about 110 kDa NCL protein with recombinant viral PA in cell lysate. (B)
Co-precipitation of about 50 kDa eEF1A1 protein with PA in cell lysate. (C) Co-precipitation (reverse IP) of about 85 kDa PA with NCL. (D) Co-precipitation (reverse IP)
of about 85 kDa PA with eEF1A1. (E) Confocal microscopy analysis was carried out for demonstrating colocalization of PA and NCL or eEF1A1. 293T cells were
transiently co-transfected with PA expressing vector or empty vector and Myc-tagged NCL expressing vector, eEF1A1 expressing vector or empty vector, respectively.
24 h later, cells were fixed, and yellow regions are the areas of PA and NCL or eEF1A1 co-localization. Nuclei were stained using DAPI (blue).

2012), PA-N155, and PA-N182 (Muramoto et al., 2013) have been
identified. Especially, PA-X plays important roles in viral life cycle
and pathogenesis (Hu et al., 2015). Therefore, illustrating the PA-
host interactions that might contribute to viral pathogenesis of
IAV is crucial for understanding the potential mechanisms of IAV
infection and development of new anti-viral drugs.

Many technologies have been employed to characterize the
protein interaction network, such as AP-MS and yeast two-
hybrid (Y2H). Currently, compared with Y2H, AP-MS is more
widely-used because it could reveal interactions that mimic the
actual physiological condition. In this study, IP coupled LC-
MS/MS technique was applied to explore the host factors in IAV-
infected A549 cells that interact with PA of the H5N1 influenza
virus. Compared with IP assay using PA plasmid-transfected
cells, interactome data obtained from virus-infected cells could
provide insights for this method not only conserved the native
protein conformation during virus replication, but also able to
explore the cellular proteins that might interact indirectly with
PA protein.

In this study, 278 human cellular proteins were identified to
interact with PA of H5N1 influenza virus (Table 1, Table S1).
To further explore the biological significance of the interaction
between PA and host cellular proteins, bioinformatics analysis

was utilized to comprehensively evaluate and characterize the
bio-functions of the identified host proteins. Results of sub-
cellular locations and functional classes analysis based on GO
analysis demonstrated that the identified proteins were highly
associated with gene expression, viral translation, and replication
(Figure 2).

KEGG pathway analysis showed that 130 of 278 identified
host proteins involved in 165 pathways. Notably, a significant
proportion of the enriched KEGG pathways, including 4 enriched
KEGG pathways and 33 proteins, were shown to be associated
with translation (Figure 3B, Table S3). Therefore, we surmised
that the translation-related pathways enriched by PA-host
interactions might play an important role in IAV infection.
Regarding IAV life cycle, after entry into the host cells, the
viral ribonucleoprotein complexes and viral RNA (vRNPs) are
transported into the nucleus where replication occurs. In the
nucleus, the polymerase also allows the transcription of the
genome into mRNA, which is then transported back to the
cytoplasm and translated into viral proteins. Then, the NP, PBI1,
PB2, and PA proteins will re-enter the nucleus to form the
RNP complex with viral RNA (Berri et al., 2013). Therefore,
our functional analysis data of the PA-host interaction proteins
further confirmed the important role of PA in viral replication.
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The second highest proportion of enriched KEGG pathways was
associated with infectious disease, including 16 enriched KEGG
pathways and 25 proteins (Figure 3B, Table S3). Among the
25 proteins, ACTG1, HSPA8, TNFRSF10D, and HSPA1A are
highly related with the pathway of IAV (Table S3). Therefore,
we speculated that the remaining 21 proteins associated with
infectious disease may play a shared role in influenza virus
infection and other infectious pathogens. Thus, we surmised
that studies in terms of other etiologies may offer good ways to
investigate the pathogenesis of IAV.

Among the 278 identified host proteins, NCL and eEF1Al
were confirmed to interact with PA using co-IP and co-
localization (Figure 7). NCL is a multi-functional protein that
predominantly locates in the cell nucleolus. Although NCL
is also found on the cell surface, it does not possess a
transmembrane domain and therefore it may not act as a typical
membrane protein (Hovanessian et al., 2000). Previous studies
have demonstrated that NS1, HA, and NP proteins of IAV
can also interact with NCL. The NS1 protein interacts with
NCL in nucleoplasm and nucleolus mainly via its C-terminal
NLS2/NoLS and N-terminal NLS1 domains (Melén et al., 2012).
Chan et al. revealed that HA protein is also associated with
NCL (Chan et al., 2016). Both inhibiting cell surface NCL and
depleting endogenous NCL can substantially reduce influenza
virus internalization. In addition, Kumar et al. identified the
interaction between NCL and NP. Down-regulation of the host
NCL expression facilitates the viral gene transcription, and
the viral replication (Kumar et al, 2016). Moreover, it has
been demonstrated that NCL also plays a significant role in
the internalization of parainfluenza virus type 3 (Bose et al,
2004). Furthermore, surface NCL is also shown to be involved
in the entry of several viruses, including respiratory syncytial
virus (RSV), CrimeanCongo hemorrhagic fever virus (CCHFV),
and human immunodeficiency virus (HIV) (Nisole et al., 2002;
Tayyari etal., 2011; Xiao et al., 2011). However, the potential roles
of the NCL in the PA-associated functions are currently unknown
and need to be further confirmed in the future.

eEF1A1 is not only a translation factor but also a pleiotropic
protein, including cytoskeleton modulation, chaperone-like
activity, and regulation of cell proliferation and cell death (Abbas
etal., 2015). Previous studies have indicated that eEF1A1 isa p53-
interacting protein and has anti-apoptotic property in p53 family
signaling pathway (Blanch et al., 2013). P53 also interplays with
influenza virus, and down-regulation of p53 expression results in
resisting host innate and adaptive immune system against IAV
(Munoz-Fontela et al., 2011; Terrier et al., 2011, 2012). However,
the mechanism underlying this activity is still poorly understood.
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