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Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark

Antibiotic resistance is a global threat to human health, wherefore it is crucial to study

the mechanisms of antibiotic resistance as well as its emergence and dissemination.

One way to analyze the acquisition of de novo mutations conferring antibiotic resistance

is adaptive laboratory evolution. However, various evolution methods exist that utilize

different population sizes, selection strengths, and bottlenecks. While evolution in

increasing drug gradients guarantees high-level antibiotic resistance promising to identify

the most potent resistance conferring mutations, other selection regimes are simpler

to implement and therefore allow higher throughput. The specific regimen of adaptive

evolution may have a profound impact on the adapted cell state. Indeed, substantial

effects of the selection regime on the resulting geno- and phenotypes have been

reported in the literature. In this study we compare the geno- and phenotypes of

Escherichia coli after evolution to Amikacin, Piperacillin, and Tetracycline under four

different selection regimes. Interestingly, key mutations that confer antibiotic resistance

as well as phenotypic changes like collateral sensitivity and cross-resistance emerge

independently of the selection regime. Yet, lineages that underwent evolution under mild

selection displayed a growth advantage independently of the acquired level of antibiotic

resistance compared to lineages adapted under maximal selection in a drug gradient. Our

data suggests that even though different selection regimens result in subtle genotypic and

phenotypic differences key adaptations appear independently of the selection regime.

Keywords: adaptive laboratory evolution, antibiotic resistance, selection pressure, collateral sensitivity,

evolutionary constrains

INTRODUCTION

Ecosystems continuously undergo changes in their physical and chemical properties resulting
in shifts of ecological niches and living conditions (Hoffmann and Parsons, 1997; Elmqvist
et al., 2003; Fine, 2015). Bacterial populations can respond to these environmental changes via
both temporary and permanent adaptation. Temporary adaptation includes modulation of gene
expression resulting in phenotypic changes, driven by changes in environmental signals, that are
sensed by the bacteria (López-Maury et al., 2008). In contrast, selection of beneficial mutations
or horizontal acquisition of advantageous genes represent permanent, genetic adaptations to a
changed environment. Whether an environmental change is met by a temporary or a permanent
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adaptation largely depends on the strength and duration of the
selection pressure. Substantial changes in the environment, as in
the case of antibiotic treatment, can result in both temporary
adaptations like metabolic alterations resulting in antibiotic
persistent bacteria (Levin et al., 2014) and permanent adaptations
that sometimes give rise to antibiotic resistant bacteria (Carroll
et al., 2014; Dhawale and Rath, 2014).

This adaptive potential of microorganisms is increasingly
explored in biotechnology by adaptive laboratory evolution
(ALE) experiments (Blum et al., 2016). ALE can be utilized
to improve production strains by increasing their tolerance
to the metabolic product (Hu et al., 2016; Lennen, 2016), by
activating latent pathways (Wang et al., 2016) or by enabling
the utilization of non-native substrates (Lee and Palsson, 2010).
In addition, ALE experiments can improve our understanding
of fundamental evolutionary principles that might help us solve
rising global challenges of undesirable adaptations like drug
resistances in microbial pathogens (Anderson et al., 1950; Govan
and Fyfe, 1978; Cohen et al., 1989; Donald and van Helden,
2009; Wensing et al., 2015), cancer (Riganti et al., 2015) or
insect resistance toward pesticides (Georghiou, 2012). Usually,
ALE experiments focus on the adaptation to specific physical
or chemical factors such as temperature (Tenaillon et al., 2012;
Sandberg et al., 2014) or antibiotic tolerance (Hegreness et al.,
2008; Toprak et al., 2012; Lázár et al., 2014; Munck et al., 2014;
Rodriguez de Evgrafov et al., 2015). Various ALE setups have been
used to study similar environmental perturbations like exposure
to different antibiotics (Hegreness et al., 2008; Toprak et al., 2012;
Lázár et al., 2014; Munck et al., 2014; Rodriguez de Evgrafov
et al., 2015), yet, the influence of the experimental setup on the
resulting adaptations remains poorly understood.

In this study we use evolution of antibiotic resistance
as a model for studying the impact of the experimental
setup on evolved phenotypes and genotypes. Prior studies
have evolved bacteria to high level antibiotic resistance using
different methodologies, including gradients of increasing drug
concentrations (Kim et al., 2014; Munck et al., 2014; Oz
et al., 2014; Rodriguez de Evgrafov et al., 2015), step-wise
exposure to antibiotics (Lázár et al., 2014) or gradual increase
in drug concentration in a morbidostat (Toprak et al., 2012).
These different approaches utilize varying selection pressures,
population sizes, and bottlenecks–all known to impact evolution
(Nei et al., 1975; Levin et al., 2000; Wahl et al., 2002;
Charlesworth, 2009). The influence of the selection pressure
on the resulting pheno- and genotypes has been assessed by
comparing bacteria exposed to mild and strong selection in a
gradient approach (Oz et al., 2014) as well as by challenging
bacteria with drug increments, varying in the steepness of
drug increase (Lindsey et al., 2013). Differences in the number
of mutations, growth rate, and resistance phenotypes were
detected dependent on the methodology used (Lindsey et al.,
2013; Oz et al., 2014). While the gradient method applies
maximal selection pressure resulting in rapid generation of
highly resistant lineages, the increment approach requires fewer
laboratory resources, allowing for investigations of larger number
of replicates and conditions such as different antibiotics, without
increased handling time. Yet, the rate of drug increase is fixed in

the increment approach, which can result in low as well as too
high selection pressure dependent on the adaptation level of the
bacteria.

In this study, we compare different increment approaches,
varying in the steepness of drug increase, with the gradient
approach to investigate how the selection regime defined
by the ALE methodology influences the resulting geno- and
phenotypes.

MATERIALS AND METHODS

Laboratory Adaptive Evolution in Drug
Gradients
Escherichia coli K12 (MG1655) was evolved for 14 days
to three different antibiotics: Amikacin sulfate (AMK)
(Sigma), Piperacillin sulfate (PIP) (Sigma), and Tetracycline
hydrochloride (TET) (Sigma), covering three major classes
of antibiotics, including both bactericidal and bacteriostatic
drugs. The antibiotics were dissolved in water (10mg/l) and the
stock solutions were stored at −20◦C. Four replicate lineages
were evolved in parallel for each drug. 96-well plates (Almeco),
containing 1ml Mueller-Hinton broth II (MHBII) (Sigma)
per well and a 2-fold antibiotic gradient in 10 dilutions, were
prepared at the start of the experiment and stored at −20◦C.
The minimal inhibitory concentration (MIC) of the wild type, as
defined by the European Committee on Antibiotic Susceptibility
Testing (EUCAST), was located in the second well, allowing
growth of the wild type in the first well under sub-inhibitory
conditions (exact plate setup and drug concentrations are given
in Supplementary Table 1). Plates were defrosted at the day
of usage, pre-heated to 37◦C, inoculated with 50 µl of freshly
growing cells and incubated at ∼900 r.p.m. and 37◦C for 22 h.
One hundred fifty microliters of each well were transferred into
a 96-well microtiter plate and the optical density was measured
at a wavelength of 600 nm (OD600) by an ELx808 Absorbance
Reader (BioTek). Based on the OD measurement a cut-off
value, that was the minimal growth that clearly set itself apart
from the background growth, was chosen to define distinct
growth for each drug (Supplementary Figure 1). An OD600 > 0.1
corresponding to ∼8.0 × 107 CFU/ml defined distinct growth
for AMK and TET and an OD600 > 0.3 equivalent to about 2.4
× 108 CFU/ml defined growth for PIP due to a background
growth level of around OD600 = 0.18. Fifty microliters of the well
with the highest drug concentration that showed distinct growth
in the deep-well plate were used to inoculate a fresh gradient
(exact OD600 values and corresponding drug concentrations of
the well chosen for each transfer are given in Supplementary
Table 2). Remaining cells in these wells were mixed to a final
glycerol concentration of 20% and stored at −80◦C. On each
plate 16 wells served as negative control resulting in a total of
448 wells during the course of the experiment, of which 1%
showed growth. For each lineage seven colonies were isolated for
genomic and phenotypic characterization from the population
that had been maintained for two passages at or above the clinical
breakpoint as defined by EUCAST for the specific antibiotic.
The clinical breakpoint is the drug concentration that is used as
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a cut-off value to classify pathogens as susceptible or resistant
toward a specific drug (Turnidge and Paterson, 2007).

Laboratory Adaptive Evolution in Drug
Increments and Media Control
E. coli K12 (MG1655) was not only evolved in drug gradients
but also to a daily relative increase of drug concentration. Three
different approaches were used (exact drug concentrations for
each day for the different increment approaches and drugs
are given in Supplementary Table 3). The lineages in the
“Increment 100” setting were exposed to a 100% increase in drug
concentration. Under this regime the drug concentration was
consequently doubled every day, applying a constantly strong
selection pressure to the lineages. The clinical breakpoint was
supposed to be reached after 7 days of the ALE experiment.
“Increment 50” lineages were also exposed to a rather high
environmental change rate by growth in a 50% higher drug
concentration every day, reaching the clinical breakpoint on the
9th day of the experiment. The drug concentration was raised by
25% for the “Increment 25” lineages, allowing a mild selection
and twice as much time to adapt to the clinical breakpoint
concentration compared to the “Increment 100” lineages. Eight
lineages were evolved in parallel in each setting to AMK, PIP, and
TET. The experiment was designed that all experimental setups
reached theMIC as defined by EUCAST at the 4th day. As control
for media adaptations eight wild type lineages were evolved to
the media without antibiotics. TheMHBII antibiotic mixture was
prepared in falcon tubes for each day, drug and experimental
setup in the beginning of the experiment and stored at −20◦C.
The drug containingmedia was defrosted on the day of usage and
pre-heated to 37◦C. The lineages were grown in 1 ml MHBII and
antibiotic in a 96-deep-well dish for 22 h at 37◦C and∼900 r.p.m.
50 µl of cells were transferred every 22 h. The remaining cells
were mixed to a final concentration of 20% glycerol and stored at
−80◦C. The adaptive evolution was stopped after 14 days when
the “Increment 25” lineages had passed the clinical breakpoint.
During the experiment ∼3% of 1,152 negative controls showed
growth. Cells were streaked on LB plates and identified by visual
investigation as E. coli. All colonies looked identical, suggesting
that there was no contamination. Once the adaptive evolution
experiment was ended, lineages that were adapted to the clinical
breakpoint were streaked on LB agar and seven isolated colonies
were used for further analysis. If lineages died out before they
had reached the clinical breakpoint, the last possible time point
was chosen.

IC85 Determination
Isolated colonies were used to inoculate a 96-well microtiter plate
containing 150µl MHBII. About 105 cells of an overnight culture
were transferred with a 96-pin replicator to 10 dilutions of a
2-fold drug gradient spanning from 0.5 to 256 mg/l AMK and
0.25 to 128 mg/l of PIP or TET, respectively. For each lineage
one isolated colony was tested in two technical replicates against
all three antibiotics. Eight inoculated wells containing MHBII
served as positive control while eight wells only filled withMHBII
served as negative control. The plates were incubated at 37◦C and
900 r.p.m. for 18 h and subsequently the OD600 was measured

by an ELx808 Absorbance Reader (BioTek). The data was further
analyzed using R (Team R Core, 2014). The average OD600 values
of the negative controls were subtracted from all remaining
OD600 values. Percent inhibition was calculated by subtraction of
the OD600 values divided through the average of the OD600 values
of the positive controls from 1.

Percent inhibition

= 1−
OD600

(

growth
)

− OD600
(

negative control
)

OD600
(

positive control
)

− OD600 (negative control)

(1)

A dose-response curve was fitted to the values using a logistic
model from the drc package (Ritz and Streibig, 2005), with x for
the molar drug concentration and default values for the other
variables, where b describes the steepness of the curve, c and d
the lower and upper asymptotes and e the effective dose (Munck
et al., 2014; Ritz et al., 2015):

f
(

x
(

b, c, d, e
))

= c+
(d − c)

1+ exp (b∗ (log (x) − log (e))
(2)

Dose-response curves were plotted with the package ggplot
(Wickham, 2009). The drug concentration causing 85% growth
inhibition (IC85) was calculated with the inverted function,
normalized to the wild type, and plotted grouped by drug
using ggplot (Wickham, 2009). A non-parametric distribution
of parallel lineages was observed for some experimental setups
and drugs wherefore the non-parametric Kruskal-Wallis one-
way analysis of variance was applied in R to detect significant (P
< 0.05) differences between the four experimental setups adapted
to each drug.

Growth Rate Measurements
A 96-well microtiter plate, containing 200 µl MHBII per well,
was inoculated with cells in exponential growth phase using a
96-pin replicator. All seven isolated colonies per lineages were
included in the growth measurement. OD600 was measured in
a ELx808 Absorbance Reader (BioTek) every 5 min for 10 h at
37◦C and 650 r.p.m. The data was analyzed with R (Team RCore,
2014). The growth rate was calculated based on the steepest part
of the growth curve during exponential growth. The doubling
timewas normalized to the wild type and plotted grouped by drug
with the package ggplot (Wickham, 2009). To test whether the
observed differences in growth rate were significant (P < 0.05)
the non-parametric Kruskal-Wallis one-way analysis of variance
was applied in R.

Whole-Genome Sequencing
One isolated colony of each of the 92 lineages, that was also
used to measure the IC85 and growth rate, was grown in LB
and DNA was extracted with the A & A Genomic Mini kit
(A&A Biotechnology). The DNA was sent to Macrogen, who
prepared genomic libraries with the TruSeq DNA Nano (550 bp)
kit from Illumina and sequenced them by Illumina MiSeq 300 bp
paired ends.

Frontiers in Microbiology | www.frontiersin.org 3 May 2017 | Volume 8 | Article 816

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jahn et al. Comparison of Different ALE Methods

Identification of Single Nucleotide
Polymorphisms and Small INDEL
Sequences
The reads were aligned to E. coli K12 U00096 reference genome
with CLC Genomics Workbench (Escherichia coli Str. K-12
Substr, 2014). On average each base was covered at least 37.5
times (Supplementary Table 4). SNP and INDEL sites were
determined with CLC Genomics Workbench. Only loci with a
phred score of 30 at the variable position as well as at the three
neighboring bases occurring at least with a frequency of 80%
were included in the analysis. Single nucleotide polymorphisms
(SNPs) that were detected in all lineages including the media
adapted wild type were considered mutations that had occurred
before the start of the experiment and were therefore excluded.
If two lineages shared two identical SNPs they were considered
cross-contaminated and one of them was excluded from further
analysis.

Detection of Large Deletions
Large deletions were identified with a workflow in CLC
workbench. The reads of all genomes were assembled de novo
and used as reference genomes to map the reads from one
of the media adapted wild type strains. The reads from the
media adapted strain that did not map to the de novo assembled
antibiotic evolved genome were collected and also de novo
assembled into contigs. Contigs larger than 1 kb with a coverage
> 30 were considered large deletions.

Detecting Large DNA Insertions by
Insertion Elements
We downloaded both the complete genome of E. coli K12
MG1655, with accession U00096, and the corresponding ORFs
from the NCBI Nucleotide Archive. The ORFs were then
clustered together using cd-hit (Li and Godzik, 2006), allowing
ORFs with at least 90% identity and coverage to be in the same
cluster. The reads of the sequenced strains were filtered using
the FASTX-Toolkit package and a minimum quality of 30. The
quality-filtered reads were blasted against the clustered ORFs
by setting the word_size to 10 and the e-value to 100 allowing
accurate short sequence mapping. Reads mapping to at least two
ORFs of different clusters with a minimum of 30 and a maximum
of 70% coverage of each cluster were further considered potential
large insertion reads. These reads were blasted against the whole
genome to confirm that the two genes were not adjacent on the
genome. Reads that covered the reference genome with more
than 90%were expected to contain two adjacent genes, wherefore
they were excluded from the analysis. It was further explored
whether the remaining hits overlapped with insertion elements.
Reads that aligned to one ORF annotated as insertion element
were included for further analysis. Only insertion reads that were
detected in more than 10 reads were considered as large DNA
insertions.

Identification of Gene Duplications
Gene duplications were identified with CLC Genomics
Workbench using the coverage analysis tool by calling for

regions with at least 700 bp of significantly (P < 0.001) increased
coverage. The identified regions were mapped to the reference
genome U00096 in R and genes that overlapped with at least 95%
with the region of high coverage were identified as duplicated
genes.

RESULTS

Four Different Strategies of Adaptive
Laboratory Evolution
To compare the effect of the ALE methodology on final pheno-
and genotypes we evolved E. coli to three different antibiotics
using four different ALE strategies. The antibiotics chosen for
this experiment represent three major groups of antibiotics. Two
of the drugs, amikacin (AMK) and tetracycline (TET), target the
ribosome with the former being bactericidal and the latter being
bacteriostatic. The third drug, piperacillin (PIP), is a bactericidal
drug targeting cell-wall biosynthesis. The four different selection
regimes can be divided into two categories: (1) A gradient
approach in which the population that tolerates the highest drug
concentration is passed to a fresh drug gradient every 22 h; and
(2) an increment approach in which the evolving population is
passed every 22 h to a new drug concentration increased by fixed
increments (Figure 1).

A 20-fold dilution of the gradient evolved populations was
chosen based on a model by Wahl et al. (2002), to allow a high
variation in the transferred population and to base fixation of
mutations on the optimal adaptation rather then on limiting
bottlenecks. According to Wahl et al. (2002) a 10-fold dilution
of the population would be optimal but previous experiments
in the laboratory showed a small increase in the inhibitory drug
concentration for AMK and TET when a 10-fold dilution was
used. To avoid an inoculum effect, which is a significant increase
in the inhibitory concentration caused by a larger amount of
organisms in the inoculum (Brook, 1989), we chose a 20-fold
dilution (Supplementary Figure 2).

After 14 days of adaptive evolution in the gradient setup,
the populations exposed to AMK tolerated on average 512 mg/l
of the drug, corresponding to a 170-fold increase compared
to the media adapted wild type (P = 2.89654E−27, student’s
t-test) (Figure 2A). The PIP evolved lineages grew in drug
concentrations of 192 mg/l on day 14 of the ALE experiment,
equal to a 80-fold increase compared to the media adapted
wild type (P = 0.00109527, student’s t-test). However, large
oscillations in resistance were observed for the PIP evolved
lineages during the course of the experiment (Figure 2B). This
variation could be explained by an inoculum effect, which is more
frequently observed for beta-lactam antibiotics (Eng et al., 1984,
1985; Brook, 1989). Lineages evolved to TET did not reach the
same drug tolerance compared to AMK or PIP evolved lineages,
but still grew in 15 mg/l TET, exceeding the media adapted wild
type inhibitory concentration (IC) by 15 times (P= 2.04072E−06,
student’s t-test) (Figure 2C). These values are in accordance with
previous findings where the IC90 values (the drug concentration
at which growth of 90% of the population is inhibited) of isolated
colonies were determined after 14 days of adaptive evolution in a
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FIGURE 1 | Experimental design of the study: adaptation of E. coli K12 to three antibiotics following four adaptation protocols with different selection

strengths. The four selection systems are named “gradient,” “100% increment,” “50% increment,” and “25% increment.” In the gradient approach, cells were

inoculated into a 2-fold, 10-step drug gradient and cells growing in the highest concentration were used for inoculation of a fresh gradient. In the increment

approaches the drug concentration was raised with every transfer either by 100, 50, or 25%. The wild type minimal inhibitory concentration (MIC) was reached on the

fourth day of the experiment for all increment lineages.

gradient system using the same strain and drugs (Munck et al.,
2014). Only PIP evolved lineages appear more resistant in the
present study, which is attributed to the inoculum effect caused
by the larger passaging volume.

In the increment approach three different rates of
environmental change were tested (Figure 1), for which the
selective pressure (e.g., antibiotic concentration) was increased
by 100, 50, or 25% every day. Similar to the gradient approach
the 100% increment setup applies a high selection pressure with
the risk of exceeding the adaptive potential of the bacterium
leading to extinction of the lineages (Figure 1).

Extinction of Increment Lineages after
Exceeding the Adaptation Maximum
Defined by Gradient Lineages
We speculated that the increment-evolved lineages would
die out when the drug concentrations they were exposed
to exceeded the adaptation level of the gradient evolved
lineages as a maximal selection pressure was applied to the
gradient evolved lineages. Our observations during the ALE
experiment support this hypothesis (Figures 2A–C). Whenever
the antibiotic concentration of the drugs in the increment
evolution experiments exceeded the maximal concentration of at
least one of the gradient evolved lineages, some of the parallel
increment lineages became extinct. For instance, the remaining
100% increment lineages adapted to AMK became extinct after
they grew in 32 mg/l on day 8 of the experiment but one of the
gradient adapted lineages only grew in 16 mg/l. All increment
lineages died out when exposed to a drug concentration above
the drug concentration to which all of the gradient lineages
were adapted to (Figures 2A–C). For example all remaining

increment 50% lineages died out when they passed an PIP
concentration of ∼32 mg/l on day 13 of the adaptive evolution
experiment when lineages adapted in the gradient approach
only grew in PIP concentrations of 8 mg/l. Since the antibiotic
exposure for the 100 and 50% increment lineages exceeded
the maximum evolutionary potential exhibited by the relevant
gradient evolved lineages all 100 and 50% increment lineages
went extinct before the end of the experiment (Figures 2A–C).
Notably, only 4 out of the 24 lineages that were exposed to 100%
increments reached the clinical breakpoint before extinction. A
decrease in population density (OD600) often preceded extinction
(Supplementary Figure 3). In contrast, all 50 and 25% lineages
reached the clinical breakpoint. The ability to adapt appeared to
be drug specific. The different adaptation potentials are reflected
in the extinction of the increment lineages. For instance, 100 and
50% increment lineages died out later when adapted to AMK
compared to TET (Figures 2A–C).

Similar Resistance Levels Can Be
Accompanied by Different Fitness Costs
We were interested in observing how the different rates
of environmental change affected the final genotypes and
phenotypes. By design, lineages would be adapted to different
antibiotic concentrations at the end of the experiment, depending
on the specific ALE approach. Accordingly, we decided to
compare the lineages when they had reached the clinical
breakpoint (defined by EUCAST, 2016). Gradient evolved
lineages were analyzed at the time point when they had reached
or exceeded the clinical breakpoint for 2 consecutive days.
Increment evolved lineages were analyzed at the time point when
the lineage had reached the clinical breakpoint. As most of the
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FIGURE 2 | Overview of the adaptation potential over time for each drug: (A) amikacin, (B) piperacillin, and (C) tetracycline. The lineages adapted under the

gradient method follow the maximal selection pressure wherefore it can be observed that lineages from the increment approaches (100, 50, and 25) die out when they

exceed the natural selection maximum defined by the gradient approach, indicated with stars in the figure. Replicates are represented in different line styles. The

clinical breakpoint is indicated with a dotted line in black. The heatmaps illustrate the extinction of lineages over time.

100% increment lineages failed to reach the clinical breakpoint
we excluded these lineages from the analysis.

One colony was obtained from each lineage at the time point
where the population had reached the clinical breakpoint and
the antibiotic tolerance was determined. The IC85 values were
normalized to the average IC85 of the media adapted strains
(Figure 3A).

For AMK and TET adapted strains the resistance level of
the gradient evolved strains was above the clinical breakpoint
(Figure 3A). In contrast, only one of the strains adapted to
PIP was above the clinical breakpoint. High fluctuations in
resistance level were observed in the PIP adapted lineages
(Figure 2B) suggesting that an inoculum effect rather than
real adaptation contributed to the population tolerance. The
inoculum used in this study corresponded to about 108 CFU/ml
and did not indicate inoculum effect in previous experiments
(Supplementary Figure 2). Yet, it is exceeding the reported
CFU/ml concentration causing inoculum effect for PIP (Bryson
and Brogden, 2012).

The resistance levels of the 25% increment evolved strains
displayed a normal distribution around the clinical breakpoint
for TET and PIP and were above the clinical breakpoint for
AMK, whereas the 50% increment strains displayed a slightly
lower tolerance (Figure 3A). However, when comparing gradient
and increment adapted strains, only TET evolved strains showed
a significant (P < 0.05 Kruskal-Wallis one-way analysis of
variance) difference in their resistance levels (Figure 3A).

Many resistance-conferring mutations are known to confer a
fitness cost, which can often be detected by a reduced growth
rate (Linkevicius et al., 2013). Since the selection regime seems
to influence the fitness of the resulting lineages (Lindsey et al.,

2013), we measured the growth rate of the same isolated colonies
that were used for the IC85 determination and an additional
six isolated colonies for each lineage, resulting in 28 clones
for the gradient approaches and 56 clones for the increment
experiments (Figure 3B). Adaptation to AMK generally seemed
to be connected with a reduced growth rate compared to the
other drugs.

For all three drugs the 25% increment strains grew
significantly (Kruskal-Wallis one-way analysis of variance P <

0.05) faster than the gradient adapted strains (Figure 3B). The
growth advantage of the increment lineages could be due to
a larger number of generations that they underwent compared
to the gradient evolved lineages providing better opportunity
for fitter mutants to outcompete resistant mutants with larger
fitness costs and to accumulate compensatory mutations that
can balance the fitness costs of resistance conferring mutations.
However, the time that a population was evolved for and the
doubling time are not significantly correlated (R = −0.019,
Pearson’s product-moment correlation coefficient, P = 0.71).
Accordingly, it is likely that the shorter doubling time of the
increment lineages is due to a lower selection pressure toward
drug resistance, resulting in an increased selection for high
growth rate. This finding is in line with previous studies reporting
that E. coli lineages evolved to rifampicin under sudden drug
increase have a significantly reduced growth rate compared to
lineages evolved to more gradual drug increases (Lindsey et al.,
2013) and that E. coli lineages adapted to 22 different antibiotics
under mild selection have an elevated growth rate compared to
lineages evolved under strong selection regimes (Oz et al., 2014).
Yet, no correlation was found between the resistance level and
the growth rate suggesting that a mutation that confers high-level
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FIGURE 3 | Phenotypic changes in drug resistance and growth rate

after the adaptive laboratory evolution experiment. (A) The fold-increase

of the IC85 compared to the wild type (WT) is displayed for each drug. The

evolved resistance levels are not significantly different for amikacin (AMK) and

piperacillin (PIP) across different experimental setups, which are referred to as

G for the gradient approach, 25 for the 25% increment and 50 for the 50%

increment method. However, strains adapted to tetracycline (TET) display

significant changes in drug resistance. The clinical breakpoint normalized to

fold-increase to the media adapted wild type (WT) of each drug is marked with

a light gray panel. (B) The doubling time relative to the wild type is shown for

the same isolated colony used for the IC85 determination as well as for six

additional colonies, colored in gray. A significantly lower doubling time for the

25% increment lineages compared to the gradient evolved lineages can be

observed for all drugs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

resistance is not necessarily linked to a high fitness cost and vice
versa (Supplementary Figure 4).

Different Selection Regimes Do Not
Substantially Influence Collateral
Sensitivity and Cross-Resistance
Phenotype
Antibiotic resistant bacteria often show cross-resistance to
similar drugs (Szybalski and Bryson, 1952). Interestingly,
increased susceptibility toward other antibiotics can also
frequently be observed (Szybalski and Bryson, 1952; Imamovic
and Sommer, 2013; Lázár et al., 2014; Munck et al., 2014),
a phenomenon commonly referred to as collateral sensitivity.
In order to test if the cross-resistance and collateral sensitivity
phenotype is influenced by the selection regime we determined

the drug resistance profiles for each evolved strain toward each
of the three drugs tested (Figure 4). All lineages adapted to
AMK showed collateral sensitivity toward PIP. However, the
gradient and 25% increment AMK adapted strains differed in
their collateral sensitivity toward TET (P < 0.05, Kruskal-Wallis
one-way) (Figure 4). It should be noted that the end point of
the gradient adapted AMK lineages showed collateral sensitivity
toward TET in accordance with previous studies (Munck et al.,
2014), suggesting that the number of generations that a lineage
was allowed to undergo before testing the collateral sensitivity
was important. Isolates from gradient and increment lineages
all showed collateral sensitivity against AMK when evolved to
TET and cross-resistance between PIP and TET (Figure 4).
However, strains adapted to PIP in the gradient approach were
slightly less resistant (P < 0.05, Kruskal-Wallis one-way) to
TET than the strains adapted in the 25% increment approaches
(Figure 4). While, Oz et al. (2014) highlights differences in
collateral sensitivity in mildly and strongly selected lineages, our
results are in line with findings by Lázár et al. (2014) suggesting
that phenotypic similarities dominate over differences.

Overall it can be concluded that the cross-resistance was very
similar between gradient and increment approaches. The main
phenotypic difference between gradient and increment evolved
lineages is a slower growth rate of the gradient evolved lineages.

Genotypes of Lineages Adapted under
Different Selection Pressures Overlap
The strains used for IC85 determination and growth rate
measurements were sequenced in order to uncover the
underlying genetic changes. We identified a total of 173
mutations across 92 sequenced strains (Supplementary Table
5). Large insertions and deletions made up 26.5% of the total
number of mutations (Supplementary Figure 5A). These larger
genetic rearrangements are frequently overlooked but can play
important roles in the genetic adaptation process. Two of the
eight parallel strains adapted in a 25% increment to AMK have
three identical SNPs in common, suggesting potential cross-
contamination between the lineages. Therefore, only one of the
strains was used for the following analysis.

On average we identified about two mutations in each strain
across the different experiments (Supplementary Figure 5B).
Even though the 25% increment lineages were evolved for more
generations until they reached the clinical breakpoint there was
no significant difference in the number of mutations between
experimental setups (P > 0.5, Students t-test) and the number of
mutations in the sequenced isolates did not correlate significantly
with the number of generations (R = 0.19, Pearson’s correlation,
P = 0.097).

Whether a mutation confers resistance, compensates fitness
costs of other mutations or hitchhikes with a resistance
mutation is difficult to determine without re-introducing specific
mutations alone and in combinations into the non-evolved wild
type. However, if a gene is mutated inmore than one independent
strain it is likely that the mutation was selected for (Lieberman
et al., 2011; Yang et al., 2011; Sandberg et al., 2014). We filtered
our dataset according to this criterion and found that 88.8% of
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FIGURE 4 | Cross-resistance and collateral sensitivity phenotypes of the gradient, 25 and 50% increment evolved strains. Fold increase (blue) or

decrease (red) of the IC85 compared to the wild type (WT) is indicated for each individual strain. The collateral sensitivity as well as cross-resistance is similar across

experimental setups. Collateral sensitivity toward tetracycline (TET) of strains adapted to amikacin (AMK) under the 25% increment approach is elevated (P < 0.05)

compared to strains evolved to the drug gradient. The cross-resistance of strains evolved to piperacillin (PIP) tested against TET is increased (P < 0.05) in the 25%

increment adapted strains compared to the gradient evolved strains.

genes mutated in the gradient evolved strains were also mutated
in the increment strains (Figure 5). Except mutations in the
ATP synthase gamma chain (atpG) and the cytochrome bo(3)
ubiquinol oxidase subunit 2 (cyoA), all mutated genes of the
gradient strains in the filtered dataset have also been found to
be mutated in the 25% increment strains (Figure 5). The clones
carrying one of the two mutations have an average doubling time
that is four times higher than the wild type and twice as high
as the average of all strains adapted to AMK. Therefore, it is
likely that these mutations come with a high fitness cost, and
accordingly were not fixed in the 25% increment lineages.

Interestingly, the increment-adapted strains carried not only
most of the mutations found in the gradient adapted strains, but
also many mutations that were solely identified in the increment
strains (Figure 5). Such mutated genes are for example nuoB,
nuoC, and nuoH, subunits of the NADH-quinone oxidreductases
that shuttle electrons from NADH to quinones in the respiratory
chain that have been identified to confer resistance toward
AMK in previous studies (Kohanski et al., 2007; Schurek et al.,
2008; Girgis et al., 2009; Wong et al., 2014). In addition, these
mutations were linked to the collateral-sensitivity phenotypes of
aminoglycosides toward many other classes of antibiotics (Lázár
et al., 2014), suggesting that mutations in these genes are relevant
for the collateral sensitivity phenotype toward TET, that was not
observed in the gradient lineages when they reached the clinical
breakpoint, but only in strains isolated from the end point of the
gradient evolved lineages.

Mutations in the genes fusA, sbmA as well as in two different
two component systems, cpxRA and arcAB appeared to be the
dominating mutations in all strains adapted to AMK (Figure 5).
All mutations have been previously linked to AMK resistance
(Laviña et al., 1986; Busse et al., 1992; Johanson and Hughes,
1994; Salomón and Farías, 1995; Macvanin and Hughes, 2005;
Kohanski et al., 2008, 2010; Pena-Miller et al., 2013; Lázár et al.,
2014; Munck et al., 2014). Mutations in the elongation factor
G encoding gene fusA have been shown to result in collateral

sensitivity toward beta-lactam antibiotics, as observed in this
study for PIP (Macvanin and Hughes, 2005).

acrR was found to be the predominantly mutated gene in
the PIP evolved lineages regardless of the experimental setup
(Figure 5). Mutations in acrR as well as in marR and rob, also
identified to be mutated in the increment strains adapted to
PIP, lead to the multiple antibiotic resistance (mar) phenotype,
which was described to confer resistance toward a variety of
drugs including beta-lactam antibiotics and tetracyclines. This
finding explains the cross-resistance observed for TET and PIP
evolved lineages in this experiment (George and Levy, 1983;
Cohen et al., 1989; Ariza et al., 1995; Maneewannakul and
Levy, 1996; Oethinger et al., 1998). The lack of mutations in
marR and rob in the gradient adapted strains might account for
the difference in cross-resistance toward TET compared to the
25% increment adapted strains. However, it can be speculated
that these mutations would also occur in a gradient system if
the inoculum effect can be avoided, since they were observed
previously in an experiment following the gradient approach
(Munck et al., 2014). Another frequently observed mutation in
PIP adapted strains affects the drug target, the peptidoglycan
synthase ftsI (penicillin-binding protein 3) (Figure 5) (Matic
et al., 2003; Blázquez et al., 2006). Interestingly, mutations in
cpxA were solely found in 25 and 50% increment strains adapted
to PIP (Figure 5). Mutations in this gene can confer up to 2-
fold increases in resistance to beta-lactam antibiotics (Srinivasan
et al., 2012; Bernal, 2014). Since a 2-fold increase in drug
resistance is moderately low, it can explain why the mutation was
only found in 25 and 50% increment lineages that were exposed
to low antibiotic concentrations and why it was not identified in
the gradient or 100% increment lineages.

The lineages adapted to TET showed, similar to PIP, mutations
in genes belonging to the mar phenotype (Figure 5). In addition
to mutations belonging to the mar phenotype, two other mutated
genes, dksA and waaP, were identified which were previously
only indirectly linked to antibiotic susceptibility (Yethon et al.,
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FIGURE 5 | Genetic adaptations to the antibiotics amikacin (AMK),

piperacillin (PIP), and tetracycline (TET). The color represents the number

of strains in percent that harbor a mutation, identified in at least two

independent lineages. Almost all mutations identified in the gradient approach

are also present in at least one of the increment strains. PIP and TET evolved

lineages display similar genotypes with mutations predominantly affecting the

mar phenotype.

1998; Yethon and Whitfield, 2001; Hansen et al., 2008; Tamae
et al., 2008; Liu et al., 2010). Interestingly, the only gene
duplications observed in this experiment were all found in three
different lineages in the 50% increment strains adapted to TET.
Two genes, yicS and yibT, with uncharacterized gene products,
were duplicated as well as phoU, whose deletion mutant was
more susceptible toward antibiotics suggesting a potential role in
antibiotic tolerance (Li and Zhang, 2007).

The significant difference in resistance between gradient
and increment evolved lineages might be explained by the
abundance of mutations in marR. Almost all strains adapted
under the gradient approach carry a mutation in marR, whereas
this genetic change was only observed in a few lineages
evolved in the increment regime (Figure 5). Lineages harboring
mutated marR were overall 15% more resistant to TET than
all TET adapted lineages on average. However, they also had
an increased doubling time by ∼27% compared to the average.
1marR mutants were previously linked to an impaired fitness
(Marcusson et al., 2009), suggesting that mutations in marR are
more likely to dominate a population under strong selection.

The clones adapted under the gradient approach seem to have
fewer mutations in the filtered data set in comparison to the

increment lineages. However, they often carry mutations that
were only detected once in the whole experiment (Supplementary
Table 5), therefore the gradient adapted lineages display a higher
diversity in unique mutations. In order to quantify the similarity
and dissimilarity between genotypes in the different experimental
setups, we did a pairwise comparison between all strains using
the unfiltered data set. The overlap of mutated genes between
the pairs was calculated in percent of the total number of
mutated genes found in the two strains. We chose to analyze
the similarity on the gene level and not on SNP or gene family
level, since it was suggested as appropriate measure to detect
parallel or convergent evolution (Achaz et al., 2014). The genetic
similarity within the gradient evolved replicates was on average
around 30–50% (Figure 6). The strains adapted under the 25
and 50% increments were about 45 and 30% similar to each
other when adapted to AMK and PIP and only around 20 and
10% alike when evolved to TET (Figure 6). Interestingly, the
genetic similarity of strains evolved using different selection
regimens was comparable to the similarity within replicates
from the same selection regimen (Figure 6). The similarity
of the gradient and the 25% increment strains was maximal
about 3% below and 12% above the group internal similarity of
either the gradient or the increment 25 strains (Figure 6). This
result underlines that the genetic similarity between the different
selection regimens is similar to the genetic similarity observed
between parallel lineages that were evolved under identical
conditions.

DISCUSSION

In this study we analyzed the impact of the selection regimen
in different ALE methodologies on the resulting phenotypes
and genotypes. As expected, the rate of environmental change
is a crucial parameter for the extinction of populations.
Environmental changes, that exceed the adaptation capability of
an organism or that allow too little time for adaptation, result
usually in extinction. A decrease of the OD often preceded
extinction of lineages, indicating that the mean fitness of the
population was reduced preceding extinction (Lynch and Lande,
1993). The reduction in population size also lowered the number
of cells transferred to the next drug concentration, reducing
the genetic variability (Frankham, 2005; Bell and Collins, 2008).
Under these conditions the mean population fitness is impaired
and can only be enhanced through a lowered environmental
change rate (Lynch and Lande, 1993). In our case the constantly
high rate of environmental change in the 100 and 50% increment
lineages led to extinction of the evolving population. We
observed an evolutionary limit for adaptation that was defined by
the gradient evolved lineages. If the rate of environmental change
of the 50 and 100% increment lineages exceeded this maximum,
strains became extinct. These findings can be implemented in the
design of an ALE experiment for industrial purposes where the
extinction of lineages should typically be prevented. Therefore,
it can be suggested to either use a milder rate of environmental
change or a higher number of replicates in order to compensate
for lineage extinction.
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FIGURE 6 | Similarity of lineages evolved to different selection strengths. The similarity between different strains was calculated in pairwise comparisons by

analyzing the percentage of genes that were mutated in both strains compared to the total number of mutations found in the two strains. The average of the pairwise

similarity is displayed for different groups of strains: either within one experimental setup like the gradient (G) (red) or the increment approaches (25 and 50) (blue and

gray) or between those experimental setups (stripes), comparing similarity of the gradient and increment lineages or the increment approaches with each other.

We expected, that the gradient evolved lineages would
indicate the evolutionary capacity of E. coli to adapt to a
certain drug as we constantly applied maximal selection pressure
in the gradient setup. However, in case of Piperacillin we
observed large oscillations of the drug tolerance in all parallel
evolving populations during the 14 days of the adaptive evolution
experiment. The inoculum varied during the cause of the
experiment and sometimes exceeded the inoculum that was used
for the initial test that did not suggest inoculum effect for any of
the three drugs. In addition, beta-lactam antibiotics are known
to be more prone to cause inoculum effect (Eng et al., 1985;
Brook, 1989), wherefore we conclude that inoculum effect is
the likeliest explanation for the oscillations. Yet, other scenarios
such as (1) clonal interference (de Visser and Rozen, 2006),
where several mutations conferring resistance, tolerance or
growth advantageous compete against each other, (2) disruptive
frequency dependent selection (Levin et al., 1988), where only
common mutations are fixed in the population or (3) phenotypic
tolerance, that temporarily allows bacteria to survive in antibiotic
concentrations without conferring resistance (Brauner et al.,
2016) could potentially account for the oscillations as well.

Once a given phenotypic level has been reached, different
paths of selection lead to similar phenotypes and genotypes. The
similar outcomes of variations in selection pressure strength can
be explained by the concept of evolutionary constrains (Losos,
2011). Due to a limited number of accessible changes to adapt
to a certain selection pressure, evolution is biased toward these
mutations, resulting in similar changes in organisms exposed to
comparable environments (Losos, 2011).

We found that differing selection strength, applied through a
daily increase in drug concentration by 25% or a drug gradient,
follows similar evolutionary trajectories, resulting in similar
phenotypes and genotypes. The cross-resistance and collateral
sensitivity patterns appear very similar between both approaches.
This is in line with previous findings, where lineages evolved
to sub-inhibitory drug concentrations were compared to those
adapted under strong selection (Lázár et al., 2014). Yet, also
opposing results have been reported, showing differences in
mildly and strongly selected lineages (Oz et al., 2014). However,
the cross-resistance and collateral sensitivity differences observed
by Oz et al. were mildly connected to the final resistance level
of the strain to the adapted drug, which could account for
these phenotypic differences (Oz et al., 2014). To limit these
confounding factors we sought to investigate lineages as they had
reached similar resistance levels toward the adapted drug. The
phenotypic differences observed by Oz et al. were explained by
genotypic variations. A larger number of mutations was reported
for the strongly selected lineages including a higher variety of
mutations concerning the drug targets. These findings contrast
other studies claiming that the stronger the selection pressure,
the less evolutionary trajectories are open to meet the adaptation
requirements, resulting in fewer but more impactful mutations
in strongly evolved lineages (Barrick and Lenski, 2013; Lindsey
et al., 2013) and may result from differences in the finally evolved
phenotypes of the strains compared to the present study. In our
study we find a similar number of mutations in strongly and
mildly adapted lineages. However, when filtering our genomic
data for recurring mutations, we find a smaller number of

Frontiers in Microbiology | www.frontiersin.org 10 May 2017 | Volume 8 | Article 816

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jahn et al. Comparison of Different ALE Methods

mutations in the gradient evolved lineages compared to the
increment adapted lineages, suggesting that fewer resistance
conferring mutations are selected for under strong selection.
In spite of this small difference, the genetic similarity between
replicates within one selection approach is comparable to the
similarity between different selection approaches. These findings
suggest that ALE experiments conducted with varying protocols
are indeed comparable. Accordingly, one doesn’t loose genetic or
phenotypic information when using a high throughput applicable
increment approach compared to gradient systems.

Nonetheless, one important difference with implications for
ALE experiments was detected in this study: Lineages adapted
with the 25% increment method consistently displayed a higher
growth rate compared to the growth rate of isolates from lineages
evolved to stronger selection pressure. The growth advantage
of strains adapted with the 25% increment method can be
explained by themild selection regime that increases the selection
pressure on fitness rather than on highest resistance levels,
possibly selecting for mutations that compensate fitness costs
or generally increase the fitness. When the sequencing data
was filtered to consider only mutations that have been detected
in more than two individual lineages, clones adapted in 25%
increments carried almost all mutations that were found in the
gradient lineages. These mutations are therefore likely to be most
important for the resistance phenotype. A number of additional
mutations were solely identified in the increment lineages. These
mutations may confer resistance at a lower fitness cost or balance
out fitness disadvantages of the resistance conferring mutations.
Depending on the aim of the ALE experiment, attention should
be paid to the impact of the method on the growth rate.
Especially, if the ALE experiment is conducted to improve a
biotechnological production strain, the growth rate of the evolved
strains can be an important factor to select for (O’Brien et al.,
2016).

In case of antibiotic resistance, ALE experiments can be
useful to explore the evolutionary potential of a species to
develop antibiotic resistance. Some of the mutated genes that
were identified in this and previous studies, like the marR,
rob, or acrAB loci, have been reported to carry mutations also
in clinical isolates (Oethinger et al., 1998; Sáenz et al., 2004;
Buffet-Bataillon et al., 2012). However, othermutations identified
by ALE experiments do not occur in natural environments.
Regardless, ALE experiments can provide a better understanding
of the genetic and phenotypic flexibility of the organism and its
adaptation potential in response to challenging environmental
conditions.

We were interested to see if both, the gradient as well as
the increment approach, mimic natural occurring resistance
evolution similarly. To investigate the generality of the identified

SNPs we mined all sequenced E. coli genomes for non-
conservative SNPs in coding regions. More than 50% of the
mutated genes in both the increment 25% and gradient approach
and all of the genes that the approaches have in common overlap
with themutated genes in the database (Supplementary Figure 6),
indicating that both methodologies simulate natural resistance
evolution to a similar extend. Obviously, it remains to be clarified
if these SNPs actually confer resistance or other advantages in
the host environment. Yet, the occurrence of such mutations in
both natural isolates as well as laboratory-evolved populations
suggests a biological importance.

Our results demonstrate that key adaptations to AMK, PIP
and TET in E. coli are independent of the selection regimen and
that mutations that robustly occur regardless of the selection
regime or ALE methodology are also more likely to be selected
for in the clinic than mutations that are selected only under very
specific selection conditions.

AUTHOR CONTRIBUTIONS

MS, CM, and LJ planned the project and designed the
experiments. LJ conducted the experiments and carried out the
data analysis with help from CM. ME contributed by identifying
large insertion sequences and by writing the Material and
Methods section about his analysis. LJ wrote the manuscript,
which was critically reviewed by CM and MS.

FUNDING

This work was supported by the European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-
Curie grant agreement No 642738, MetaRNA as well from the
European Union’s Horizon 2020 (ERC-2014-StG) under grant
agreement 638902, LimitMDR. In addition, funding was received
from the Danish Free Research Council and from the Novo
Nordisk Foundation through the Novo Nordisk Foundation
Center for Biosustainability.

ACKNOWLEDGMENTS

We would like to thank A. Porse for helpful discussions and
for supplying us with an R script to determine the growth rate
accurately.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2017.00816/full#supplementary-material

REFERENCES

Achaz, G., Rodriguez-Verdugo, A., Gaut, B. S., and Tenaillon, O. (2014).
The reproducibility of adaptation in the light of experimental evolution
with whole genome sequencing. Adv. Exp. Med. Biol. 781, 211–231.
doi: 10.1007/978-94-007-7347-9_11

Anderson, W., Jansen, M. G., and Wicks, C. A. (1950). Para-aminosalicylic
acid with streptomycin in Tuberculosis. Can. Med. Assoc. J. 62,
231–235.

Ariza, R. R., Li, Z., Ringstad, N., and Demple, B. (1995). Activation of multiple
antibiotic resistance and binding of stress-inducible promoters by Escherichia

coli Rob protein. J. Bacteriol. 177, 1655–1661.

Frontiers in Microbiology | www.frontiersin.org 11 May 2017 | Volume 8 | Article 816

http://journal.frontiersin.org/article/10.3389/fmicb.2017.00816/full#supplementary-material
https://doi.org/10.1007/978-94-007-7347-9_11
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jahn et al. Comparison of Different ALE Methods

Barrick, J. E., and Lenski, R. E. (2013). Genome dynamics during experimental
evolution. Nat. Rev. Genet. 14, 827–839. doi: 10.1038/nrg3564

Bell, G., and Collins, S. (2008). Adaptation, extinction and global change. Evol.
Appl. 1, 3–16. doi: 10.1111/j.1752-4571.2007.00011.x

Bernal, M.M. (2014). The Cpx Pathway Causes Changes in Peptidoglycan Structure,
Turnover, and Recycling. Master’s thesis, University of Alberta.

Blázquez, J., Gómez-Gómez, J. M., Oliver, A., Juan, C., Kapur, V., and Martín,
S. (2006). PBP3 inhibition elicits adaptive responses in Pseudomonas

aeruginosa. Mol. Microbiol. 62, 84–99. doi: 10.1111/j.1365-2958.2006.
05366.x

Blum, P., Rudrappa, D., Singh, R., McCarthy, S., and Pavlik, B.
(2016). “Experimental microbial evolution of extremophiles,” in
Biotechnology of Extremophiles: Grand Challenges in Biology and

Biotechnology, Vol. 1, ed P. H. Rampelotto (Cham; Heidelberg; New
York, NY; London; Dordrecht: Springer International Publishing),
619–636.

Brauner, A., Fridman, O., Gefen, O., and Balaban, N. Q. (2016). Distinguishing
between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev.
Microbiol. 14, 320–330. doi: 10.1038/nrmicro.2016.34

Brook, I. (1989). Inoculum effect. Rev. Infect. Dis. 11, 361–368.
Bryson, H. M., and Brogden, R. N. (2012). Piperacillin/tazobactam. Drugs 47,

506–535. doi: 10.2165/00003495-199447030-00008
Buffet-Bataillon, S., Le Jeune, A., Le Gall-David, S., Bonnaure-Mallet, M.,

and Jolivet-Gougeon, A. (2012). Molecular mechanisms of higher mics
of antibiotics and quaternary ammonium compounds for Escherichia

coli isolated from bacteraemia. J. Antimicrob. Chemother. 67, 2837–2842.
doi: 10.1093/jac/dks321

Busse, H. J., Wöstmann, C., and Bakker, E. P. (1992). The bactericidal action
of streptomycin: membrane permeabilization caused by the insertion of
mistranslated proteins into the cytoplasmic membrane of Escherichia coli and
subsequent caging of the antibiotic inside the cells due to degradation of
these proteins. J. Gen. Microbiol. 138, 551–561. doi: 10.1099/00221287-138-
3-551

Carroll, S. P., Søgaard Jørgensen, P., Kinnison, M. T., Bergstrom, C. T.,
Denison, R. F., Gluckman, P., et al. (2014). Applying evolutionary biology
to address global challenges. Science 346:1245993. doi: 10.1126/science.12
45993

Charlesworth, B. (2009). Effective population size and patterns of molecular
evolution and variation. Nat. Rev. Genet. 10, 195–205. doi: 10.1038/nrg2526

Cohen, S. P., McMurry, L. M., Hooper, D. C., Wolfson, J. S., and Levy, S.
B. (1989). Cross-resistance to fluoroquinolones in multiple-antibiotic-
resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol:
decreased drug accumulation associated with membrane changes in
addition to OmpF reduction. Antimicrob. Agents Chemother. 33, 1318–1325.
doi: 10.1128/AAC.33.8.1318

de Visser, J. A., and Rozen, D. E. (2006). Clonal interference and the periodic
selection of new beneficial mutations in Escherichia coli. Genetics 172,
2093–2100. doi: 10.1534/genetics.105.052373

Dhawale, A., and Rath, A. (2014). Antibiotic resistance: a threat and challenge to
society. Ann. Appl. Biosci. 1, R1–R6.

Donald, P. R., and van Helden, P. D. (2009). The global burden of Tuberculosis —
combating drug resistance in difficult times. N. Engl. J. Med. 360, 2393–2395.
doi: 10.1056/NEJMp0903806

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B.,
et al. (2003). Response diversity, ecosystem change, and resilience. Front.
Ecol. Environ. 1, 488–494. doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.
0.CO;2

Eng, R. H., Cherubin, C., Smith, S. M., and Buccini, F. (1985). Inoculum effect of
beta-lactam antibiotics on Enterobacteriaceae. Antimicrob. Agents Chemother.

28, 601–606. doi: 10.1128/AAC.28.5.601
Eng, R. H., Smith, S. C., and Cherubin, C. (1984). Inoculum effect of new beta-

lactam antibiotics on Pseudomonas aeruginosa. Antimicrob. Agents Chemother.

26, 42–47. doi: 10.1128/AAC.26.1.42
Escherichia coli Str. K-12 Substr (2014). Escherichia coli Str. K-12 Substr. MG1655,

Complete Genome.

“EUCAST” (2016). EUCAST. Available online at: http://www.eucast.org/
(Accessed July, 25).

Fine, P. V. A. (2015). Ecological and evolutionary drivers of geographic
variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392.
doi: 10.1146/annurev-ecolsys-112414-054102

Frankham, R. (2005). Genetics and extinction. Biol. Conserv. 126, 131–140.
doi: 10.1016/j.biocon.2005.05.002

George, A. M., and Levy, S. B. (1983). Gene in the major cotransduction gap
of the Escherichia coli K-12 linkage map required for the expression of
chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155,
541–548.

Georghiou, G. P. (2012). Pest Resistance to Pesticides. Riverside, CA: Springer
Science and Business Media.

Girgis, H. S., Hottes, A. K., and Tavazoie, S. (2009). Genetic architecture of intrinsic
antibiotic susceptibility. PLoS ONE 4:e5629. doi: 10.1371/journal.pone.00
05629

Govan, J. R. W., and Fyfe, J. A. M. (1978). Mucoid Pseudomonas aeruginosa and
cystic fibrosis: resistance of the mucoid form to carbenicillin, flucloxacillin
and tobramycin and the isolation of mucoid variants in vitro. J. Antimicrob.

Chemother. 4, 233–240. doi: 10.1093/jac/4.3.233
Hansen, S., Lewis, K., andVulić, M. (2008). Role of global regulators and nucleotide

metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents

Chemother. 52, 2718–2726. doi: 10.1128/AAC.00144-08
Hegreness, M., Shoresh, N., Damian, D., Hartl, D., and Kishony, R. (2008).

Accelerated evolution of resistance in multidrug environments. Proc. Natl.
Acad. Sci. U.S.A. 105, 13977–13981. doi: 10.1073/pnas.0805965105

Hoffmann, A. A., and Parsons, P. A. (1997). Extreme Environmental Change and

Evolution. Cambridge, UK: Cambridge University Press.
Hu, B., Yang, Y. M., Beck, D. A. C., Wang, Q. B., Chen, W. J., Yang, J.,

et al. (2016). Comprehensive molecular characterization of methylobacterium
extorquens AM1 adapted for 1-butanol tolerance. Biotechnol. Biofuels 9:84.
doi: 10.1186/s13068-016-0497-y

Imamovic, L., and Sommer, M. O. A. (2013). Use of collateral sensitivity networks
to design drug cycling protocols that avoid resistance development. Sci. Transl.
Med. 5:204ra132. doi: 10.1126/scitranslmed.3006609

Johanson, U., and Hughes, D. (1994). Fusidic acid-resistant mutants define three
regions in elongation factor g of Salmonella Typhimurium. Gene 143, 55–59.

Kim, S., Lieberman, T. D., and Kishony, R. (2014). Alternating antibiotic
treatments constrain evolutionary paths to multidrug resistance. Proc. Natl.
Acad. Sci.U.S.A. 111, 14494–14499. doi: 10.1073/pnas.1409800111

Kohanski, M. A., DePristo, M. A., and Collins, J. J. (2010). Sublethal antibiotic
treatment leads to multidrug resistance via radical-induced mutagenesis. Mol.

Cell 37, 311–320. doi: 10.1016/j.molcel.2010.01.003
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., and Collins, J. J. (2007).

A common mechanism of cellular death induced by bactericidal antibiotics.
Cell 130, 797–810. doi: 10.1016/j.cell.2007.06.049

Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G., and Collins,
J. J. (2008). Mistranslation of membrane proteins and two-component
system activation trigger antibiotic-mediated cell death. Cell 135, 679–690.
doi: 10.1016/j.cell.2008.09.038

Laviña, M., Pugsley, A. P., and Moreno, F. (1986). Identification, mapping,
cloning and characterization of a gene (sbmA) required for microcin
B17 action on Escherichia coli K12. J. Gen. Microbiol. 132, 1685–1693.
doi: 10.1099/00221287-132-6-1685

Lázár, V., Pal, G. S., Spohn, R., Nagy, I., Horvath, B., Hrtyán, M., Busa-Fekete, R.,
et al. (2014). Bacterial evolution of antibiotic hypersensitivity.Mol. Syst. Biol. 9,
700–700. doi: 10.1038/msb.2013.57

Lee, D. H., and Palsson, B. Ø. (2010). Adaptive evolution of Escherichia

coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-
Propanediol. Appl. Environ. Microbiol. 76, 4158–4168. doi: 10.1128/AEM.00
373-10

Lennen, R. (2016). “Adaptive laboratory evolution of product-tolerant hosts for
biobased chemical production,” in 2016 SIMB Annual Meeting and Exhibition

(New Orleans, LA).
Levin, B. R., Antonovics, J., and Sharma, H. (1988). Frequency-dependent selection

in bacterial populations [and discussion]. Philos. Trans. R. Soc. B Biol. Sci. 319,
459–472. doi: 10.1098/rstb.1988.0059

Levin, B. R., Concepción-Acevedo, J., and Udekwu, K. I. (2014). Persistence:
a copacetic and parsimonious hypothesis for the existence of non-inherited

Frontiers in Microbiology | www.frontiersin.org 12 May 2017 | Volume 8 | Article 816

https://doi.org/10.1038/nrg3564
https://doi.org/10.1111/j.1752-4571.2007.00011.x
https://doi.org/10.1111/j.1365-2958.2006.05366.x
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.2165/00003495-199447030-00008
https://doi.org/10.1093/jac/dks321
https://doi.org/10.1099/00221287-138-3-551
https://doi.org/10.1126/science.1245993
https://doi.org/10.1038/nrg2526
https://doi.org/10.1128/AAC.33.8.1318
https://doi.org/10.1534/genetics.105.052373
https://doi.org/10.1056/NEJMp0903806
https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
https://doi.org/10.1128/AAC.28.5.601
https://doi.org/10.1128/AAC.26.1.42
http://www.eucast.org/
https://doi.org/10.1146/annurev-ecolsys-112414-054102
https://doi.org/10.1016/j.biocon.2005.05.002
https://doi.org/10.1371/journal.pone.0005629
https://doi.org/10.1093/jac/4.3.233
https://doi.org/10.1128/AAC.00144-08
https://doi.org/10.1073/pnas.0805965105
https://doi.org/10.1186/s13068-016-0497-y
https://doi.org/10.1126/scitranslmed.3006609
https://doi.org/10.1073/pnas.1409800111
https://doi.org/10.1016/j.molcel.2010.01.003
https://doi.org/10.1016/j.cell.2007.06.049
https://doi.org/10.1016/j.cell.2008.09.038
https://doi.org/10.1099/00221287-132-6-1685
https://doi.org/10.1038/msb.2013.57
https://doi.org/10.1128/AEM.00373-10
https://doi.org/10.1098/rstb.1988.0059
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jahn et al. Comparison of Different ALE Methods

resistance to antibiotics. Curr. Opin. Microbiol. Antimicrob. 21, 18–21.
doi: 10.1016/j.mib.2014.06.016

Levin, B. R., Perrot, V., andWalker, N. (2000). Compensatorymutations, antibiotic
resistance and the population genetics of adaptive evolution in bacteria.
Genetics 154, 985–997.

Li,W., and Godzik, A. (2006). Cd-Hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.
doi: 10.1093/bioinformatics/btl158

Li, Y., and Zhang, Y. (2007). PhoU is a persistence switch involved in persister
formation and tolerance to multiple antibiotics and stresses in Escherichia

coli. Antimicrob. Agents Chemother. 51, 2092–2099. doi: 10.1128/AAC.0
0052-07

Lieberman, T. D., Michel, J. B., Aingaran,M., Potter-Bynoe, G., Roux, D., Davis, M.
R., et al. (2011). Parallel bacterial evolution within multiple patients identifies
candidate pathogenicity genes. Nat. Genet. 43, 1275–1280. doi: 10.1038/
ng.997

Lindsey, H. A., Gallie, J., Taylor, S., and Kerr, B. (2013). Evolutionary rescue from
extinction is contingent on a lower rate of environmental change. Nature 494,
463–467. doi: 10.1038/nature11879

Linkevicius, M., Sandegren, L., and Andersson, D. I. (2013). Mechanisms
and fitness costs of tigecycline resistance in Escherichia coli. J. Antimicrob.

Chemother. 68, 2809–2819. doi: 10.1093/jac/dkt263
Liu, A., Tran, L., Becket, E., Lee, K., Chinn, L., Park, E., et al. (2010). Antibiotic

sensitivity profiles determined with an Escherichia coli Gene knockout
collection: generating an antibiotic bar code. Antimicrob. Agents Chemother.

54, 1393–1403. doi: 10.1128/AAC.00906-09
López-Maury, L., Marguerat, S., and Bähler, J. (2008). Tuning gene expression to

changing environments: from rapid responses to evolutionary adaptation. Nat.
Rev. Genet. 9, 583–593. doi: 10.1038/nrg2398

Losos, J. B. (2011). Convergence, adaptation, and constraint. Evolution 65,
1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x

Lynch, M., and Lande, R. (1993). Evolution and extinction in response to
environmental change. Biotic Interact. Glob. Change 234–50.

Macvanin, M., and Hughes, D. (2005). Hyper-susceptibility of a fusidic
acid-resistant mutant of Salmonella to different classes of antibiotics.
FEMS Microbiol. Lett. 247, 215–220. doi: 10.1016/j.femsle.2005.
05.007

Maneewannakul, K., and Levy, S. B. (1996). Identification for mar mutants among
quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents

Chemother. 40, 1695–1698.
Marcusson, L. L., Frimodt-Møller, N., and Hughes, D. (2009). Interplay in the

selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog.

5:e1000541. doi: 10.1371/journal.ppat.1000541
Matic, V., Bozdogan, B., Jacobs, M. R.,Ubukata, K., and Appelbaum,

P. C. (2003). Contribution of β-Lactamase and PBP amino acid
substitutions to amoxicillin/clavulanate resistance in β-lactamase-positive,
amoxicillin/clavulanate-resistant Haemophilus influenzae. J. Antimicrob.

Chemother. 52, 1018–1021. doi: 10.1093/jac/dkg474
Munck, C., Gumpert, H. G., Nilsson Wallin, A. I., Wang, H. H., and Sommer, M.

O. A. (2014). Prediction of resistance development against drug combinations
by collateral responses to component drugs. Sci. Transl. Med. 6:262ra156.
doi: 10.1126/scitranslmed.3009940

Nei, M., Maruyama, T., and Chakraborty, R. (1975). The bottleneck effect
and genetic variability in populations. Evolution 29, 1–10. doi: 10.2307/24
07137

O’Brien, E. J., Utrilla, J., and Palsson, B. Ø. (2016). Quantification and
classification of E. coli proteome utilization and unused protein costs across
environments. PLOS Comput Biol 12:e1004998. doi: 10.1371/journal.pcbi.
1004998

Oethinger, M., Podglajen, I., Kern, W. V., and Levy, S. B. (1998). Overexpression
of the marA or soxS regulatory gene in clinical topoisomerase mutants of
Escherichia coli. Antimicrob. Agents Chemother. 42, 2089–2094.

Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y. T., Mumcuyan, N., et al.
(2014). Strength of selection pressure is an important parameter contributing to
the complexity of antibiotic resistance evolution.Mol. Biol. Evol. 31, 2387–2401.
doi: 10.1093/molbev/msu191

Pena-Miller, R., Laehnemann, D., Jansen, G., Fuentes-Hernandez, A., Rosenstiel,
P., Schulenburg, H., et al. (2013). When the most potent combination of

antibiotics selects for the greatest bacterial load: the smile-frown transition.
PLoS Biol. 11:e1001540. doi: 10.1371/journal.pbio.1001540

Riganti, C., Mini, E., and Nobili, S. (2015). Editorial: multidrug resistance in
cancer: pharmacological strategies from basic research to clinical issues. Front.
Oncol. 5:105 doi: 10.3389/fonc.2015.00105

Ritz, C., and Streibig, J. C. (2005). Bioassay analysis using RJ Stat. Software 12, 1–22.
Ritz, C., Baty, F., Streibig, J. C., and Gerhard, D. (2015). Dose-response

analysis using R. PLoS ONE 10:e0146021. doi: 10.1371/journal.pone.01
46021

Rodriguez de Evgrafov, M., Gumpert, H., Munck, C., Thomsen, T. T., and
Sommer, M. O. A. (2015). Collateral resistance and sensitivity modulate
evolution of high-level resistance to drug combination treatment in
Staphylococcus aureus. Mol. Biol. Evol. 32, 1175–1185. doi: 10.1093/molbev/
msv006

Sáenz, Y., Briñas, L., Domínguez, E., Ruiz, J., Zarazaga, M., Vila, J., et al.
(2004). Mechanisms of resistance in multiple-antibiotic-resistant Escherichia
coli strains of human, animal, and food origins. Antimicrob. Agents Chemother.

48, 3996–4001. doi: 10.1128/AAC.48.10.3996-4001.2004
Salomón, R. A., and Farías, N. R. (1995). The peptide antibiotic microcin 25 is

imported through the tonb pathway and the SbmA protein. J. Bacteriol. 177,
3323–3325.

Sandberg, T. E., Pedersen, M., LaCroix, R. A., Ebrahim, A., Bonde, M., Herrgard,
M. J., et al. (2014). Evolution of Escherichia coli to 42◦C and subsequent genetic
engineering reveals adaptive mechanisms and novel mutations.Mol. Biol. Evol.

31. 2647–2662. doi: 10.1093/molbev/msu209
Schurek, K. N., Marr, A. K., Taylor, P. K., Wiegand, I., Semenec, L., Khaira, B. K.,

et al. (2008). Novel genetic determinants of low-level aminoglycoside resistance
in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52, 4213–4219.
doi: 10.1128/AAC.00507-08

Srinivasan, V. B., Vaidyanathan, V., Mondal, A., and Rajamohan, G. (2012). Role of
the two component signal transduction system CpxAR in conferring cefepime
and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS
ONE 7:e33777. doi: 10.1371/journal.pone.0033777

Szybalski, W., and Bryson, V. (1952). Genetic studies on microbial cross resistance
to toxic agents i.: cross resistance of Escherichia coli to fifteen antibiotics1, 2. J.
Bacteriol. 64:489.

Tamae, C., Liu, A., Kim, K., Sitz, D., Hong, J., Becket, E., et al. (2008).
Determination of antibiotic hypersensitivity among 4,000 single-gene-
knockout mutants of Escherichia coli. J. Bacteriol. 190, 5981–5988.
doi: 10.1128/JB.01982-07

Team R Core (2014). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Tenaillon, O., Rodríguez-Verdugo, A., Gaut, R. L., McDonald, P., Bennett, A. F.,
Long, A. D., et al. (2012). The molecular diversity of adaptive convergence.
Science 335, 457–461. doi: 10.1126/science.1212986

Toprak, E., Veres, A., Michel, J.-B., Chait, R., Hartl, D. L., and Kishony, R. (2012).
Evolutionary paths to antibiotic resistance under dynamically sustained drug
selection. Nat. Genet. 44, 101–105. doi: 10.1038/ng.1034

Turnidge, J., and Paterson, D. L. (2007). Setting and revising antibacterial
susceptibility breakpoints. Clin. Microbiol. Rev. 20, 391–408.
doi: 10.1128/CMR.00047-06

Wahl, L. M., Gerrish, P. J., and Saika-Voivod, I. (2002). Evaluating the impact of
population bottlenecks in experimental evolution. Genetics 162, 961–971.

Wang, Z.,Wu, J.,Zhu, L., and Zhan, X. (2016). Activation of glycerol metabolism in
Xanthomonas campestris by adaptive evolution to produce a high-transparency
and low-viscosity xanthan gum from glycerol. Bioresour. Technol. 211, 390–397.
doi: 10.1016/j.biortech.2016.03.096

Wensing, A. M., Calvez, V., Günthard, H. F., Johnson, V. A., Paredes, R., Pillay,
D., et al. (2015). 2015 Update of the drug resistance mutations in HIV-1. Top.
Antivir. Med. 24, 132-133.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY:
Springer Science and Business Media.

Wong, K. S., Snider, J. D., Graham, C., Greenblatt, J. F., Emili, A., Babu, M.,
et al. (2014). The MoxR ATPase RavA and its cofactor viaA interact with the
NADH:ubiquinone oxidoreductase I in Escherichia coli. PLoS ONE 9:e85529.
doi: 10.1371/journal.pone.0085529

Yang, L., Jelsbak, L., Lykke Marvig, R., DamkiÃęr, S., Workman, C. T.,
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