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Candida albicans is a major fungal pathogen in humans. Novel antifungal agents are
urgent demanded due to the challenges of the resistance. Antimicrobial peptides (AMPs)
are critical components of the innate immune system against pathogenic microorganism
infection. MAF-1A is a novel cationic AMP that comes from Musca domestica and
is effective against C. albicans, but the antifungal mechanism remains unclear. In this
study, we performed a transcriptomics analysis in C. albicans using RNA-seq technique
under the treatment of MAF-1A. A total of 5654 genes were identified. Among these,
1032 were differentially expressed genes (DEGs), including 575 up-regulated genes and
457 down-regulated genes. In these DEGs, genes encoding ergosterol metabolism
and fatty acid biosynthesis were identified to be significantly down-regulated, while
genes associated with oxidative stress response and cell wall were identified to be
significantly up-regulated. Using pathway enrichment analysis, 12 significant metabolic
pathways were identified, and ribosome, oxidative phosphorylation, citrate cycle were
mainly involved. The results revealed that MAF-1A induces complex responses in
C. albicans. This study provides evidence that MAF-1A may inhibit the growth through
affect multi-targets in C. albicans cells.

Keywords: Candida albicans, transcriptional responses, antimicrobial peptides, MAF-1A, RNA-Seq

INTRODUCTION

Candida albicans is an opportunistic fungal pathogen of humans that can cause human
mycoses, ranging from superficial mucosal and skin to invasive candidiasis, especially in
immunocompromised patients (Eggimann et al., 2003; Linares et al., 2013; Guilhelmelli et al.,
2016). In the past two decades, infections caused by C. albicans have increased significantly (Lo
et al., 2015). Invasive candidiasis has an estimated mortality about 40%, even with the use of
antifungal drugs (Horn et al., 2009; Lu et al., 2014). Currently, only a limited number of antifungal
agents are being used to treat these infections, including azoles, polyene, and echinocandins
drugs. The persistent use of these drugs have caused the emergence of drug-resistant strains. The
resistance and shortage of antifungal agents have potentially limited the management of infections.
Besides being pathogenic, C. albicans also provides an excellent eukaryotic model system to explore
the antifungal mechanisms of potent drugs (Khan et al., 2015).
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Recently, the therapeutic application of antimicrobial peptides
(AMPs) or their analogs have received a great deal of attention
(Cruz et al., 2014; Lakshmaiah Narayana and Chen, 2015;
Mahlapuu et al., 2016). AMPs are relatively small (less than
100 amino acid residues), cationic, amphipathic, variable in
length, sequence or structure peptides which have been isolated
from animals, plants, bacteria, or fungi (Pushpanathan et al.,
2013; Malmsten, 2014; Silva et al., 2014). AMPs are important
components of the innate immunity system against invading
pathogens. Many AMPs are effective against multi-drug resistant
(MDR) microorganism and less developing resistance due to
their distinguished mode of action (Seo et al., 2012). Thus, AMPs
could be promising candidates for developing novel therapeutic
agents against fungi.

Musca domestica antifungal peptide-1 (MAF-1), isolated from
the instar larvae of housefly, is a kind of a novel cationic
AMP with excellent antimicrobial effect (Fu et al., 2009).
In previous study, full-length of MAF-1 gene was cloned,
and bioinformatics analysis was used to explore structure
domain and its potential physiological function (Luo et al.,
2013). MAF-1A peptide was derived from the structure
domain of MAF-1 and contained 26 amino acid residues
(KKFKETADKLIESAKQQLESLAKEMK). MAF-1A showed its
remarkable antifungal effect (Luo et al., 2013; Zhou et al.,
2016), but the detailed antifungal actions of MAF-1A remain
unclear.

The classic action mechanism of AMPs is cause microbial
cell membrane damage. So far, most research has been focused
on the use of model membrane systems such as lipid vesicles,
to determine the mode of action of AMPs. Even though this
knowledge is essential in our understanding of the mode of
action of AMPs, it does not fully explain their interaction
with microbial cell membrane or the response of microbes
to the AMPs (Omardien et al., 2016). In addition, it has
been proposed that some AMPs can interact with intracellular
specific targets inducing cell damages, such as the inhibition
of DNA, RNA, protein and cell wall synthesis (Guilhelmelli
et al., 2013; van der Weerden et al., 2013; Scocchi et al., 2016;
Shah et al., 2016). The analysis of microbial transcriptome
may contribute to the understanding of their interaction
with novel AMPs (Tavares et al., 2013). The next generation
sequencing technologies for transcriptome analysis have opened
the opportunity to understand a wide variety of physiological
response of microorganism affected by drugs or environmental
conditions treatment. RNA-Seq (deep-sequencing of cDNA) has
been used successfully to identify and quantify gene expression
at a genome scale level. RNA-Seq shows significant advantages
such as sensitive, resolution and comprehensive, and is becoming
more popular for various gene expression studies (Nagalakshmi
et al., 2008; Wang et al., 2009; Nookaew et al., 2012). RNA-
Seq enables genome-wide expression studies on the cellular
responses and pathways of microbe affected by drug treatment
via differential gene expression profiling (Heo et al., 2014; Qin
et al., 2014; Le et al., 2016). This approach has already been used
in the cellular responses of C. albicans under several different
environmental conditions (Bruno et al., 2010; Cottier et al., 2015).
In the present work, we investigated the differentially expressed

genes and the pathways involved using high-throughput RNA-
Seq technique to explore the mechanisms of MAF-1A on
C. albicans.

MATERIALS AND METHODS

Strain and Growth Conditions
The C. albicans ATCC 10231 was used throughout this study.
Strain was preserved in nutrient broth supplemented with 30%
glycerol stocked and stored at−80◦C and streaked on Sabouraud
Dextrose agar (SDA) plates (Sangon, Shanghai, China) at 37◦C
when used.

Peptide Synthesis
The synthetic MAF-1A peptide is a linear peptide consisting
of a 26 amino acid sequences as follows: KKFKETADKLIESAKQ
QLESLAKEMK. Peptides were synthesized by Sangon Biotech
Co., Ltd. (Shanghai, China). The purity of peptides was
confirmed as higher than 95% using analytical reverse-phase
high-performance liquid chromatography (RP-HPLC). Peptides
were dissolved in sterilized de-ion water to 10 mg/mL and stored
−20◦C.

MIC Determinations
Antifungal activity of MAF-1A was monitored according to
Clinical and Laboratory Standards Institute (CLSI) M27-A2.
Briefly, the colonies from 24 hour cultures of C. albicans were
picked and resuspended in 0.9% sterile saline and adjusted to
0.5 Mc Farland standard (1–5 × 106 CFU/mL). The yeast stock
suspension was then diluted to obtain a starting inoculum of
0.5 × 103 to 2.5 × 103 CFU/mL. Peptides were then serially
diluted in RPMI 1640 medium (Sangon, Shanghai, China) in
volume of 100 µL per well, giving final concentrations ranging
from 5 mg/mL to 0.1 mg/mL in sterile round bottom 96-well
polypropylene microplates. Hundred microliter of standardized
yeast suspension was then added to each well. After 24 h
of incubation at 37◦C, the minimum inhibitory concentration
(MIC) was defined as the lowest drug concentration that caused
90% growth inhibition compared to drug-free growth control
well by visual evaluation. Amphotericin B (Sigma, United States)
and fluconazole (Sigma, United States) were used as controls. The
MICs were determined in triplicate.

Total RNA Extraction
The cells of C. albicans were inoculated into Sabouraud
dextrose broth (SDB) medium (Sangon, Shanghai, China) and
cultured at 37◦C for 24 h. Before C. albicans were harvested
for RNA extraction, the cells were treated with MAF-1A at
MIC for 2 h (CA_DT). The untreated cultures were used as
the control (CA_D). Total RNA was isolated with RNAiso
Plus (Takara, Dalian, China) following the manufacturer’s
instructions. Each RNA sample had an A260: A280 ratio
between 1.8 and 2.0. RNA purity was checked using the
NanoPhotometer R© spectrophotometer (Implen, CA, United
States). RNA concentration was measured using Qubit R© RNA
Assay Kit in Qubit R© 2.0 Flurometer (Life Technologies, CA,
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United States). RNA integrity was assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, United States).

cDNA Library Construction and Illumina
RNA-Seq
Libraries construction and RNA-Seq were performed by the
Novogene Corporation (Beijing, China). A total amount of
3 µg RNA per sample was used as input material for the
RNA sample preparations. Sequencing libraries were generated
using NEBNext R© UltraTM RNA Library Prep Kit for Illumina R©

(NEB, United States) following manufacturer’s recommendations
and index codes were added to attribute sequences to each
sample. Briefly, mRNA was purified from total RNA using poly-
T oligo-attached magnetic beads. Fragmentation was carried
out using divalent cations under elevated temperature in
NEB Next First Strand Synthesis Reaction Buffer. First strand
cDNA was synthesized using random hexamer primer and
M-MuLV Reverse Transcriptase (RNase H−). Second strand
cDNA synthesis was subsequently performed using DNA
Polymerase I and RNase H. Remaining over hangs were
converted into blunt ends via exonuclease/polymerase activities.
After adenylation of 3′ ends of DNA fragments, NEBNext
Adaptor with hairpin loop structure were ligated to prepare
for hybridization. In order to select cDNA fragments of
preferentially 150∼200 bp in length, the library fragments were
purified with AMPure XP system (Beckman Coulter, Beverly,
United States). Sequencing library quality was assessed on
the Agilent Bioanalyzer 2100 system. Paired-end sequencing
of cDNA was carried out with Illumina HiseqTM 2000. Raw
data was filtered by removing reads with adaptor sequences,
as well as low quality reads. Then, clean reads were aligned to
the reference genome using TopHat v2.0.12. (Trapnell et al.,
2009).

Reads Mapping to the Reference
Genome
Reference genome and gene model annotation files of C. albicans
SC5314 were downloaded from GenBank (NW_139421). Index
of the reference genome was built using Bowtie v2.2.3 and paired-
end clean reads were aligned to the reference genome using
TopHat v2.0.12. (Trapnell et al., 2009).

Analysis of Differential Expressed Genes
The expression level for each gene is determined by the numbers
of reads uniquely mapped to the specific gene and the total
number of uniquely mapped reads in the sample. HTSeq v0.6.1
was used to count the reads numbers mapped to each gene. And
then expected number of Fragments Per Kilobase of transcript
sequence per Millions base pairs sequenced (FPKM) of each gene
was calculated based on the length of the gene and reads count
mapped to this gene (Trapnell et al., 2010).

Differential expression analysis of two conditions was
performed using the DEGSeq R package (1.20.0). The P-values
were adjusted using the Benjamini and Hochberg method.
Corrected P-value < 0.005 and log2(Fold change) > 1 were set as

the threshold for significantly differential expression (Wang et al.,
2010).

Enrichment Analysis of Gene Ontology
(GO) and KEGG Pathways
Gene Ontology (GO) enrichment analysis of differentially
expressed genes (DEGs) was implemented by the GO seq (Young
et al., 2010). GO terms with corrected P-value < 0.05 were
considered significantly enriched by differential expressed genes.
KOBAS 2.0 software was used to test the statistical enrichment
of differential expression genes in KEGG pathway (Mao et al.,
2005). False discovery rate (FDR) of pathways was calculated. The
threshold of significance of pathways was set as FDR < 0.05.

Validation of RNA-Seq by quantitative
RT-PCR (qRT-PCR)
To validate the results of RNA-Seq, eight DEGs (five down-
regulated and three up-regulated) were selected for qRT-PCR.
According to the SYBR Premix Ex TaqTM Kit (Takara, Dalian,
China) protocol, the reactions were run on an ABI7300 real-
time PCR system using a 20 µL reaction system with reaction
procedures of 40 cycles of 95◦C for 5 s and 60◦C for 30 s and
72◦C for 30 s. Gene expression levels were calculated using the
2−11Ct method (Livak and Schmittgen, 2001) and normalized
to the abundance of a house-keeping gene 18S rRNA. All samples
were examined in triplicate. Target genes using primers listed in
Supplementary Table S1.

RESULTS

MIC Assay
The MIC value of the MAF-1A against C. albicans was
0.6 mg/mL.

RNA Sequencing and Gene Prediction
Approximately 50,000,000 raw reads were obtained from each
sample. After filtering by quality, 80.30 and 80.01% clean reads
from the two groups were mapped to C. albicans genome. The
profile of transcriptome sequence data was shown in Table 1.
Sequence reads have been deposited in the NCBI Sequence Read
Archive (SRA) under accession number PRJNA3751091.

1https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA375109

TABLE 1 | Profile of the transcriptome sequence data.

Sample group CA_D CA_DT

Raw reads 43101176 51894560

Clean reads 42085090 50808194

GC content (%) 37.60 37.09

Total mapped reads 33794586 (80.30%) 40651013 (80.01%)

Uniquely mapped reads 33095119 (78.64%) 40001046 (78.73%)

Multiple mapped reads 699467 (1.66%) 649967 (1.28%)
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FIGURE 1 | The comparison diagram of gene expression level. (A) FPKM (Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced)
distribution, (B) FPKM density distribution.

Transcriptional Stress Response of
C. albicans to MAF-1A
The RNA sequencing results revealed the differences in
distribution and density distribution of gene expression between
CA_DT and CA_D (Figure 1). CA_DT was detected 5612
genes expression, CA_D was detected 5546 genes expression.
There are 5504 genes co-expression in these two samples, 108
genes were specificity expressed in CA_DT and 42 genes were
specificity expressed in CA_D (Figure 2). The volcano plots of the
differentially expressed genes demonstrated that 1032 genes in
C. albicans were differentially expressed after MAF-1A treatment,
with either an increase or decrease of more than twofold (the
spots marked in red or green), including 575 up-regulated genes
and 457 down-regulated genes (Figure 3).

Verification of Differentially Expressed
Genes
To validate the RNA-Seq results, a total of eight genes were
selected including five up-regulated and three down-regulated
from DGE libraries for qRT-PCR analysis. The results indicated
the expression levels have a consistent change for both RNA-
Seq and qRT-PCR. Hence, the qRT-PCR results confirmed the
reliability of our RNA-Seq data (Figure 4).

Analysis of Differential Gene Expression
The Cell Wall Synthesis Related Genes
In this study, two genes involved in the biosynthesis of
β-glucan (KRE1, KRE6) were up-regulated 4.32-fold, 1.31-fold,
respectively (Table 2); one gene involved in the biosynthesis of
mannoprotein (MP65) was up-regulated 5.73-fold (Table 2).

FIGURE 2 | Gene expression Venn diagram. The number in each circle
represents the total number of genes that are expressed in each sample, and
the overlapping part of circles indicates that the gene is co-expressed in both
samples.

The Cell Membrane Synthesis and Stability Related
Genes
Several genes involved in ergosterol biosynthesis pathway were
down-regulated about twofold (ERG11, ERG1, ERG5, MET6,
MVD1). Among these genes, ERG11expression decreased mostly
(Table 2).

FAS1 and FAS2 are fatty acid synthesis genes, which
are involved in the membrane biosynthesis. After MAF-1A
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FIGURE 3 | The volcano plots of the differentially expressed genes. Significantly differentially expressed genes were treated with red dots (up-regulated) or
green dots (down-regulated), others indicated with blue dots. The abscissa represents fold change, and the ordinate represents statistical significance.

treatment, FAS1 and FAS2 were down-regulated 1.66-fold and
2.46-fold, respectively (Table 2).

Anti Oxidative Stress Genes
In this work, six genes (CAT1, SOD1, SOD4, SOD5, YHB1, AOX2)
were identified to be up-regulated (1.03-fold to 3.21-fold) in
C. albicans cells after MAF-1A treatment (Table 2).

Enrichment Analysis of GO and KEGG Pathways
Gene Ontology and KEGG analysis were used to classify the
DEGs in the response of C. albicans to MAF-1A. The GO
categories significantly enriched (corrected P-value < 0.05)
among those DEGs are shown in Tables 3, 4. In the
DEGs, a total of 483 up-regulated and 386 down-regulated
genes were classified into the following three functional
categories: cellular component, molecular function and
biological process, respectively. It is noteworthy that within
the biological process category of up-regulated DEGs, ribosome,
mitochondrion, mitochondrial part, mitochondrial inner
membrane, mitochondrial envelope, mitochondrial membrane,
mitochondrial membrane part were significantly enriched. The
structural constituent of ribosome, oxidoreductase activity terms
were enriched in the molecular function category. Oxidation-
reduction process, translation terms were enriched in the cellular
component category.

By enrichment analysis, up-regulated genes were involved in
11 KEGG metabolic pathways, and down-regulated genes were
involved in 1 KEGG metabolic pathway (Table 5). In the mapped
pathways of the up-regulated genes, the abundant genes mapped
onto ribosome, oxidative phosphorylation, peroxisome, carbon
metabolism and citrate cycle (TCA cycle). While, the down-
regulated genes were primarily related to proteasome.

DISCUSSION

Antimicrobial peptides are important components of natural
defenses against pathogens. The mechanism of antimicrobial
activity for these peptides is generally more complex. AMPs
were originally proposed to act via plasma membrane
permeabilization, leading to membrane rupture and rapid lysis of
microbial cells. Recently, it has been proposed that AMP driven
microbial death in addition to membrane disruption (Nguyen
et al., 2011; Pasupuleti et al., 2012). In our preliminary work,
MAF-1A was shown its remarkable activity anti-C. albicans. To
further investigate the mechanism of actions of MAF-1A, we
used RNA-Seq to study the transcriptomic profile of C. albicans
treated with MAF-1A. The RNA-Seq results showed that the
gene expression of C. albicans was extensively altered by MAF-
1A treatment. These genes that related to cell wall, plasma
membrane and anti-oxidative stress had differentially expressed
comparing to control.

The fungal cell wall is essential for sustaining cell morphology
and for protection against life threatening environmental
conditions (Bowman and Free, 2006; Ruiz-Herrera et al., 2006).
The cell wall of C. albicans contains three major macromolecules,
including mannoproteins, β-glucan and Chitin (Klis et al., 2001).
Composition of the cell wall can be quite dynamic, as it changes
during cell response to environmental stresses. C. albicans
constantly remodels the cell wall by breaking and reforming
chemical bonds within and between polysaccharides to maintain
integrity of the cell wall structure (Nather and Munro, 2008).
C. albicans could change its expression of cell wall related genes to
reduce the toxic effect of caspofungin (Liu et al., 2005; Nailis et al.,
2010). In this work, three genes involved in the biosynthesis of
cell wall were obviously up-regulated (KRE1, KRE6, MP65) after
exposure to MAF-1A. The KRE1, KRE6 encoding proteins are
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FIGURE 4 | Comparison of eight gene expression levels between RNA-Seq and qRT-PCR.

TABLE 2 | The genes up-regulated or down-regulated response to MAF-1A.

Gene name Description log2Fold_change Corrected P-value

Cell wall synthesis

KRE1 β-1,6-glucan biosynthesis 4.32 1.76 × 10−42

KRE6 β-glucan synthesis-associated protein 1.31 9.06 × 10−13

MP65 Cell surface mannoprotein 5.73 2.77 × 10−5

Cell membrane synthesis

ERG11 Lanosterol 14-alpha demethylase −2.29 8.93 × 10−30

ERG1 Squalene monooxygenase −1.30 7.30 × 10−8

ERG5 Cytochrome P450 61 −1.90 1.24 × 10−39

MVD1 Diphosphomevalonate decarboxylase −1.01 3.05 × 10−5

MET6 5-methyltetrahydropteroyltriglutamate-homocysteine
methyltransferase

−1.46 1.63 × 10−91

FAS1 Fatty acid synthase subunit beta −1.66 1.31 × 10−88

FAS2 Fatty acid synthase subunit alpha −2.46 2.39 × 10−242

Anti oxidative stress

CAT1 Peroxisomal catalase 2.63 0.00 × 100

SOD1 Superoxide dismutase [Cu-Zn] 1.34 1.07 × 10−24

SOD4 Cell surface superoxide dismutase [Cu-Zn] 4 1.05 3.86 × 10−6

SOD5 Cell surface Cu-only superoxide dismutase 5 1.91 5.54 × 10−6

YHB1 Flavohemoprotein 3.21 3.30 × 10−16

AOX2 Alternative oxidase 2, mitochondrial 1.77 1.22 × 10−32

Corrected P-value < 0.005 were set as the threshold for significantly differential expression.

involved in β-glucan biosynthesis, and MP65 encodes cell surface
mannoprotein, which plays a significant role in maintaining cell
wall integrity, morphogenesis and pathogenicity (Sandini et al.,
2011). Therefore, the results indicated that these genes may play
a role in the mitigation of cell wall damage.

The fungal plasma membrane is similar to those of other
eukaryotic cells, composed of a lipid bilayer with proteins
embedded within it. Sterols are major components of fungal

plasma membranes. The sterol present in animal plasma
membranes is cholesterol, while fungi plasma membranes
contain ergosterol (Thevissen et al., 2003). This difference in
sterol content is exploited in the mechanisms of antifungal
agents (Spampinato and Leonardi, 2013). Itraconazole, widely
used antifungal drugs, belongs to the azoles and interferes
with ergosterol biosynthesis. Up-regulation of ERG genes were
detected in C. albicans cells after exposure to Itraconazole
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TABLE 3 | The significant enrich Gene Ontology (GO) terms of up-regulated differentially expressed genes (DEGs).

Term_type GO_accession GO_term Corrected P-value

Cellular component GO:0005840 Ribosome 1.16 × 10−6

GO:0044444 Cytoplasmic part 1.20 × 10−4

GO:0030529 Ribonucleoprotein complex 1.03 × 10−3

GO:0005739 Mitochondrion 3.70 × 10−3

GO:0044429 Mitochondrial part 4.00 × 10−3

GO:0005743 Mitochondrial inner membrane 8.03 × 10−3

GO:0005740 Mitochondrial envelope 1.12 × 10−2

GO:0031966 Mitochondrial membrane 2.30 × 10−2

GO:0019866 Organelle inner membrane 2.30 × 10−2

GO:0044455 Mitochondrial membrane part 2.78 × 10−2

GO:0005737 Cytoplasm 3.11 × 10−2

Molecular function GO:0003735 Structural constituent of ribosome 1.16 × 10−6

GO:0016491 Oxidoreductase activity 6.11 × 10−6

GO:0005198 Structural molecule activity 1.02 × 10−3

GO:0005215 Transporter activity 5.19 × 10−3

GO:0022857 Transmembrane transporter activity 9.31 × 10−3

Biological process GO:0055114 Oxidation–reduction process 1.83 × 10−4

GO:0006412 Translation 4.36 × 10−3

GO:0055085 Transmembrane transport 4.14 × 10−2

Corrected P-value < 0.05 were set as the threshold for significantly enriched.

TABLE 4 | The significant enrich GO terms of down-regulated DEGs.

Term_type GO_accession GO_term Corrected P-value

Cellular component GO:0005839 Proteasome core complex 1.27 × 10−2

GO:0000502 Proteasome complex 2.34 × 10−2

Molecular function GO:0003824 Catalytic activity 5.27 × 10−4

GO:0004298 Threonine-type endopeptidase activity 3.02 × 10−3

GO:0070003 Threonine-type peptidase activity 3.02 × 10−3

Biological process GO:1901564 Organonitrogen compound metabolic process 7.91 × 10−3

GO:0008152 Metabolic process 8.95 × 10−3

GO:0044281 Small molecule metabolic process 1.76 × 10−2

GO:0044710 Single-organism metabolic process 1.76 × 10−2

Corrected P-value < 0.05 were set as the threshold for significantly enriched.

in vitro (De Backer et al., 2001). On the contrary, in vitro
exposure of C. albicans to amphotericin B (AMB) is correlated
with under-expression of ERG genes (Liu et al., 2005). Binding
to ergosterol is sufficient for antifungal activity of AMB and
therefore considered the primary mode of fungicidal action (Gray
et al., 2012). Besides, AMPs could kill the target cells by disrupting
the integrity of fungal membranes (Bahar and Ren, 2013). In
the current study, several genes (ERG11, ERG1, ERG5, MET6,
MVD1) involved in ergosterol biosynthesis pathway were under-
expression. The results indicated that MAF-1A could interfere
with ergosterol biosynthesis. We speculate that down-regulation
of certain ergosterol biosynthesis genes may reduce the binding
of MAF-1A to ergosterol. In addition, FAS1 and FAS2 involved
in fatty acid biosynthesis were down-regulated, indicating the
composition in cell membrane was also affected by the presence
of MAF-1A.

ROS, such as hydrogen peroxide and hydroxyl radicals,
cause damage to proteins, lipids and nucleic acids, resulting in

irreversible damage and loss of viability. A well-characterized
response of eukaryotic microbes to ROS is the rapid induction
of mRNAs that encode oxidative stress detoxification and
repair proteins. These include catalase (CAT1), glutathione
peroxidase (GPX) and superoxide dismutase (SOD) antioxidant-
encoding genes (Dantas Ada et al., 2015). Various antifungal
agents have been confirmed to cause oxidative damage to
C. albicans (Delattin et al., 2014). For example, a number
of genes involved in oxidative stress response (YHB1, CTA1,
AOX1, and SOD2) were found to be up-regulated upon
AMB treatment (Liu et al., 2005). In this research, such
oxidative stress-responsive genes in C. albicans are also
up-regulated following exposure to MAF-1A. These genes
included CAT1, SOD1, SOD4, SOD5, AOX2, and YHB1,
encodes catalase, superoxide dismutase, alternative oxidases and
flavohemoprotein, respectively.

The significantly enriched GO term in the cellular component
category suggest that nearly all cellular components were
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TABLE 5 | Differentially expressed genes were involved in significant KEGG metabolic pathways.

Regulated Term ID Input number Background number Corrected P-value

Up Ribosome cal03010 31 140 3.34 × 10−5

Oxidative phosphorylation cal00190 26 129 6.17 × 10−4

Peroxisome cal04146 18 71 6.52 × 10−4

Fatty acid degradation cal00071 11 32 2.02 × 10−3

Valine, leucine, and isoleucine degradation cal00280 9 27 7.74 × 10−3

Glyoxylate and dicarboxylate metabolism cal00630 10 34 7.74 × 10−3

Citrate cycle (TCA cycle) cal00020 12 52 1.24 × 10−2

Carbon metabolism cal01200 26 180 1.63 × 10−2

Alanine, aspartate, and glutamate metabolism cal00250 10 47 4.02 × 10−2

Fatty acid metabolism cal01212 10 50 4.80 × 10−2

Propanoate metabolism cal00640 6 20 4.80 × 10−2

Down Proteasome cal03050 20 63 2.89 × 10−4

Corrected P-value < 0.05 were set as the threshold for significantly enriched.

FIGURE 5 | Schematic overview of the proposed mechanisms of action of MAF-1A.

affected including the ribosomes, mitochondrion, cytoplasm,
and organelle inner membrane. The significant enrichment of
GO terms associated with molecular function indicates that
the transcription levels of structural constituent of ribosome,
oxidoreductase, structural molecule activity, transmembrane
transporter genes were significantly changed. In addition, KEGG
analysis showed that twelve metabolic pathways were affected in
C. albicans upon MAF-1A treatment. Three metabolic pathways,
including “ribosome”, “oxidative phosphorylation”, and “citrate
cycle”, are the metabolic pathways of protein biosynthesis,
cellular respiration and ATP generation.

It is widely accepted that membrane interaction is a key
factor for antimicrobial activity of AMPs. Furthermore, AMPs
can also act up on multiple cell targets, involving a mixed
multi-hit mechanism (Guilhelmelli et al., 2013; van der Weerden

et al., 2013; Silva et al., 2014; Shah et al., 2016). Considering
the changes of expression pattern, it is strongly suggested
that C. albicans inhibition caused by MAF-1A should be a
result of multiple and complementary actions, involving in
cell wall, plasma membrane, as well as protein synthesis and
energy metabolism (Figure 5). It should be noted that this
study has examined only on transcriptional level and further
experiments are required to determine the anti-C. albicans key
mechanisms.

CONCLUSION

We analyzed the gene expression changes for C. albicans under
treatment of MAF-1A using RNA-seq. The results from this study

Frontiers in Microbiology | www.frontiersin.org 8 May 2017 | Volume 8 | Article 894

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00894 May 16, 2017 Time: 15:44 # 9

Wang et al. Transcriptional Responses of C. albicans to MAF-1A

suggest that MAF-1A induces complex responses in C. albicans
and MAF-1A has the potential to inhibit C. albicans
growth through affect multi-targets of C. albicans cells.
This study provides important insights into the mechanisms
of action of MAF-1A and the responds of C. albicans
under AMPs stress. However, further studies are needed to
determine the key mechanisms that C. albicans responses to
MAF-1A.
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