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Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse
array of large molecules, collectively called extracellular polymeric substances (EPSs)
or simply exopolymers. These secretions facilitate attachment to surfaces that lead
to the formation of structured ‘biofilm’ communities. In open-water environments,
they also lead to formation of organic colloids, and larger aggregations of cells,
called ‘marine snow.’ Secretion of EPS is now recognized as a fundamental microbial
adaptation, occurring under many environmental conditions, and one that influences
many ocean processes. This relatively recent realization has revolutionized our
understanding of microbial impacts on ocean systems. EPS occur in a range of
molecular sizes, conformations and physical/chemical properties, and polysaccharides,
proteins, lipids, and even nucleic acids are actively secreted components. Interestingly,
however, the physical ultrastructure of how individual EPS interact with each other
is poorly understood. Together, the EPS matrix molecules form a three-dimensional
architecture from which cells may localize extracellular activities and conduct
cooperative/antagonistic interactions that cannot be accomplished efficiently by
free-living cells. EPS alter optical signatures of sediments and seawater, and are involved
in biogeomineral precipitation and the construction of microbial macrostructures, and
horizontal-transfers of genetic information. In the water-column, they contribute to
the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface
microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during
later-stages of phytoplankton blooms as an excess metabolic by product and releases
a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some
EPS are highly labile carbon forms, while other forms appear quite refractory to
degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer
of environmental contaminants, and may provide a protective refugia for pathogenic
cells within marine systems; one that enhances their survival/persistence. Finally, these
secretions are prominent in ‘extreme’ environments ranging from sea-ice communities to
hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems.
This overview summarizes some of the roles of exopolymer in oceans.
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OVERVIEW

Microorganisms (e.g., bacteria, archaea, microeukaryotes) reside
in ocean systems in an assortment of physical states ranging from
free-living cells to complex communities attached to surfaces and
to each other (Moran, 2015; Brussaard et al., 2016). Over the
span of different ocean environments, microbial flora take up
dissolved organics and ions, and then secrete polymeric organic
compounds. These secretions, called exopolymers or extracellular
polymeric substances (EPSs), are abundant and become mixed
with other forms of organic matter within ocean systems. It
was recognized early on, that under the fluctuating, and often
less-predictable conditions of natural systems (compared to those
of a laboratory culture flask), the attachment of microbes to
surfaces, or to each other, offers a degree of environmental
stability not experienced by free-living (non-attached) cells
(ZoBell and Allen, 1935). An initial understanding of the
purposeful secretion of EPS and their potential stabilizing effects
for microbial cells initially emerged during the last century. It
is now realized and mostly accepted that many bacteria and
other microorganisms occur in a biofilm state; either attached
to surfaces or as suspended-aggregates in the water column.
EPS, the subject of this overview, consist of a wide range of
molecules and provide selective adaptations for the cells that
produce them, which in turn, influence broader ocean processes
(Figure 1).

EPS: A MICROBIAL ADAPTATION FOR
AGGREGATION AND ATTACHMENT

Extracellular polymeric substance are purposefully produced by
microbes: (a) as secretions of biofilms that secure attachment and
enhance their local environment, and/or (b) as metabolic-excess
waste products. The differences between these two processes is
easily discernable but becomes important when addressing the
provenance of organic matter and the roles that EPS contribute
to ocean systems. It is important to point out that EPS are not
an essential component to microbial life (i.e., cells can survive and
grow without them), but rather their secretion strongly enhances
the survival, metabolic efficiency and adaptation of cells.

The Biofilm State
The term ‘biofilm’ was coined long ago (Costerton et al., 1987),
and refers to microbial cells that have attached to a surface
or aggregated with each other, and have secreted a gelatinous
matrix of EPS. The ability of a microbial cell, such as a
bacterium, to attach, secrete EPS and form a biofilm under
laboratory conditions, is well-established. The secretion of EPS
(by cells) is a key emergent property of the biofilm (Flemming
and Wingender, 2010; Flemming et al., 2016); the property
that directly influences adaptations that cells utilize to enhance
their efficiency and survival. The secretion of an EPS matrix

FIGURE 1 | Major locations of extracellular polymeric substances (EPSs) in Oceans.
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represents, in the broadest sense, an extension of the cell.
The presence of EPS facilitates the self-organization of cells
into localized communities, and provides biofilm cells with an
enhanced capability for: trapping other organics and localizing
their digestion by extracellular enzymes, coordinating cell–cell
chemical communication [quorum sensing (QS)], facilitating
gene-exchange, and provides a degree of physical stability. The
EPS often form a localization matrix for other molecules, keeping
them in spatial proximity to cells where they can be efficiently
utilized.

It is now generally recognized within microbiology that the
‘biofilm state’ is an omnipresent feature of microbial flora in
most environments (Hall-Stoodley et al., 2004). Biofilms occur
under a wide range of conditions and environments, and whose
influences span aquatic, terrestrial, the epi- and endo-biont
communities of plants and animals, which can be commensal,
symbiotic or pathogenic. The cells within a biofilm can move,
and periodically reorient themselves in relation to one another,
and in doing so can resist invasion by other cells (Houry et al.,
2012). The EPS matrix of biofilms provides a three-dimensional
architecture framework that allows the arrangements of cells
movements relative to other microbes as well as positioning
among sharp geochemical gradients (Decho, 2000b). This will
not be discussed further here, but directly contributes to the
remarkable plasticity of biofilm cells. The EPS form a matrix
of largely anionic molecules near cells, affording them with a
proximal environment that is more stabilizing, and conducive to
manipulation by the cell (Table 1), and one that contributes to
broader ocean processes. However, in this overview we will not
discuss biofilms as systems, except with regard to their secretion
of EPS.

Finally, it is important to note that in ocean systems,
the microbial communities of aggregates suspended in the
water-column, and the sea-surface slick communities of oceans
are also biofilms, since these communities contain EPS, and
exhibit differing levels of organization. EPS are also secreted as a
‘metabolic by product.’ These are most apparent during the later
stages of phytoplankton blooms, and will be discussed further
below. Taken together, microbial extracellular secretions are now
thought to comprise a large portion of the bioavailable carbon
pool in oceans, especially in dissolved forms. The total amount
of microbially produced EPS, although difficult to measure
accurately and precisely, is likely to be very substantial.

DISSOLVED AND PARTICULATE
ORGANIC CARBON IN THE OCEAN

Organic matter in seawater constitutes a complex mixture of
compounds in a dissolved and particulate form – respectively,
dissolved organic matter (DOM) and particulate organic matter
(POM). Both forms serve a source of carbon and nutrients
to heterotrophic microorganisms, including to mixotrophic
eukaryotic phytoplankton and filter feeders. DOM is the
dominant form of carbon in the oceans that can originate from
any number of sources, much of which is produced in situ by
marine microorganisms (largely eukaryotic phytoplankton and

bacteria) and is derived from terrestrial inputs via transportation
from river effluents and surface runoff. DOM comprises up to
700 Gt of carbon in the ocean, which is a staggering amount
of dissolved organic carbon (DOC); so much so that 1% annual
change of it in the ocean can produce as much CO2 as that from
fossil fuel combustion per annum (Hedges, 2002). Up to 70%
of DOM in the oceans averages a molecular weight of <1 kDa
and is defined as low-molecular-weight DOM (Benner, 2002),
the bulk of which is refractory (Bauer et al., 2002) and difficult
to chemically characterize down to the molecular level. The
high-molecular-weight fraction of DOM (>1 kDa) in the oceans
contributes about 30% of DOC. It is more labile and thus more
readily degraded (Amon and Benner, 1994; Guo et al., 1994).

Depending on its physical state in seawater (gel, colloidal,
or particulate form), DOC/POC can serve as a surface to
which microorganisms attach. Marine snow, which comprises
aggregates of >500 µm, is formed in the upper water-column
when dead and dying phytoplankton cells come together with
other planktonic microorganisms within a matrix of biopolymers
(Alldredge et al., 1993; Tiselius and Kuylenstierna, 1996). Marine
snow is one form of POC that is a key component of the biological
pump in the ocean that participates in the redistribution of
carbon in marine systems and principally in the flux of fixed
carbon to the sea floor (Shanks and Trent, 1980; Shanks and
Reeder, 1993; Long and Azam, 2001b). The processing of organic
matter, such as marine snow, by bacteria in the ocean significantly
affects its vertical flux from the upper water column to the
ocean floor, and in turn impacting the global cycling of carbon
and the planet’s climate (Simon et al., 2002). The transport of
organic carbon via sinking of POC from the sea surface to the
seafloor is another major component of the “biological pump,”
which globally contributes in the exports of ca. 10 Gt C per
year from the euphotic zone and accounts for 20% of ocean
primary production (Treguer et al., 2003). However, at depths
approaching 2000 m, this flux or organic carbon decreases to
about 1% as the other 19% is mineralized and cycled by the
“microbial loop.”

In oceanography, organic matter in seawater is operationally
defined as “dissolved” (i.e., DOM) if it passes through a
0.7 µm pore size filter; that which is retained on the filter
is defined as POM. The diversity of dissolved organic carbon
in seawater ranges from ‘truly’ dissolved molecules, such as
glucose, to colloidal and transparent gel-like matter, and can
also include microorganisms (e.g., micro-algae, bacteria, archaea,
viruses) if they too pass through a 0.7 µm pore size filter.
The introduction of sensitive analytical techniques for analyzing
seawater, such as high-performance liquid chromatography
(HPLC) (Mopper et al., 1992) have increased our understanding
of the major classes of DOM in the ocean. Methods to
recover and characterize DOM and POM are described by Wurl
(2009).

Water Column
DOC and POC
The world’s oceans contain a total DOC content that is
comparable in mass to the carbon in atmospheric CO2
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TABLE 1 | Major EPS physical/chemical properties and functions and influence(s) on ocean processes.

EPS property Influence on Ocean process Reference∗

Physical state

Gel/solution state: -Aggregation- formation of colloids, TEP, and marine snow;
-Contribution to carbon flux;

-Alldredge et al., 1993; Verdugo, 1994; Passow, 2002;
Simon et al., 2002; Verdugo and Santschi, 2010;

-Long and Azam, 2001a; Engel et al., 2004; Wurl, 2009;

Amphiphilic: -Dispersion of oil/ MOS and other hydrophobic
contaminants;

-Hydrophobic microdomains/contaminants;
-Sea surface slicks and aerosols;

-Niu et al., 2011; Passow et al., 2012;
Gutierrez et al., 2013; Valentine et al., 2014;
Daly et al., 2016;

-Decho, 2000b; Lawrence et al., 2007, 2016;
-Kuznetsova et al., 2005; Facchini et al., 2008;
Leck and Bigg, 2008; Wurl and Holmes, 2008;
Fuentes et al., 2010

Chemical composition

Degradability -Consumer food source;
-DOM/POM turnover/refractory OM pool;

-Decho and Moriarty, 1990; Decho and Lopez, 1993;
Schlekat et al., 1998, 1999, 2000; Selck et al., 1999;

-Ogawa et al., 2001; Benner, 2002; Decho et al., 2005;
Repeta and Aluwihare, 2006; Walker et al., 2016;

Reactive groups -Sorption of organic- /inorganic- ions;
-Enhancement of iron bioavailability;
-Biogeomineral precipitation;

-Bhaskar and Bhosle, 2006; Zhang et al., 2008;
Braissant et al., 2009; Gutierrez et al., 2012;
Deschatre et al., 2013;

-Boyd et al., 2007; Hassler et al., 2011b;
-Reid et al., 2000; Arp et al., 2001;
Kawaguchi and Decho, 2002a; Dupraz et al., 2009;
Obst et al., 2009

Excess metabolite -Secretion by late-stage plankton blooms; -Aluwihare et al., 1997; Bhaskar and Bhosle, 2005;

Protection/enhancement of microbial activities

Diffusion-slowing/localization close to cells: -e-Enzymes and hydrolysis products;
-Quorum sensing signals;
-Enhancement of microscale gradients;
-Lipid vesicles and antibiotics;

-Smith et al., 1992; Stewart, 2002;
Flemming and Wingender, 2010; Jatt et al., 2015;
Sutherland, 2016;

-Decho et al., 2009; Hmelo et al., 2011; Decho, 2015;
- Visscher and Stolz, 2005; Vasconcelos et al., 2006;
-Mashburn and Whiteley, 2005; Schooling et al., 2009;
Biller et al., 2014;

Sorption/trapping: -Concentration of viruses/phages;
-Larval settlement cues;

- Drake et al., 2007; Dupuy et al., 2014;
Guizien et al., 2014;

-Holmström et al., 2002; Franks et al., 2006;
Tran and Hadfield, 2011; Nielsen et al., 2015;

Stickiness/cohesiveness: -Biofilm and microbial mat formation;
-Sediment stabilization;
-Biofouling and microbial metal corrosion;

- Rougeaux et al., 2001; Goh et al., 2009;
Moppert et al., 2009; Benninghoff et al., 2016;
Flemming et al., 2016;

- Paterson et al., 2008; Gerbersdorf et al., 2009;
Grabowski et al., 2011; Yang et al., 2016;

-de Nys et al., 2009; Camacho-Chab et al., 2016;

Optical transparency - Enhanced forward-scattering of photons; -Decho et al., 2003;

Protection -Hydrothermal vents;
-Protection from grazing;
-Antifreeze protection

-Rougeaux et al., 2001; Guezennec, 2002;
-Plante, 2000; DePas et al., 2014;
-Marx et al., 2009; Underwood et al., 2010; Liu et al., 2013;
Ewert and Deming, 2014; Boetius et al., 2015;

CNN, cloud condensation nuclei; e-enzymes, extracellular-enzymes; DOM/POM, dissolved/particulate organic matter; MOS, marine oil snow; TEP, transparent exopolymer
particles; UV, ultraviolet; ∗references are examples and not all-inclusive.

(Hansell and Carlson, 1998). The oceanic DOC pool comprises
a wide spectrum of compounds, much of which is chemically
uncharacterized – it could be regarded as a ‘black hole’ in
terms of our relatively poor understanding of its chemical
composition and from what biogenic sources this massive pool of
organic carbon molecules originate. At least among the chemical
constituents of oceanic DOC that have been characterized, three
major compound classes have been identified: carbohydrates
(mono- and polysaccharides or EPS), proteins, and lipids. Much
of the DOC in the ocean water column exists as EPS biopolymers

(ca. 10–25% of total oceanic DOM) that undergo reversible
transition between colloidal and dissolved phases (Verdugo,
1994; Chin et al., 1998). Based on its predominance throughout
the world ocean, it has important implications in microbial
interactions and biogeochemical cycles.

Extracellular Polymeric Substance
The synthesis and extracellular release of EPS by eukaryotic
phytoplankton and bacteria forms a major component to the total
DOC pool in the ocean (Verdugo, 1994; Aluwihare et al., 1997).
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EPS can serve a variety of functions, such as in the binding
and fate of trace metal-nutrient species, the solubilisation
of hydrophobic organic chemicals, and in biofilm formation
(Decho, 1990; Santschi et al., 1998). Compared to EPS produced
by marine eukaryotic phytoplankton (Bhaskar and Bhosle, 2005)
and non-marine bacteria (Ford et al., 1991), EPS produced by
marine bacteria generally contains higher levels of uronic acids,
notably D-glucuronic and D-galacturonic acid (Kennedy and
Sutherland, 1987). This renders these macromolecules highly
polyanionic (negatively charged), which may be attributable to
any number of anionic groups (e.g., COO−, C–O−, SO4

−)
and consequently quite reactive in their potential to interact
with other chemical species (Kennedy and Sutherland, 1987).
Nonetheless, the EPS released by some eukaryotic phytoplankton
species can also be rich in uronic acids, such as that produced by
the coccolithophore Emiliania huxleyi, which contains up to 20%
galacturonic acids of total sugar content (De Jong et al., 1979).

The polyanionic nature of EPS serves important ecological
functions in marine systems. These include microbial
adhesion and biofilm formation (Thavasi and Banat, 2014),
the emulsification of hydrocarbon oils and influencing their
biodegradation (Gutierrez et al., 2013), or mediating the fate and
mobility of heavy metals and trace metal nutrients (Bhaskar and
Bhosle, 2005; Gutierrez et al., 2008, 2012). This wide spectrum
of functional activity is reflected not merely in the complex
chemistry of these molecules, but also in the diversity of bacterial
genera producing them (Thavasi et al., 2011). Overall, the
composition of marine EPS varies due to the producing species
and physiological stage (Myklestad, 1977; Grossart et al., 2007).

A number of reports have described marine bacterial EPS
binding heavy and toxic metal ions such as Cd, Cr, Pb, Ni,
Cu, Al, and Ur (Zosim et al., 1983; Beech and Cheung, 1995;
Schlekat et al., 1998; Iyer et al., 2005; Bhaskar and Bhosle, 2006;
Gutierrez et al., 2008). Whilst the rationale to many of these
studies was commercial, a few have addressed the ecological
implications of marine EPS in biogeochemical cycles. In two
studies by Loaec et al. (1997, 1998), the authors reported on the
heavy metal-binding capacity of EPS produced by hydrothermal
vent bacteria, and showed that this might represent a survival
strategy for the bacteria by reducing their exposure to toxic
metals released from the hydrothermal vents. Major elemental
constituents of seawater, such as Na, Mg, Ca, K, Sr and Si, have
been shown to be adsorbed by marine bacterial EPS (Gutierrez
et al., 2008). What ecological implications this may have in
marine systems, or indeed to the producing organisms, remains
to be more-fully understood.

A key role of polyanionic EPS, particularly in the euphotic
zone, is in its potential role in controlling soluble iron (Fe3+)
bioavailability. Studies in recent years have shown single anionic
residues, such as glucuronic and galacturonic acids (Hassler and
Schoemann, 2009; Hassler et al., 2011b), and purified marine
bacterial EPS containing high levels of uronic acids (Gutierrez
et al., 2008; Hassler et al., 2011a), can effectively bind Fe3+

and promote the uptake of this trace metal by eukaryotic
phytoplankton (Hassler et al., 2011b; Gutierrez et al., 2012). The
implications of this are significant because of the abundance of
EPS in the ocean (Verdugo et al., 2004) and because Fe3+ is an

essential trace metal that limits primary production in up to 40%
of the open ocean (Martin et al., 1994; Boyd et al., 2007).

A large fraction of the EPS produced by bacteria in the ocean
is of glycoprotein composition (Long and Azam, 1996; Verdugo
et al., 2004). The amino acid and peptide components found
associated with these glycoprotein biopolymers have been shown
to confer amphiphilic characteristics to these macromolecules
(Verdugo et al., 2004; Gutierrez et al., 2009), and which could
explain, at least in part, their ability to interact with hydrophobic
species, such as oil hydrocarbons.

Transparent Exopolymer Particle
A special class of EPS that are described as mucopolysaccharides
is transparent exopolymer particles (TEPs). It is operational
defined based on being retained by a filter with a pore size of
>0.4 µm (Alldredge et al., 1993), and based on this, TEP are
defined as gel particles. TEP exists in the water column suspended
in colloidal form, likely formed via the aggregation of smaller
EPS molecules (Engel et al., 2004). Aggregation may be mediated
by the bridging of divalent cation (Ca2+, Mg2+) and half-ester
sulfate (OSO3

−) moieties of acidic monomers that constitute
individual EPS molecules. TEP is transparent, but because these
gel particles are rich in acidic sugars they can be observed under
the light microscope after staining with the cationic copper
phthalocyanine dye Alcian Blue at pH 2.5 (Alldredge et al., 1993).

The abundances of TEP in the ocean water column are
on average in the order of 106 per L of seawater, and can
reach as high as 108 per L (Passow, 2002; Bhaskar and Bhosle,
2005), particularly during periods of phytoplankton blooms. The
contribution of TEP to the pool of POC in the upper water
column in the Atlantic and Adriatic during certain periods of
the year has been shown to be quite significant (Engel and
Passow, 2001). A fraction of the TEP pool in the ocean is
proteinaceous. It is referred to as Coomassie stainable particles
(CSPs) because these gel particles can be stained with the amino
acid-specific dye Coomassie Brilliant Blue and observed under
the light microscope (Long and Azam, 1996). The abundances of
CSP in coastal waters range between 106 and 108 per L of seawater
(Long and Azam, 1996).

Transparent exopolymer particle contribute significantly to
what is described as the marine gel phase. Verdugo et al. (2004)
suggested this phase to span a large size spectrum, from colloids
to particles of several 100s of micrometers. Its formation has
been described to originate from the spontaneous aggregation
of DOM molecules into POM within minutes in seawater (Chin
et al., 1998) – a process that may involve crosslinks facilitated by
cation bridging between DOM molecules.

Microbial Associates
Particulate organic matter can be described as a “hot spot”
for microbial (esp. bacterial) activities in the water column,
containing a rich microbial community with abundances
reaching up to two orders of magnitude higher than in the
surrounding seawater environment (Alldredge et al., 1986;
Herndl, 1988). The establishment of a bacterial community
within and surrounding (biofilm) POM leads to various
levels of microbial interaction that include mutualism and
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antagonism (Long and Azam, 2001a), as well as cooperative
behavior such as QS (Gram et al., 2002). A study assessing
the phylogenetic diversity of POM-associated versus free-living
bacteria from a site ca. 5 km offshore the Santa Barbara
coast revealed distinct differences between these communities,
with primarily members of the Cytophaga, Planctomyces, and
Gammaproteobacteria dominating aggregate particles, whereas
Alphaproteobacteria dominated the free-living fraction (DeLong
et al., 1993). Bacteria associated with POM have been shown
to exhibit high activities for a range of extracellular enzymes
(Hoppe et al., 2002; Simon et al., 2002), likely contributing to
the hydrolysis of the POM aggregates. Whilst rich in microbial
diversity and abundance, POM accounts for only <10% of total
bacterial abundance and production in the marine water column,
with the majority of bacterial cells occurring in a free-living
state.

Studies using oxygen microelectrodes to measure dissolved
oxygen in POM aggregates have shown that even the tiniest
of marine snow particles can contain anoxic environments
(Alldredge and Cohen, 1987; Alldredge and Silver, 1988;
Ploug et al., 1997; Ploug, 2008). The high extracellular
enzyme activities by bacteria associated with POM will deplete
oxygen concentrations that create anoxic micro-niches within
the aggregates, potentially supporting the growth of obligate
anaerobic or microaerophilic microorganisms (Bianchi et al.,
1992). It may therefore, be expected that diverse aerobic
and anaerobic microorganisms associated with marine snow
aggregates would colonize different niches of the aggregates.
The formation of an oxygen gradient, which is increasingly
more anoxic toward the interior of the aggregates, would pose a
strong influence on the stratification of the microbial community.
Essentially, the interior of aggregates will be enriched with
obligate and/or facultative anaerobes.

Air–Water Interface
Surface Water Droplet Formation, Sea Spray, and
Cloud Formation
Biological processes on the sea surface of the ocean can have
a direct effect on atmospheric processes, such as modulating
CO2 exchange and release of cloud condensation nuclei (CCN),
that in turn influence the Earth’s climate. CCN are atmospheric
particles that serve as nuclei for the formation of cloud droplets
by taking up water vapor because they are sufficiently soluble.
In the past decade there has been an increasing body of
evidence supporting the hypothesis that atmospheric marine
aerosols contain the same organic species that are found in
oceanic DOM (Leck and Bigg, 2005; Bigg, 2007; Facchini et al.,
2008). Seawater DOM, much of which comprises phytoplankton
exudates and bacterial EPS, can be ejected into the atmosphere
when bubbles at the sea surface burst (Bigg, 2007; Leck and
Bigg, 2008). Bubbles can form by a number of physical forces
at the sea surface, ranging from raindrops to breaking waves,
which then burst and produce submicron droplets that disperse
as aerosol into the atmosphere and carrying with it marine
organic species such as microbial cells and DOM. A study
by Kuznetsova et al. (2005) showed that TEP and CSP can

accumulate in the sea surface microlayer and subsequently,
through bubble bursting, become transported to the atmosphere
as marine aerosol. The authors showed that the aerosols
contained a large number of semitransparent gel-like particles,
in addition to microorganisms, organic and inorganic matter.
The semitransparent gel-like particles (primarily TEP and CSP)
in the aerosols all contained amino acids, and based on D/L
ratios of these acids it was suggested that they originated from
phytoplankton exudates.

Several studies have shown that the organic species entrained
within marine aerosols collected from various remote ocean
sites are of a size range between 70 and 200 nm in diameter.
The dominant size range between 50 and 100 nm (Tyree et al.,
2007; Fuentes et al., 2010; Hultin et al., 2010), is reminiscent of
EPS gels found on the sea surface (Bigg, 2007; Bigg and Leck,
2008; Leck and Bigg, 2008). In a review by Hawkins and Russell
(2010) covering over 10 years of measurements of ocean-derived
aerosol, the authors concluded that the organic species within
marine aerosol is composed of EPS, proteins and amino acids,
as well as microorganisms and their components. Facchini et al.
(2008) suggested that the solubility continuum of phytoplankton
exudates found in seawater is also reflected in marine aerosol, and
there is a growing body of evidence supporting the hypothesis
that phytoplankton exudates contribute to the formation of CNN
(O’Dowd et al., 2004; Russell et al., 2010). Upon its entry into the
atmosphere through bubble bursting, the entrained organic gel
aggregates within the aerosol particles either directly contribute
to the CCN pool in the marine boundary layer (MBL) or after
they are degraded by ultraviolet light or acidification in the
atmosphere.

Recent research by the DROPPS consortium, funded through
the Gulf of Mexico Research Initiative (GOMRI) program, is
carrying out experiments attempting to recreate the sea surface
microlayer to investigate the potential for petrocarbon (crude
oil) to enter the atmosphere. Initial results of this work reveal
that crude oil droplets, formed by treatment with dispersants,
can burst through physical forces and form aerosolized droplets
containing crude oil. This oil-containing aerosol could be carried
long distances by wind in the atmosphere and potentially pose
health threats to humans and wildlife when inhaled or upon
coming in contact with skin.

Marine Oil Snow
Marine oil snow (MOS) is essentially marine snow, with the
exception that it distinctively contains oil hydrocarbons. Current
knowledge recognizes its formation to be confined to the sea
surface where oil slicks form in the event of an oil spill, but
further work is needed to determine if MOS can also form in
the subsurface. MOS can be described as a mucilaginous organic
matter with a “fluffy” or gelatinous off-white appearance that
contains oil droplets embedded within its amorphous matrix.
Previous reports described evidence of MOS formation during
the Ixtoc-I (Boehm and Fiest, 1980; Jernelöv and Lindén, 1981;
Patton et al., 1981) and Tsesis (Johansson et al., 1980) oil
spills (Teal and Howarth, 1984). However, MOS only recently
received considerable attention when copious quantities of it, of
macroscopic cm-size dimensions, were observed within 2 weeks
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FIGURE 2 | Formation of marine oil snow (MOS). (A) A roller-bottle
incubation showing the formation of MOS in synthetic seawater amended with
crude oil and inoculated with the EPS-producing (and oil-degrading)
bacterium Alteromonas sp. strain TK-46(2) that was isolated from sea-surface
oil slicks during the Deepwater Horizon oil spill. (B) Light micrograph of MOS
aggregates, after staining with the cationic copper phthalocyanine dye Alcian
Blue showing that the aggregates are partially composed of polysaccharide.
The orange-brown spheres in (B) are emulsified oil droplets embedded within
and adsorbed to the amorphous matrix of the aggregates. Scale
bars = 10 mm (A), and = 10 µm (B).

of the Deepwater Horizon (DWH) blowout in the Gulf of
Mexico – a spill recorded as the worst oil spill disaster in US
history. MOS was encountered frequently around the vicinity of
surface oil slicks at DWH (Niu et al., 2011; Passow et al., 2012). It
eventually sank to the seafloor in the Gulf of Mexico – a process
described termed MOSSFA (Marine Oil Snow Sedimentation and
Flocculent Accumulation), which contributed a significant role in
the export of crude oil (ca. 14% of the oil released at DWH) to the
sediment (Valentine et al., 2014).

Conjecture still surrounds MOS genesis at DWH and
during the Ixtoc-I and Tsesis oil spills, but its formation and
sedimentation appears to have been directly associated with
the influx of crude oil. In roller-bottle experiments performed
under conditions attempting to simulate sea surface oil slicks
at the DWH spill, the presence of crude oil was shown to
be an important factor in triggering MOS formation, and that
MOS acted as hotspots for microorganism and oil-degrading
enzyme activities (Ziervogel et al., 2012; Gutierrez et al.,
2013). Bacterial and eukaryotic phytoplankton cells and/or their

produced polymers (e.g., EPS) have been reported to induce
MOS formation (Passow et al., 2012; Gutierrez et al., 2013;
Passow, 2016), whilst there are reports describing conflicting
results on the role of dispersants in this respect (Baelum et al.,
2012; Fu et al., 2014; Kleindienst et al., 2015; Passow, 2016;
Suja et al., 2017). Figure 2A shows MOS formation in a roller-
bottle incubation containing synthetic seawater amended with
crude oil and Alteromonas sp. strain TK-46(2) – an oil-degrading
and EPS-producing bacterial strain that was found enriched
in surface oil slicks in the Gulf of Mexico during the DWH
spill (Gutierrez et al., 2013). Like TEP, MOS particles can
be rich in acidic sugars of polysaccharides, such that may
be produced by EPS-producing bacteria like strain TK-46(2)
(Figure 2B).

Despite the interest in MOS formation as a product of spilled
oil into the Gulf of Mexico, the microorganisms associated with
MOS particles have received less attention. During incubations
with uncontaminated deep-water samples collected during the
active phase of the DWH oil spill and amended with the
dispersant Corexit, Baelum et al. (2012) reported the formation
of MOS, which was dominated by members of the genus
Colwellia. In a more in-depth study of the bacterial community
associated with MOS, Arnosti et al. (2015) showed that MOS
particles contained a bacterial community that was distinctly
different from that found freely living (i.e., not associated
to MOS) in the surrounding seawater environment. The
MOS-associated community was dominated by oil-degrading
and EPS-producing members of the Gammaproteobacteria,
principally Cycloclasticus, Congregibacter, Haliela, Halomonas
and Marinobacter, and included diverse members of the
Alphaproteobacteria (principally the Roseobacter clade) and some
members within the Bacteroidetes and Planctomycetes. Using
CARD-FISH (catalyzed reporter deposition – fluorescence in
situ hybridization), MOS particles formed in incubations with
Macondo crude oil and the dispersant Corexit were dominated
by members of the class Gammaproteobacteria, including the
order Alteromonadales, which comprises oil-degrading and
EPS-producing taxa (Kleindienst et al., 2015). Using Illumina
MiSeq sequencing, Suja et al. (2017) showed MOS particles
formed in subarctic waters to be enrichment with oil-degrading
(Alcanivorax, Cycloclasticus, Thalassolituus, Marinobacter) and
EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas)
bacteria, and included major representation by Psychrobacter and
Cobetia with putative oil-degrading/EPS-producing qualities.
Collectively, these studies indicate that MOS are hotspots where
oil-degrading and EPS-producing bacteria are enriched, and the
latter may provide a clue on the role of these organisms in
MOS formation through their synthesis and release of ‘sticky’
EPS.

Whilst significant knowledge gaps exist in our understanding
on MOS formation and its subsequent sedimentation to the sea
floor, the influx of crude oil and its interaction with planktonic
microorganisms, as well as with dissolved and colloidal organic
polymers, such as TEP, and with nutrient and suspended mineral
discharges from river effluents, appear to be important factors
that warrant further investigation (see Daly et al., 2016 for a
review).
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Turnover and Stability
Dissolved organic carbon in the ocean can be classified into three
broadly defined pools of carbon based on their turnover times:
labile, semilabile, and refractory. Collectively, the concentrations
of these three DOC pools typically range from 60 to 90 µmol/L
in the upper ocean water column, decreasing with depth to
40 µmol/L in the deep sea (Hansell, 2002). Fluctuations in
the concentration of DOC in the water column occurs over
certain periods of the year, due largely to periods of elevated
photosynthetic production since this is the main source that
fuels each of these three classes of DOC. The combined effect
of biological and physical processes that alter the concentrations
of these three pools of DOC is represented in the size-reactivity-
continuum model (Amon and Benner, 1996; Benner and Amon,
2015), for which microbial processing of these molecules is the
major mechanism that leads to rendering them progressively
more recalcitrant (Jiao et al., 2010).

Labile DOC
Labile DOC in seawater comprises substrates with short residence
times (minutes to days) since they are consumed almost as
quickly as they are produced or released into the water column.
An example of a common labile substrate in seawater is glucose,
which is on average found at concentrations from 0.001 to
1.0 µmol/L, depending on the ocean region (Rich et al., 1996,
1997; Benner, 2002; Skoog et al., 2002). Other mono-sugar
substrates (monosaccharides) also exist in the water column at
concentrations typically ranging from 0.002 to 0.8 µmol C/L
(Benner, 2002). On average across the oceans, glucose is the
most abundant simple sugar, with concentrations as high as
187 nM measured in unfiltered water of the Gulf of Mexico, and
490 nM in high-molecular-weight DOM of the equatorial Pacific
(Skoog and Benner, 1997). Glucose has been shown to contribute
significantly in supporting a major fraction of bacterial growth
in many ocean systems (Rich et al., 1996, 1997; Grossart and
Simon, 2002), though other studies have shown glucose to play
a less significant role in this respect (Keil and Kirchman, 1999;
Skoog et al., 1999, 2002; Kirchman et al., 2001). Turnover rates
for glucose can depend on the ocean environment, including
the availability of certain nutrients, varying from rapid (hours
to days) to relatively slow (100s of days). For example, surface
waters limited by inorganic phosphorous can limit bacterial
consumption of labile DOC, such as glucose, and result in a
longer-than-average residence time of the endogenous pool of the
labile DOC (Thingstad et al., 1997).

With respect to the chemical composition of POC in
seawater, the abundance of glucose may be related to the
major roles that this monosaccharide plays in phytoplankton
biology – polymers of glucose (glucans) are major storage
compounds in phytoplankton. Galactose is the second most
abundant sugar in seawater, and polymers of it (galactans)
are major structural components of phytoplankton cell walls
(Romankevich, 1984).

Another simple carbohydrate that also contributes to the total
pool of labile DOC in the ocean is mannitol. It is one of the most
abundant sugar alcohol compounds in nature (Stoop et al., 1996);
it is found in bacteria, fungi, algae and higher plants, where

it often acts as a compatible solute, among conferring other
functions. In ocean systems, mannitol is a major product of
photosynthetic organisms, like algae, whereupon this polyol is
released following cell lysis to join the pool of labile DOC in the
ocean.

Carbohydrate concentrations in seawater can be as high as
10 µmol/L and contribute a significant fraction to the pool
of labile substrates. Dissolved polysaccharides, such as EPS
produced by bacteria and algae, form a major fraction of the
total carbohydrates in the water column (Benner, 2002). Since
concentrations of monosaccharides are typically 10-fold lower
than dissolved polysaccharides, this suggests they are likely cycled
more rapidly. Polysaccharides nonetheless contribute to fueling a
major fraction of bacterial activity in some marine environments.
On average, however, concentrations of labile DOC are very
low (<1 µmol/L), constituting less than 1% of total organic
carbon in the upper water column of the ocean. These substrates
could potentially sustain oligotrophic microbial populations in
regions of poor nutrient availability, such as in the open ocean.
Nonetheless, the labile DOC pool is continuously replenished on
a yearly basis by trophic (phytoplankton and bacterial excretion)
and non-trophic (viral lysis, grazing) processes (Nagata, 2000).

Semilabile DOC
Approximately half of the total pool of DOC in the upper ocean
water column is classed as semilabile, and comprises substrates
that are consumed over weeks to months. Concentrations of
semilabile DOC typically range from 20 to 30 µmol/L in the
ocean water column, and because it is consumed over this median
time scale, it assumes that this pool of DOC is important in
supporting bacterial growth over seasonal to annual time scales
(Carlson et al., 1994; Repeta and Aluwihare, 2006). In some ocean
systems, such as the Sargasso Sea, the total semilabile DOC can
account for as much as 89% of the total DOC (Carlson et al.,
1994). In this study, up to 50% of this semilabile DOC was
found to be more resistant to microbial degradation over weeks
to months.

Interestingly, DOC produced in high-nutrient environments
has been observed to be less susceptible to microbial degradation
than that produced in low-nutrient environments. This may
relate to the chemical qualities of the DOC produced in these
contrasting environments – DOC produced in high-nutrient
waters may be more nutrient rich than that produced in low-
nutrient waters (Church, 2008). Semilabile DOC can accumulate
as a result of inorganic nutrient limitation of bacterial growth
(Thingstad et al., 1997), primarily from a limitation in PO3−

4
(Cotner et al., 1997; Rivkin and Anderson, 1997; Thingstad
et al., 1998; Zohary and Robarts, 1998; Caron et al., 2000).
Other studies, however, have not found evidence to support
the hypothesis that inorganic nutrient limitation of bacterial
growth leads to accumulation of semilabile DOC. Rather, the
chemical nature of this DOC class, specifically acting as a
poor substrate for bacterial degradation, likely contributes to
its accumulation in the water column. This is especially the
case in the upper water column where DOC concentrations
are higher than in the mesopelagic. This could influence the
microbial communities in these contrasting regions of the
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water column where microbes in the upper water column
have been found to degrade semilabile DOC less rapidly than
those communities found in the mesopelagic (Carlson et al.,
2004).

Refractory DOC
Much of the DOC in the ocean consists of low-molecular-
weight solutes of <1000 Da, the majority of which comprises the
refractory pool of DOC that is resistant to microbial degradation
over time scales of 1000s of years – anywhere between 4000
and 6000 years (Williams and Druffel, 1987) – approaching or
exceeding that of ocean circulation (Benner et al., 1992). Whilst
concentrations of labile and semilabile DOC vary with depth,
that of refractory DOC averages ca. 40 µmol/L throughout the
water column with little to no variation with depth, and likely
contributes insignificantly as a source of carbon and energy
to bacterioplankton. However, a fraction of refractory DOC at
the sea surface is destroyed by ultraviolet irradiation, which
results in the release of labile DOC for heterotrophs to consume
(Moran and Zepp, 2000). The refractory pool contributes to
the sequestration of enormous quantities of carbon and acts as
a carbon sink in the water column (Hedges, 2002). A recent
study combining organic matter size, 14C age and elemental
composition of DOC estimated that small refractory molecules
in the ocean are produced by microorganisms and at a rate of
0.24 PgC per year, which is on par in magnitude to the burial of
organic carbon in sediments (Walker et al., 2016).

Major sources of this refractory DOC pool include complex
cell fragments and other high-molecular-weight biopolymers
produced by cells that are partially or almost totally recalcitrant
to biodegradation. During viral lysis of eukaryotic phytoplankton
cells, cellular components that are highly refractory to
degradation are released into the water column. Similarly,
phage-mediated lysis of bacterial cells leads to the release of
outer-membrane proteins of the cell envelope, which also are
very resistant to degradation. Conversely, highly labile cell
components, such as nucleic acids and amino acids, are recycled
in the photic zone.

A proportion of the DOC released through cell lysis, including
that produced extracellularly by living cells, is converted by
chemical mechanisms into humic substances. This complex
material is quite resistant to biodegradative processes and
contributes to the total pool of refractory organic matter in
the water column. Either by agglomeration of these humic
substances, or their attachment to other sinking particles, a
proportion of this refractory material eventually sinks to the
ocean floor and becomes buried. Not all refractory DOC in the
marine water column, however, sinks to the seafloor. Rather,
most of it remains suspended and circulating in the ocean for
years to millennia. In fact, of the fixed organic carbon formed
by primary production, only a very small fraction reaches the
seafloor; much of it (>99%) is remineralized in the water column
through microbial action.

Extracellular polymeric substance produced by marine
bacteria, even that which is freshly produced, can be somewhat
refractory to microbial degradation or chemical analysis (Ogawa
et al., 2001). This is believed to be related to the presence of uronic

acids (Anton et al., 1988; Bejar et al., 1996) or glycosidic linkages
of hexosamines (Biermann, 1988). Such constituents can confer
on EPS molecules a high resistance to degradation under acid
hydrolysis conditions that are used to chemically analyze them.
Some studies analyzing the chemical nature of EPS isolated from
cultured marine bacterial strains have shown a major proportion
of these macromolecules (up to 80%) can be unaccounted for by
chemical analysis (Gutierrez et al., 2007a,b, 2008 ).

PHYSICAL/CHEMICAL PROPERTIES OF
EPS

Extracellular polymeric substance comprise an expanding
plethora of biochemical molecules that interact in many ways
and that are, as yet, poorly understood. EPS consist of an array
of molecules, ranging from quite large (e.g., >100 kDa) to
much smaller (e.g., <10 kDa) polymers. Some of the molecules
contribute to the structural stability, gel properties, and pliancy
of the greater matrix (Flemming, 2016). We must determine
how different types of molecules in this matrix interact with
each other in order to provide the observed functional roles
of the EPS matrix. An entire rethinking of the extracellular
milieu of microorganisms will likely be required. An insightful
examination is provided by Neu and Lawrence (2016).

Composition and Physical Properties
From the standpoint of microbial cells, the EPS, especially when
in a gel state, form a three-dimensional matrix or scaffold within
which cells can orient themselves relative to one another. The
presence of certain polymers can afford the matrix physical
stability. Polymers such as amyloids and/or eDNA (discussed
below) can serve as an architectural framework for the EPS. Each
type of EPS component can offer different physical properties
(Chew et al., 2014). The physical ultrastructure of the EPS matrix
has been very difficult to image in a fully hydrated state (Decho,
1999), owing to its delicate nature. Excellent pioneering efforts
have been conducted by Dohnalkova et al. (2011) using a unique
cryo-TEM approach. Recent developments in cryo-TEM and
-SEM may provide further insights into this complex matrix.

Bacterial and microalgal EPS exist in nature in a range of
different physical states, most of which are operationally defined.
Capsules consist of polymers that closely surround individual or
multiple cells and often serve a protective role (Whitfield, 2006).
Further away from cells, EPS can exist as tight, dense-gels, to a
continuum of physical states from looser-slime to truly dissolved
forms. Dissolved forms, in the absence of cells, may condense
to microgels in the open ocean (Chin et al., 1998; Verdugo
et al., 2004; Verdugo and Santschi, 2010); a process that is of
significant importance and has been well-summarized in a review
(Verdugo, 2012). While differences in these physical states are
relatively arbitrary, they likely serve very different functions to
the microbial cells secreting them. The physical state of EPS
results from a combination of the polymer concentrations, types
and abundances of ions, composition, and steric availability of
functional groups on polymers. Recently, this has been reviewed
in greater detail (Neu and Lawrence, 2016).
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Some microbial EPS can exhibit significant viscoelastic
properties, being able to stretch and retract in response to
an applied force such as intermittent water flow (Fabbri and
Stoodley, 2016). This property offers the microbial cells contained
within a biofilm with a certain degree of physical flexibility and
mechanical resiliency (Peterson et al., 2015). This flexibility is
important to the ability of cells to persist on a surface or as an
aggregate in the water-column.

Compositional information is a useful starting point for
investigating EPS. Strictly speaking, the term EPS is an
operational designation that refers to the milieu of ‘larger’
molecules contained in the extracellular matrix in proximity
to cells (Wotton, 2004). Many of the molecules contained in
natural EPS cannot be conveniently characterized as either
protein, lipid or carbohydrate. For this reason, it has been
called the ‘dark matter’ of biofilms (Flemming et al., 2007). It
is now known that the EPS matrix can be quite heterogeneous,
especially over small spatial scales (see Microdomains within EPS
Matrices). It is for this reason that analyses of ‘bulk’ samples
will not capture the smaller-scale variability that are critical
to understanding the physical and chemical properties of the
in situ matrix. When EPS from natural biofilms, for example,
are extracted and then reconstituted, the physical (e.g., gel,
viscocity, rheology, etc.) properties of the reconstituted EPS
often do not readily resemble those of the original biofilm.
(In much the same way, a cell cannot be taken apart via
extractions, and then put back together as a functioning
cell.) This suggests that the molecules within the matrix may
have important molecular organization either by purposeful
design or by result of the environment. It is important from
a functional standpoint, to determine which molecules and
molecular interactions contribute to physical properties such as
gel formation, rheology, and diffusion-slowing, and chemical
properties, such as sorption.

Finally, while matrix is actively secreted by cells, the properties
of EPS may be changed post-secretion, modified by geochemical,
enzymatic, and photochemical processes, and additionally
contain trapped or sorbed molecules. These modifications may
have dramatic effects on their physical properties. Thus, EPS
under natural conditions exist in a ‘continuum’ of compositional
and partial degradation states. Thus, it is imperative that
future non-destructive approaches (e.g., Raman spectroscopy)
are developed for characterizations of EPS in situ.

Laboratory studies of bacteria secreting EPS show that cells
typically produce sugar monomers that are exported, then
assembled to the existing polymer outside of the outer membrane
(Whitfield, 2006; Sutherland, 2016). Polymers may consist of
single sugar monomers, called homopolymers, or consist of
several monomers linked together to form a repeating unit, called
heteropolymers. Since several types of repeating units may be
generated, this provides the cell with the capability to alter the
physical chemical properties by mixing different amounts of
repeating units. By changing the building blocks (i.e., repeating
units), the polymer composition can be varied. This allows the
polymer to have a variable composition and provides the cell
the capability to modify its extracellular polymers in response to
changing conditions.

At present, there are no specific biosignatures that can be
assigned reliably for detection of EPS, simply because similar
glycol-based compounds are produced throughout biological
systems for many purposes. The secretion of carbohydrates
and other glycosylated polymers is not unique to bacteria or
even microorganisms; rather, it is a universal biological strategy
employed by microalgae, fungi, invertebrate and vertebrate
animals, and plants (Underwood and Paterson, 2003).

Extracellular polymeric substance have often been considered
synonymous with ‘exopolysaccharides’ and acronym EPS. This
was partially based on the carbohydrate-focus of investigators
at the time, and additionally due to the artifact of carbon-rich
culture conditions that were used to grow bacteria and obtain
abundant quantities of EPS. Much has been learned regarding
polysaccharide chemistry from these seminal studies. While
polysaccharides are a major component of many natural EPS,
they are only a component. The EPS matrix is now known to
contain several different major groups of molecules, whose roles
and involvement are still under study, and will be discussed
briefly below. Hence, much discussion has evolved about what
exactly constitutes the EPS matrix. Three points emerge as one
studies the EPS of natural systems: (1) Many different types
of molecules interact to provide the physical structure, impart
chemical properties, and even actively manipulate EPS properties
for the cell; (2) EPS-compositional studies should not be limited
to culture-based systems; and (3) EPS under natural conditions
will likely exist in a continuum of partial-degradation states.

Polysaccharides
The polysaccharide components of EPS are perhaps the best-
studied to date. Common carbohydrate components that are
often found in EPS include monomers such as D-glucose,
D-galactose, D-mannose, L-fucose, L-rhamnose, D-glucuronic
acid, D-galacturonic acid, L-guluronic acid, D-mannuronic
acid, N-acetyl-D-glucosamine, and N-acetyl-D-galactosamine
(Sutherland, 2001, 2016). Polysaccharides such as cellulose,
alginic acid, dextran, xanthan, and Vibrio exopolysaccharide
(VPS) are examples of polysaccharides produced by bacteria (for
reviews see Decho, 1990; Wotton, 2004; Serra et al., 2013; Hobley
et al., 2015).

The exopolysaccharide portion can exert significant net effects
on physical and sorptive properties of EPS (Salek and Gutierrez,
2016). The presence of polar negative-charged groups such as
carboxyls, phosphates and sulfate esters can provide negative
charges (Thornton et al., 2007; Gutierrez et al., 2009). In certain
microbial mat systems, highly sulfated exopolysaccharides have
been isolated, and contained up to near 30% (wt/wt) in sulfate
(Moppert et al., 2009).

In the presence of (positive) divalent cations (e.g.,
Ca2+, Mg2+) they can form cation bridges with adjacent
polymers having also negative functional groups. EPS having
abundant uronic acids often complex in this manner. Direct
linkages between adjacent EPS can also occur. For example,
linkages between a cationic polysaccharide and (anionic)
extracellular-DNA has been shown to contribute to the physical
stability of bacterial biofilms (Jennings et al., 2015). The abilities
of EPS to link with each other is dependent, in part, on pH,
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the presence of appropriate functional groups, and the steric
availability of functional groups (Decho, 1990; Ulrich, 2009).

Microdomains within EPS Matrices
The natural EPS matrix is now known to be heterogeneous
over small spatial scales (e.g., µm, even nm). In order to
describe small, localized areas that exhibited different properties
than the broader matrix, polysaccharide chemists long ago
developed the term ‘microdomain.’ The microdomain concept
was extended to EPS (Decho, 2000a) to begin understanding
why intact EPS exhibited very different properties than those of
the extracted bulk EPS. Microdomains can result from localized
concentrations of certain monomeric components of polymers,
and/or differential binding of adjacent polymers to each other.
Evidence for microdomains within in situ expolymer matrices has
been evidenced by the careful combination of fluorescent lectin
probes and confocal scanning laser microscopy (Lawrence et al.,
2007, 2016; Aldeek et al., 2013). Microdomains are now realized
to contribute to the smaller-scale heterogeneity that is observed
within both suspended aggregate- and attached-biofilms. The
presence of microdomains re-enforces the idea that the EPS
matrix is not an amorphous, homogeneous entity, but rather can
be structured at several different levels (Mayer et al., 1999; Decho,
2000a; Lawrence et al., 2003).

Proteins
Proteinacious moieties are common in natural EPS matrices
and occur in a variety of molecular forms such as peptides,
amino-sugars, glycoproteins, proteoglycans, and amyloid
proteins (Gutierrez et al., 2007a,b; Fong and Yildiz, 2015; Zhang
et al., 2015). They also can be grouped by their functions
and properties such as extracellular enzymes (e-enzymes),
membrane vesicle proteins, adhesins, amyloids, hydrophobins,
and amphiphiles (Hobley et al., 2013). It is not well-understood
yet, how proteins interact with other matrix molecules to
accomplish these apparent functions.

While many proteins and peptides are easily hydrolyzed by
microbial heterotrophy, certain proteins and peptides can be
quite refractory to degradation. It is now realized that structured
refractory complexes, called amyloid fibrils are a common
component of EPS. These have not received much attention in
oceanic environments but may contribute to a number of forms
of refractory organic matter, and the refractory portions of EPS.
Here, they may have important functions. Amyloids may form
an important, refractory structural component of the EPS matrix
(Gebbink et al., 2005; Larsen et al., 2007; Zheng et al., 2015).

Amyloids are loosely defined as any fibrillary polypeptide
aggregate having a cross-β-quaternary structure (Fandrich, 2007),
which self-assemble under the right environmental conditions.
Amyloid fibrils consist of sets of 4–6 peptides linked together in a
twisting, helical (i.e., rope-like) structure that is held together by
non-covalent associations. A growing body of evidence supports
the idea that amyloid fibrils, sometimes called curli fibers, may
be formed from many different proteins (and peptides) and are
a generic structure of peptide chain. While amyloid formation
has been linked to many human disease processes (Barnhart and
Chapman, 2006; van Gerven et al., 2015), they occur in natural

microbial systems as a component of EPS. Their formation,
at present, is thought to result from non-biological processes
(Romero et al., 2010).

Extracellular e-DNA
A growing body of research now acknowledges the presence
of extracellular forms of deoxyribonucleic acids (eDNA), and
their role as an important structural component of the biofilm
matrix (Böckelmann et al., 2005). Historically, eDNA was thought
to result largely from the lysis of cells or release of plasmids.
However, seminal studies by Whitchurch et al. (2002) showed the
presence of eDNA as a part of the EPS. Concentrations of eDNA
in sediments are often 3–4 orders of magnitude higher than those
in the water-column, and suggest a role in the cycling of P in
marine systems (Dell’Anno and Corinaldesi, 2004). Both eDNA
and extracellular nucleases, together, may influence the physical
consistency of biofilm EPS (Rice et al., 2007; Seper et al., 2011).
Results of other studies indicated secretion by bacteria of eDNA is
an active process (Nishimura et al., 2003; Steinberger and Holden,
2005; Suzuki et al., 2009; Gloag et al., 2013; Okshevsky and Meyer,
2013; Tang et al., 2013). The postulated roles suggest that eDNA
may be a bacterial strategy that serves as an abundant structural
scaffold within EPS. For example, in non-marine systems, the
Gram-negative bacterium Pseudomonas aeruginosa uses eDNA
bound to a specific cationic extracellular polysaccharide pel to
provide structural stability to the EPS of biofilm (Jennings et al.,
2015). Others have suggested an electron-transfer conduit, or
substratum for the controlled movement of bound e-Enzymes
(Flemming et al., 2007). Further studies await empirical testing of
these ideas. However, an interesting caveat is that a recent study
by Dell’Anno and Danovaro (2005) showed that DNA sorbed
to sediments constituted an important source of phosphorus
in normally P-limited deep-sea ecosystems. A review on eDNA
pools in marine sediments summarizes many important aspects
(Torti et al., 2015). Finally, DNA has been implicated in long-
distance electron transfer processes (Giese, 2002). A pertinent
question that warrants investigation is: does this offer the
possibility for long-distance transfer of extracellular electrons
through the EPS matrix?

Modifications Post-secretion
Extracellular polymeric substance, once-secreted by cells, are
subjected to substantial environmental modifications, perhaps
in predictable manners. Degradation of EPS may consist of a
multi-step process. The steps likely represent the degradation
of different components, ranging from highly labile to relatively
refractory, which have different compositions and/or steric
availabilities (to extracellular enzymes). A study of EPS
produced within lithifying microbial mats showed that initial
hydrolyses involved a rapid, and possibly selective, utilization by
heterotrophs of certain sugar monomers, and LMW compounds.
Certain components of the EPS, such as the uronic acids
were highly labile to mat bacteria (Decho et al., 2005). Initial
heterotrophic degradation of EPS was fueled by the large pool of
LMW organics released by cyanobacteria during photosynthesis.
This pool was consumed within 4–6 h post-daylight. The results
indicated that a rapid, initial degradation occurred, followed by
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a much slower decomposition, leaving behind a more “refractory
remnant” that persist for extended periods. As alluded to above,
specific components of EPS such as many polysaccharides
should exhibit relatively rapid turnover rates, when compared to
more refractory components such as amyloid proteins. Finally,
degradation will be affected by the physical properties of the EPS
such as their gel versus solution states.

Sorption, Trapping, and
Diffusion-Slowing Properties
Diffusion is a key process in the design of the microbial cell, as
it is the primary means by which small organic molecules and
ions may be taken up by cells. Diffusion is also of relevance in
the movement of signal molecules (i.e., autoinducers) involved in
QS, extracellular enzymes, and antimicrobial agents. EPS can be
broadly considered a sorptive sponge for the binding, trapping
and concentration of organics and ions (Decho, 1990). Over
the small spatial scales of biofilms, the EPS matrix influences
the diffusion process. Diffusion is a multi-faceted process that
is influenced by temperature, ionic concentrations, etc. A major
driver in diffusion, of course, is the relative concentration
gradient (Brogioli and Vailati, 2001). The density and properties
of the EPS can influence diffusion rates (of ions or molecules) so
they can range negligible (compared to diffusion in pure water at
the same temperature) to having significantly slowed diffusivities
(Decho, 2015).

Although bulk measurements of diffusivity may be estimated,
it is difficult to determine how the smaller-scale variability in
EPS densities influence diffusion at these scales. The natural
matrix of EPS within aggregates or surface biofilms is often filled
with channels, which by microbial design or by environmental
influence, enhances mass transfer to/from cells.

A number of investigators have carefully measured diffusion
rate constants by monitoring the movement of fluorescent
molecules over time using confocal scanning laser microscopy
and other approaches (Lawrence et al., 1994; Guiot et al., 2002;
Stewart, 2002; De Beer et al., 2004; Waharte et al., 2010; Neu and
Lawrence, 2014). Lawrence et al. (1994) initially used fluorescent
molecules and confocal scanning laser microscopy to examine
diffusivities and found them to be variable, ranging from those
of pure water (d = 1.0) to extreme diffusion-slowing effects
(d = 0.02) by the matrix. From a practical standpoint, one
can assume there will be variability within an aggregate or
attached biofilm. Collectively, these studies have shown that
considerable changes occur in the movement of molecules and
ions over microspatial distances (i.e., µms), which can relate to
the observed heterogeneity that occurs within biofilms (Stewart
and Franklin, 2008).

Physical trapping of organic and inorganic colloids, and
nanoparticles also occurs in the EPS matrix. The viscoelastic
nature and the dispersed arrangements of EPS at the surface-most
fringes of biofilms make them ideal for the physical trapping of
colloids, small particles, and/or sorption of ions and molecules.
Sorption is influenced by a number of factors. These include pH,
the forms and concentrations of ion(s), and the type(s) of ligands
(binding sites) and associations (e.g., ionic- and covalent-bonds,
van der Waals forces, etc.). The pH can have a strong effect on

ionic binding, especially with regard to many EPS (Braissant et al.,
2007, 2009; Gutierrez et al., 2008). In general, acidic pH tends to
inhibit ion binding, while neutral or basic pH tend to promote
binding. A caveat is that not all ions bind equally. A second
caveat is that certain functional groups bind ions more efficiently
at a given pH. For example, as the pH rises to near neutral,
more complexation may occur to carboxyl sites. The increase
in binding of divalent cations often results in a more cohesive
polymeric gel structure.

This pH-dependent sorption process has practical importance
in ocean systems (and biofilms) because the most abundant
divalent ions in seawater are Ca2+ and Mg2+. These ions
often form suitable (bi-dentate) bridges between adjacent EPS
molecules having carboxylic acid groups, and can contribute
to gel formation or floc (marine snow) formation in the water
column. However, other important ions (at a given pH) may
‘outcompete’ Ca2+ and Mg2+ for binding sites. The binding
of transition and other metals, such as Th, Cd, Cu, Ag, Fe,
and Se, to EPS isolated from different environments, such as
hydrothermal vents, microbial mats, and other areas, has been
described (Schlekat et al., 1998; Zhang et al., 2008; Moppert et al.,
2009; Deschatre et al., 2013). Metal binding to EPS of surface
floc material (i.e., marine snow) in the surface waters of oceans,
and subsequent sinking of flocs may result in significant vertical
transport (flux) of trace elements to ocean floor, a process of
global biogeochemical significance (as mentioned above).

While ocean seawater is often pH 7.8–8.2, the range of
pH over smaller spatial (and temporal) scales can be quite
dramatic. In microbial mat systems, where highly active bacterial
respiration and photosynthesis occur, the pH has been shown
to vary from pH 6.0–10.0 over a 24 h (i.e., diel) cycle (Visscher
et al., 2000; Des Marais, 2003; Baumgartner et al., 2006). This
is due to net photosynthesis during daylight (which raise pH),
and net respiration during darkness (which lowers pH). This
can result in regular diel changes in the complexation of ions,
and hence influence the physical stability of EPS over a 24 h
cycle. The diffusion-slowing properties of EPS contribute to the
sharp geochemical gradients often observed within aggregate and
attached biofilms (Baumgartner et al., 2006).

Optical Properties
The biofilm is an organic gel coating (of EPS) on a surface (or
within a suspended aggregate) with a collage of cells, and sorbed
or localized molecules and ions, colloids, and particulates. All
of these different components, individually or interactively, will
influence the optical properties (i.e., refraction, scattering, and
absorption of photons) of the broader surface (or water). The
EPS can be thought of as a “semi-translucent” gel having different
densities. Several processes act in concert to alter the optical
properties of sediments. First, the polymers themselves appear
to decrease the reflectance of the surface. In sediment systems,
this can alter the amount of light entering the sediments. This
is due to a combination of two processes. First, the gel polymers
increase the spacing between sediment grains. This allows more
light to enter in the spaces between grains, rather than being
reflected from closely packed sediments. Second, the gel state
of the polymer acts as a ‘photon trap’ because it mediates a
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change in refractive index, relative to seawater. This enhances
the forward-scattering of photons, relative to back-scattering.
This has been termed the ‘biofilm gel-effect’ (Decho et al., 2003).
The functional value is that light may be more homogenously
scattered around photosynthetic cells, and allow cells to conduct
photosynthesis deeper in sediments (or mats).

As light interacts with a surface, photons are either reflected,
scattered, refracted and/or absorbed. Reflectance involves back-
scattering of photons at a fixed angle (relative to incident
direction of photon). Often photons are ‘scattered’ at many
angles relative to the incident. Refraction involves continuing
through the surface, but altering the angle (relative to the
incident) resulting in a change in refractive index. Absorbance
involves the capture of photon energy by surface molecules or
atoms. Absorbed photons may be re-emitted, as fluorescence
(within pico-sec to nano-secs after absorbance), or released
as heat. However, the biofilm is not simply a translucent gel
but rather a three-dimensional matrix harboring cells, sorbed,
or localized molecules (e.g., scytonemins, amino acids, etc.),
colloids, and particulates. Biological chromophores (molecules
that absorb light near specific wavelengths) include the purines
and pyrimidines of DNA, the ‘ringed’ amino acids (tyrosine,
phenylalanine, etc.), and other molecules. The sea surface
layer is known to harbor EPS gels (Wurl and Holmes,
2008). Of special interest will be how the sea-surface layers
of EPS influence photon penetration into the underlying
water.

LOCALIZATION OF MICROBIAL
EXTRACELLULAR PROCESSES

Quorum Sensing
Do microbial communities communicate and coordinate
activities? Classical microbiology during much of the past
century has taught us to understand microbes simply as
individual cells. Recently, however, a growing body of evidence
supports the idea that bacteria often act in groups, rather than
as individuals. When bacteria are attached, their proximity to
each other results in the development of interactive relationships
ranging from antagonistic to agonistic, and even altruistic. These
interactions are often chemically mediated but are tempered by
the ever-changing conditions of their local environment. The
diffusion-slowing properties of the EPS matrix facilitates the
development of such relationships among cells in a way that
cannot be accomplished by free-living planktonic cells.

Quorum sensing is a type of bacterial cell–cell communication
that involves the exchange of chemical signals among nearby cells
to coordinate behaviors that are best conducted in groups (Fuqua
et al., 1996). It involves the production, detection, and response
by cells to diffusible signaling molecules (i.e., autoinducers).
Autoinducers accumulate in the proximal environment as the
bacterial population increases. When autoinducer concentration
reaches a threshold-level, cells collectively alter gene expression.
Many group activities such as bioluminescence, antibiotic
production, and EPS secretion (Camilli and Bassler, 2006) are
regulated by QS.

Quorum sensing can also be utilized by cells for ‘diffusion-
sensing’ (Redfield, 2002). This allows bacteria to sense the
diffusional properties of its proximal environment, presumably
to ‘make decisions’ whether to conduct more metabolically
costly processes, such as production and release of extracellular
enzymes, plasmids, antibiotics, etc. (Ruparell et al., 2016).
Together, these two processes, quorum- and diffusion-sensing,
have been termed ‘efficiency sensing’ (Hense et al., 2007).

The foundation for cell–cell cooperative interactions
originally was proposed for explaining the bioluminescence by
a marine luminescent bacterium, previously Photobacterium,
renamed Vibrio fischeri, and then Aliivibrio fischeri, which
was isolated from a small Hawaiian squid (Ruby and Nealson,
1977; Nyholm et al., 2000). Studies progressively showed that
autoinducer molecules, upon reaching a threshold concentration
in the medium, triggered changes in gene expression that
resulted in bacterial luminescence. Luminescence by populations
of symbiotic bacteria, localized in the light organs of the squid,
afforded it a selective advantage against predation. The ability
to communicate, coordinate, and act as groups, however, does
not relinquish the cells as an individual unit. Microbial cells can
(and do) still act as individual cells. This amazing flexibility likely
contributes to the tremendous success and resiliency of bacteria.

In open surface-water ocean environments, QS can have
large-scale effects, especially when in overwhelming abundances.
An obvious example of this was the ‘milky ocean’ that was
observed at night by satellite off of Somalia, Africa (Nealson
and Hastings, 2004; Miller et al., 2005). The milky ocean,
which was 100s of square km in size, was due to QS-triggered
bioluminescence in ocean surface populations of bacteria.

Several different classes of chemical signals exist. Most
were described from the study of infection-causing bacteria.
These include acylhomoserine lactones (AHL), unique
oligopeptides, furanosyl borate diesters (Autoinducer-2),
and gamma-butyrolactones (Waters and Bassler, 2005). The
AHLs comprise a class of approximately 18 different types
of signal molecules that are released into the surrounding
environment, and eventually bind to an intracellular receptor
protein, whose complex then triggers changes in gene expression
(Churchill and Chen, 2011). AHLs in marine environments
have been found in sponges (Taylor et al., 2004), microbial mats
(McLean et al., 1997; Decho et al., 2009, 2010) and marine snow
(Hmelo et al., 2011). Interestingly, signals such as AHLs are
prone to inactivation under certain environmental conditions
such as high pH (>8.0) (Decho et al., 2009; Hmelo and van
Mooy, 2009). It is not known how fluctuating conditions (e.g.,
pH, oxidants, desiccation, photocatalytic degradation) in natural
environments influence chemical signaling and coordination of
microbial activities (Horswill et al., 2007; Decho et al., 2009, 2011;
Frey et al., 2010). Signaling, however, will likely be localized and
most pronounced within EPS matrices, and within planktonic
aggregates (Gram et al., 2002; Wagner-Dobler et al., 2005; Hmelo
et al., 2011; Amin et al., 2015; Jatt et al., 2015).

Signaling using AHLs, for example, is not limited
to heterotrophic bacteria. Rather it has been found in
photosynthetic cyanobacteria (Sharif et al., 2008) and Archaea
(Zhang et al., 2012). Importantly, it is now realized that this
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form of cell–cell communication can occur in single-species
population, but may also be utilized by inter-Kingdom consortia,
such as plant-microbe and animal–microbe associations.
Contrastingly, molecules that may act as signals for some
bacteria, may act as antibiotics against other bacteria (Kaufmann
et al., 2005; Davies et al., 2006; Schertzer et al., 2009; Johnson
et al., 2016). A final note is that currently only several classes of
signaling molecules (e.g., AHLs, AI-2, and peptides, diffusible
signal factors (DSFs), etc.) are known (Schaefer et al., 2008;
Papenfort and Bassler, 2016, for review). However, QS and similar
interactions via chemical signaling are likely to occur using a
variety of signals; most of which may be unknown at present.

Extracellular Vesicles and
Gene-Exchange
Bacteria possess the capability to bud-off portions of their
cell membranes (Schooling et al., 2009; Biller et al., 2014),
which are then released as extracellular vesicles. The vesicles
provide bacteria with the ability to package molecules within
a surrounding lipid membrane, and release them in their
surrounding extracellular environment, and localize them within
the EPS matrix. This can provide a protective ‘minefield’ against
antibiotics, preserve extracellular signals and plasmids, and
provide other functions as well. The presence of extracellular
vesicles within biofilms, and specifically the EPS matrix, is now
realized to be quite common (Mashburn and Whiteley, 2005;
Biller et al., 2014). The vesicle composition is often similar to
the plasma membrane (Gram-positives) or outer cell membrane
(in Gram-negatives), but additionally contain specific proteins
as part of the vesicle. The vesicles can package a wide range of
molecules such as eDNA, RNA, e-enzymes, antibiotics, and signal
molecules, and likely provide protective effects for the packaged
molecules they carry (Mashburn-Warren et al., 2008; Schooling
et al., 2009).

Gene exchange is an important process among bacteria. The
EPS matrix can enhance gene exchange among cells for several
reasons. First, conjugation (i.e., a uni-directional exchange of
plasmids via a pilus connecting two cells) requires extended
contact for a prolonged period of time (approximately 20 min).
In open-water systems, this is difficult due to Brownian motion
constraints. When localized in a three-dimensional EPS matrix,
two cells can remain relatively stationary for prolonged periods
of time, which can facilitate conjugative gene exchange. Second,
extracellular DNA, used in transformation, can be rapidly
degraded once outside of the cell, or strongly sorbed to sediment
particles. When DNA is immobilized within EPS, its persistence
can be enhanced, and thus increase chances for transformational
exchange of DNA among cells. Direct measurements of these two
processes, to our knowledge, are not yet available.

Extracellular Enzymes (e-Enzymes) and
Hydrolysis products
Degradation of organic matter and its mineralization to CO2 is
a fundamental process of bacteria. In many ocean environments,
bacteria produce e-enzymes to partially hydrolyze organic matter
that becomes sorbed or trapped by the EPS (Hoppe et al.,

2001). When conducted efficiently, with minimal loss to the
surrounding water, the biofilm can be an efficient external
digestion system for the microbial community (Flemming and
Wingender, 2010).

The localization of e-enzymes is a process that is important in
open water aggregate- as well as attached-biofilms. In order for
efficient diffusional uptake, both enzymes and their hydrolysis
products must remain localized in proximity to cells (e.g.,
approximately 30 µm). EPS provide a matrix to localize both
enzymes and their hydrolysis products relatively close to cells. It is
not known, however, how e-enzymes remain localized within the
EPS matrix. Are they attached (bonded) to polymers with active
sites exposed? In studies of other systems, bacteria are known
to localize polysaccharases and other e-enzymes (Sutherland,
1999, 2016). e-Enzymes are also known to be contained within
extracellular vesicles, localized within the expolymer matrix
(Mashburn and Whiteley, 2005; Mashburn-Warren et al., 2008;
Elhanawy et al., 2014), and e-DNA nucleases were found in Vibrio
cholerae biofilms (Seper et al., 2011). Indeed, elevated microbial
activities, such as enzymatic activities, have been reported in
marine snow particles at higher-levels than those in surrounding
sea water (Smith et al., 1992; Ploug et al., 1999; Grossart et al.,
2003; Jatt et al., 2015), thus suggesting that marine snow are
hotspots for remineralization of organic and inorganic materials
(Azam and Long, 2001; Thornton et al., 2010).

Insight has been provided through studies of other systems
(Tielen et al., 2013). They showed that extracellular lipase
was protected against heat denaturation via complexation with
the EPS alginate. Using molecular modeling they were able
to show that e-enzymes can be physically bound to EPS,
however, the enzyme/EPS bond must occur away from active
sites on the enzyme. Finally, this bonding provides enhanced
stability against denaturation. However, questions remain, such
as: how are enzymatic activities maintained outside the cell?
Empirical evidence has been relatively limited. Do the functional
equivalents of extracellular chaperones help to maintain activities
(i.e., prevent denaturation) of e-enzymes? It is also not known
how extracellular enzymes may modify the EPS themselves.

EPS IN MICROBIAL MATS AND
MINERAL PRECIPITATION

Microbialites are benthic microbial deposits (Burne and Moore,
1987). Microbial mats, a type of microbialite, are the longest-lived
ecosystems that are known to have existed on Earth. Certain
fossilized microbialites extend far back in the fossil record
(Sprachta et al., 2001; for review, see Chagas et al., 2016). They are
the earliest known macro-fossil evidence of life in the geological
record, extending back an estimated 3.4–3.7 gy (Tice and Lowe,
2004; Nutman et al., 2016). They dominate the fossil record for
3 gy, which represents over 80% of the time life has existed on
Earth (Allwood et al., 2007). Recently, the precipitation process
has been studied at nanometer spatial scales (Benzerara et al.,
2006).

Microbial mats typically exhibit a distinct vertical
layering of microbial functional groups that is strongly
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influenced by externally influenced gradients such as light
and geochemical conditions (Des Marais, 2003; Vasconcelos
et al., 2006; Franks and Stolz, 2009). In most cases, mats are
examples of actively metabolizing, highly organized microbial
communities, and constitute “high-yield” systems where
resources are efficiently recycled amongst its members
(Visscher and Stolz, 2005). These systems, therefore,
offer excellent platforms from which to study how EPS
may influence the precipitation of carbonate minerals.
Thrombolites (Mobberley et al., 2015) and tufa deposits
(Zippel and Neu, 2011; Dupraz et al., 2013) are other forms of
microbialites.

Extracellular polymeric substances are abundantly present
in microbialites, such as mats and contribute to the metabolic
efficiency of mat communities (Neu, 1994). This occurs
through their diffusion-slowing properties, light-attenuation, and
abilities to influence 3D-architecture, chemical communication,
extracellular enzymatic hydrolyses, and biogeochemical mineral
precipitation. The details of how this relate to the molecular-scale
interaction occurring between ions and the EPS are not, as yet,
fully understood.

Carbonate Precipitation
Mats are well-known for their association with the
biogeochemical precipitation of minerals such as carbonates
(e.g., calcite, aragonite) (Decho, 2010). Present-day examples of
precipitating mats include tufa mats, marine stromatolites, and
marine thrombolites (see Dupraz et al., 2009, for review; Glunk
et al., 2009; Tourney and Ngwenya, 2014). There are several
different mechanisms known to directly or indirectly influence
precipitation within mat environments (Visscher and Stolz,
2005). Microbial communities drive the basic alkalinity engine,
which when coupled to the organic matrix of mats, results
in biogeomineral precipitation (Dupraz and Visscher, 2005).
Activities of several microbial groups, such as cyanobacteria,
sulfate reducers, and anoxygenic phototrophs, can ‘promote
precipitation,’ while other groups (e.g., aerobic heterotrophs,
sulfur oxidizers, and fermenters) can ‘promote dissolution’
(Dupraz et al., 2009). Precipitation of CaCO3 occurs in seawater
that is near or exceeding supersaturation of carbonate ions, and
has basic pH conditions (Arp et al., 2001, 2003). Cyanobacterial
activities, for example, will raise the pH during daylight
photosynthesis, which favors localized carbonate precipitation
(Gautret et al., 2004; Ludwig et al., 2005). Specific moieties on
EPS, such as acidic groups, can act as nuclei for subsequent
CaCO3 precipitation (Braissant et al., 2003; Bhaskar and Bhosle,
2005; Obst et al., 2009). Even bacterial cells themselves can
serve as nucleation sites for precipitation (Varenyam et al.,
2010). EPS can bind substantial amounts of free Ca2+ (Braissant
et al., 2007) and other minerals such as phosphate and sulfate
(Gallagher et al., 2013) from the surrounding water. This
can result in precipitation of EPS-associated minerals such as
apatite [Ca5(PO4)3(F,Cl,OH)], struvite (MgNH4PO4·6H2O),
dolomite [CaMg(CO3)2], and aragonite (Gallagher et al., 2012,
2013).

Under some conditions, however, EPS can inhibit
precipitation, or even contribute to carbonate dissolution.

Cation-binding by EPS removes free Ca2+ ions from solution,
through depletion of carbonate minerals from the proximal
surroundings. Acidic amino acids, such as aspartic or glutamic
acids, and carboxylated polysaccharides (i.e., CO2−

3 groups of
uronic acids) can act as strong inhibitors of CaCO3 precipitation
(Kawaguchi and Decho, 2002a,b; Dupraz et al., 2004; Gautret and
Trichet, 2005). The functional groups and their steric availability
(to bind ions) are key in this process (Rieger et al., 2007; Yang
et al., 2008). The role(s) in carbonate precipitation of specific
microbial clades such as sulfate reducers, however, remains
controversial (Meister, 2013), but likely involves different types
of community interactions under normal marine, hypersaline,
and alkaline conditions (Gallagher et al., 2014).

Marine stromatolites are microbial mats having repeating
layers of precipitated micritic laminae produced through
interaction of the microbial communities and the environment
(Krumbein, 1983). In present day, they occur in only a
few limited marine environments such as the Bahamas (Reid
et al., 2000; Paerl et al., 2001) and Shark Bay in Western
Australia (Goh et al., 2009). Studies extending for over a
decade have examined present-day open-water, subtidal, marine
stromatolites at Highborne Cay (Bahamas) and showed the
surface microbial community consisted of several distinct mat
stages (i.e., termed Types 1, 2, and 3), each having very
different phenotypic characteristics (Reid et al., 2000). The EPS
produced during these stages had very different properties and
influenced the microbial communities within. In the Type 1
stage, the community exhibited “high growth.” It consisted
of dense cyanobacteria with high EPS production that grew
(upward) quickly, consuming resources (Decho et al., 2005).
The abundant EPS resulted in a “sticky” surface that trapped
ooid grains (i.e., sediment) washing over the mats during high
wave actions; a process that propagated the continued upward
growth of the mat. The EPS contained ligands to chelate much
of the available free Ca2+ ions. The net result was that EPS
in the Type 1 mat inhibited CaCO3 precipitation (Visscher
et al., 2000). When a Type 1 mat transitions to a Type 2
mat, sulfate-reducing bacteria (SRB) increase in their relative
abundances. EPS, initially produced by the cyanobacteria, are
consumed by SRBs, then re-secreted as different EPS, a process
which enhances localized precipitation (Visscher et al., 2000;
Decho et al., 2005). Infared (FT-IR) spectral analyses of EPS
extracted from the precipitate closely resembles those extracted
from SRB mat isolates (Braissant et al., 2009). Notably, the
EPS properties change in the Type 2 mat, becoming “less
sticky.” These studies illustrated how the EPS properties of the
different mat could influence their properties and growth. The
Type 2 mat resembles a classic microbial mat, with less EPS
production (or accumulation), and little/no upward growth. The
cyanobacteria, SRB, sulfur-oxidizing bacteria (SOB), and aerobic
heterotrophs become spatially organized, and exhibit a closer
metabolically coupling.

With rising levels of atmospheric CO2, efforts are beginning to
examine if certain carbonate-precipitating bacteria can be used
to sequester (and store) CO2 (Paul et al., 2017) and understand
how microbial mat processes influence C storage (Bouton et al.,
2016).
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Sediment Stabilization and Fossil
Evidence of Mats
Sediment fluxes in marine systems are affected by many
parameters, including sediment grain sizes, physically cohesive
muds, and biologically cohesive microbial extracellular
polymers (Gerbersdorf et al., 2009; Grabowski et al., 2011).
EPS concentrations in marine sediments vary considerably
(Underwood et al., 1995, 2004). EPS, especially those from
microphytobenthos (e.g., diatomaceous mats), are important
in cohesive sediment stability, and resistance against erosion
and resuspension (Grant and Gust, 1987; Paterson, 1989; Smith
and Underwood, 1998, 2000; Tolhurst et al., 2002; Underwood
and Paterson, 2003; Hanlon et al., 2006). Levels of EPS present
in sediments can be a crucial variable to sediment stability
(Malarkey et al., 2015). However, more EPS isn’t always better.
Interesting experimental studies by Paterson et al. (2008) showed
that lower levels of EPS were more efficient in increasing
erosional thresholds than abundant EPS conditions. While is
well-established that the cohesive properties of EPS contribute
to sediment stability, it is however not well-understood how the
molecular-scale interactions of EPS themselves contribute to
their cohesiveness (Paterson et al., 2008). Sediment-inhabiting
small animals may indirectly influence sediment stability. For
example, increased EPS production was shown to occur in the
presence of a grazing nematode (Hubas et al., 2010). Initial
studies suggest that QS (see above) may be involved in biofilm
formation in certain diatoms (Yang et al., 2016) and offers the
possibility that QS may contribute to the sediment stabilization
process.

Finally, the very same bedform patterns that contribute to
sediment stability in present-day sediments (e.g., ripples) also
are considered as fossil evidences of sediment stabilization.
These include patterns such as microbially induced sedimentary
structures (MISSs), which are considered to be indirect fossil
remnants that illustrate the very earliest vestiges of microbial
mat life through geologic time (Noffke et al., 2001, 2013; Noffke,
2010).

ANIMAL–MICROBIAL INTERACTIONS
AND FOOD-WEBS

Feeding Studies
It was realized early on that biofilms, and more-specifically
their EPS, can represent a potentially labile carbon source for
animals ingesting microbial cells (Decho, 1990). Since many
small animals, present in both the water column and sediments
of ocean systems, ingest microbial flora as a food source,
they will coincidently ingest the closely associated EPS during
the feeding process. Many invertebrate taxa are filter-feeders
(i.e., straining suspended particles from the water) or deposit-
feeders (i.e., ingesting sediments and their organics), therefore
will consume microbial flora and their associated EPS as a food.
Initial feeding experiments addressing EPS utilization by marine
animals were conducted using EPS that were isolated from
bacterial cultures grown in the presence of radioactively labeled

(14C) substrates. Once the EPS were separated from cells and
residual label, EPS were mixed with sediments and fed to animals.
Results indicated that EPS comprised a highly labile carbon food
source. Examples of such studies involved copepods (Decho and
Moriarty, 1990), polychaete worms (Decho and Lopez, 1993),
bivalves (Harvey and Luoma, 1985), and sea stars (Hoskins et al.,
2003). Biofilms are even known to be grazed upon by benthic
foraminifera (Bernhard and Bowser, 1992).

Extracellular polymeric substance can act as a ‘sorptive
sponge.’ This is due to their ability to bind metals, other
ions, and even relatively hydrophobic organic contaminants
such as pesticides, which is attributed to the presence of
charged moieties (i.e., positive or negatively charged functional
groups) or hydrophobic moieties. This can result in the efficient
trophic-transfer of metals and pesticides to consumer animals
that are ingesting EPS. Together, these moieties serve to
sorb and/or trap, and concentrate environmental contaminants.
When animals ingest the matrix, coincidentally during their
feeding on sediments, cells or flocs, they will consume the sorbed
metals and organics as well. EPS have been shown to be an
efficient trophic-transfer vehicle for sorbed metals in amphipods
(Schlekat et al., 1998, 1999, 2000; Selck et al., 1999), and organic
compounds such as pesticides, although most of the latter work
has even been conducted in freshwater systems (Widenfalk et al.,
2008; Lundqvist et al., 2010, 2012).

Binding of Nanoparticles to EPS and Biofilms
In ocean systems, both natural (e.g., geological) processes and
anthropogenic processes result in the generation of extremely
small particulates called nanoparticles. Nanoparticles measure
1–100 nm in at least one dimension, and have different
physicochemical properties than larger particles. In oceans,
nanoparticles occur in the form of metal contaminants, organics,
and even degraded plastics and potentially may have long
water-column residence times owing to their small sizes.
A number of studies are indicating that nanoparticles are
efficiently concentrated by biofilms, and more specifically their
EPS (Battin et al., 2009; Ferry et al., 2009; Fabrega et al., 2011;
Nevius et al., 2012; Ikuma et al., 2014, 2015). Further studies have
shown that nanoparticles are taken up by protozoans (Holbrook
et al., 2008; Werlin et al., 2011; Mortimer et al., 2016). Finally,
the bioavailability and bioaccumulation of nanoparticles occurs
in marine (and freshwater) animals such as snails, bivalves and
oligochaetes (for review, see Luoma et al., 2014), all of which
coincidently ingest EPS during feeding processes. Therefore, EPS
can work as a trophic transfer vehicle for nanoparticles to enter
food webs.

EPS Capsules, Survival of Digestion, and the Gut
Microbiome
Bacteria often possess EPS capsules surrounding their cells. The
presence of capsules is a protective measure for the cells. Studies
conducted by Plante and colleagues showed that encapsulated
bacteria were less susceptible to digestion during detritivore- and
deposit-feeding (Plante et al., 1990; Plante and Schriver, 1998;
Plante, 2000). DePas et al. (2014) showed that protection is
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afforded to biofilm bacteria during grazing by the nematode
Caenorhabditis elegans.

Finally, one understudied aspect of trophic interactions
regarding biofilms that is gaining attention involves the roles of
resident gut bacteria in consumer animals (including humans).
The presence of these bacteria, whose densities and activities
may be quite substantial, is often facilitated by EPS capsules and
biofilms. Gut bacteria are a source of many new genes, and the
diversity and ecological principles driving these microbiomes will
be an interesting future area of study (Dorosz et al., 2016).

The Larval Settlement Process and
Biofouling
Virtually any type of surface, when placed in seawater becomes
fouled with organisms ranging from bacteria to animals and
algae; a process known as biofouling (Lewin, 1984). Bacteria and
other microbes are generally the initial colonizing organisms
of a surface. The presence of a bacterial biofilm often sets the
stage for subsequent larval settlement (Tran and Hadfield, 2011).
Understanding how biofilms interact with larval settlement is
important to the broader biofouling process, which constitutes
a costly ocean-engineering problem.

Studies in marine systems suggest that larval settlement is
also a multistep process, which involves initial sensing of specific
chemical cues, initial settlement and “tasting” of the surface, and
finally more-permanent settlement. The initial sensing step of
waterborne cues is a concentration-dependent process.

Presently, data suggest that in many cases, the larval settlement
cues are molecules that are produced by adult conspecifics and
are concentrated within the surface biofilm matrix or, in some
cases, may be produced by the biofilms themselves (Unabia and
Hadfield, 1999; Bao et al., 2007). Cue(s) can be multifunctional,
acting as agonists, antagonists, or toxins (Ferrer and Zimmer,
2012; Guezennec et al., 2012). Behaviors and responses of larvae
to cues are often species-dependent.

Settlement cues may be localized within the biofilm, and
more-specifically by the EPS matrix. Diatom biofilms and the
possible involvement of heat-stable settlement cues are involved
in the settlement of the polychaete Hydroides elegans (Lam
et al., 2003). Hydroides sp. are examples of the initial colonizers
of open surfaces in warmer water regions. Once they are set,
the complexity of colonizing species increases. Settlement cues
may be produced by the biofilm itself but has been challenging
to verify. The beneficial effect of a specific epibiotic bacterial
biofilm on marine animal or plant hosts has been suggested
(Holmström et al., 1992; Tran and Hadfield, 2011). Coralline red
algae, for example, are highly inductive surfaces for the settlement
of marine invertebrates, and are now realized to be strongly
influenced by the surface microbial flora and their cues (Nielsen
et al., 2015).

In contrast, the inhibition of larval settlement seems to be
influenced by waterborne or biofilm-associated molecules. This
is important to the potential control of biofouling. Early studies
noted that many marine animals and macroalgae exhibit reduced
biofouling, and suggested that chemical defenses may be involved
(Holmström et al., 2002; Rao et al., 2007). More recently, studies

have shown that specific chemical inhibitors can be produced
by either the host organism (e.g., algae, animal) or by biofilm
bacteria growing on the surface of the host (Lau and Qian,
2000). These have included both large and small molecules. In
tunicates, proteins produced by biofilm bacteria inhibit further
colonization by bacteria (Holmström et al., 1992). In a series of
landmark studies, de Nys et al. (2009) showed the macroalga
Delissia pulchra, was not subject to biofouling. This inhibition
(of biofouling) operates by jamming the cell–cell chemical
communication pathways of bacteria. As mentioned above, many
gram-negative bacteria use AHLs in chemical communication.
Release of specific AHL analogs, which are similar in molecular
design can “jam” the QS pathway(s) of AHLs. Small halogenated
furanones, resembling AHLs, interfered with chemical signaling
in bacteria. An ecological function of antifouling molecules
produced by plants and animals was postulated (and was
tested) by Kjelleberg and colleagues (Franks et al., 2006).
Harder et al. (2002) found large (>100 kDa) polysaccharide-
containing molecules, produced by both a host macroalga (Ulva
sp.) and Vibrio sp. bacteria, to inhibit larval settlement. These
molecules act as a broad-spectrum inhibitor for settlement. This
has touched off substantial exploration for chemically based
inhibitors of biofouling in both nature and medicine by many
laboratories. This infers the complex interaction in biofouling
among host organisms, bacterial biofilms, and chemical cues.
Since the biofouling of marine surfaces has both positive and
negative effects to hatcheries, this area has an emerging impact
on aquaculture processes (Joyce and Utting, 2015; Camacho-
Chab et al., 2016). Finally, work is in progress to understand
how climate change may affect processes such as larval settlement
(Whalan and Webster, 2014).

EXTREME OCEAN ENVIRONMENTS

In extreme and fluctuating conditions, microbes surround
themselves with EPS in an effort to add stability to their
extracellular environment. The physiological plasticity of
microbial cells, combined with their EPS-based adaptations
allow microbial life to succeed at the boundaries of where other
forms of life can survive.

Low-temperature Sea-ice Communities
In polar regions, metabolic processes are slowed by relatively
cold temperatures. It is here that microbes also employ EPS
to their advantage. Earlier, pioneering studies in Antarctic
systems showed the presence of specific ‘anti-freeze proteins’ (i.e.,
glycoproteins) within the blood plasma of fish (Devries, 1971).
The proteins would bind to ice crystals as they formed and
prevent further growth of damaging ice crystals in the blood.
This realization launched many subsequent studies of other
organisms, including bacteria.

In Arctic and Antarctic systems, the presence of EPS play
key roles as cryoprotectants, for attachment to sea-ice interfaces,
and to survive enclosure in ice (Underwood et al., 2010,
2013). Studies of bacterial isolates from sea-ice systems have
demonstrated that certain glycoproteins and exopolysaccharides
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act as cryoprotectants, which inhibit ice crystal nucleation, in
addition to securing the attachment of cells to the ice surface
(Nichols C. A. et al., 2005; Nichols C. M. et al., 2005; Marx et al.,
2009; Ewert and Deming, 2014). EPS and TEP become routinely
embedded in sea-ice (Meiners et al., 2003; Collins et al., 2008) and
contribute to the survival of microbial cells in these environments
(Krembs et al., 2002, 2011; Liu et al., 2013; Boetius et al., 2015).
EPS, including TEP can account for the majority of the carbon
pool in sea-ice, which is later released during melting (Miller
et al., 2011; Wurl et al., 2011), and can even make their way into
atmospheric ice (Wilson et al., 2015).

High-temperature Hydrothermal Vents
Since their initial discovery in 1977, ocean hydrothermal vent
systems have received much scientific attention. They are located
near specific regions of the ocean spreading centers of tectonic
plates, where geothermally heated fluids, enriched in minerals,
hydrogen sulfide, ammonia and methane are released and
mix with much colder surrounding seawater. Mineral deposits
form as chimneys, and are surrounded by islands of intense
biological activity, where chemosynthetic bacteria and archaea
form the base of a food web having a diversity of often unique
animals (Tunnicliffe, 1991). For these reasons, they have been
considered as a possible site for the origin of life on Earth,
and as an analog for study in the exploration for possible life
elsewhere.

Isolates of bacteria from vent systems demonstrate the
capacity for abundant EPS production, perhaps to sequester
dissolved minerals and other metals from the surrounding water
(Raguénès et al., 1997a,b; Guezennec et al., 1998; Rougeaux
et al., 1999, 2001; Guezennec, 2002). EPS, derived from isolate
cultures, typically have uronic acid contents as high as 40%,
and relatively high molecular masses (Guezennec, 2002). It is
not yet understood, however, how the EPS may influence the
microenvironment of the bacteria and archaea, in terms of
e-enzymes, 3D-microspatial development of their communities,
and microspatial acidification (to solubilize metal ions). It is not
known if the EPS matrix facilitates these processes, and actually
may serve to inhibit their precipitation, similarly to those in some
shallow-water carbonate environments?

Hypersaline Environments and
Desiccation
Hypersaline systems, such as salt ponds, salterns, and hypersaline
lagoons, contain well-developed microbial mats. Many of these
systems occur in proximity or directly connected to ocean
systems, while others are inland. Examples of hypersaline systems
are numerous and a few include Salt Pond, San Salvador,
Bahamas (Pinckney and Paerl, 1997); Guerrero Negro, Baha
California Sur, Mexico (Ley et al., 2006); Laguna Tebenquiche,
Salar de Atama, Chile (Fernandez et al., 2016); Don Juan Pond
[McMurdo Dry Valleys, Antarctica (Dickson et al., 2013)]; Dead
Sea (Oren, 1994); Solar Lake, Sinai, Egypt (Teske et al., 1998);
Hamelin Pool, Shark Bay, Western Australia (Goh et al., 2009);
Polynesian islands (Rougeaux et al., 2001; Richert et al., 2005;
Moppert et al., 2009).

The hypersaline environment presents unique challenges
to microorganisms, especially in terms of fluctuations in ion
concentrations and osmolarity. In addition, many hypersaline
mats are exposed to intermittent and/or progressive desiccation.
A lack of available water, during the desiccation process, can
kill a bacterial cell, largely through denaturation of proteins and
destabilization of cell membranes (see Potts, 1994, for review).
EPS are an abundant component of such mats (Benninghoff et al.,
2016), and likely provide a degree of protection to mat microbial
flora against ion fluctuations and desiccation (Potts, 1994; Shaw
et al., 2003; Decho, 2016). Interestingly, studies have shown that
bacteria can survive in a desiccated state in salt crystal for 250 my
(Vreeland et al., 2000).

In hypersaline mats, EPS occur in the form of capsules
surrounding individual cells, or a larger EPS matrix surrounding
many cells in a biofilm, which can buffer cells against either
dessication or rapid changes in water potential. Salinities
in hypersaline ponds are often >300 g/L (e.g., seawater is
approximately 32 g/L), but can reach as high as 440 g/L,
often with concentrations of individual ions not matching those
observed for typical seawater. Here, mat communities often
experience extended periods (i.e., days to months) of desiccation
that often is followed by a rapid rehydration due to seasonal rain
events.

Selective saltation also plays a role in the ability of mats
to cope with increasing salinities. This allows less-soluble
minerals to be removed from solution, as a function of
concentration. The evaporation process that occurs throughout
the dry season serves to increase ionic concentrations and
promotes the selective precipitation of salts on the mat surface.
As ionic concentrations increase, there is a sequential salting-out
occurring of less-soluble minerals. For example, much of
the Ca2+ is typically removed as gypsum (CaSO4 2H2O)
or smaller amounts of calcite (CaCO3). Gypsum begins to
precipitate when salinity concentrations reach about 160 ppt.
At very high ionic concentrations (>300 ppt) NaCl begins to
precipitate.

Some EPS may condense with increasing salinity, and even
form a hydrophobic barrier on the surface of the biofilm.
This may result in enhanced protection during subsequent
desiccation. It has been proposed that the exclusion of ions occurs
via the EPS matrix in response to increasing salinity, which is
designed to reduce osmotic stress and conserve water within
the mat (Decho, 2016). Desiccation is a process occurring in
many areas of marine environments. On the fringes of ocean
systems, specifically on the upper reaches of rocky intertidal
zones, intermittent desiccation is a common process. The roles
of EPS in stabilizing microbial communities require further
investigation.

SUMMARY: EPS RESEARCH LOOKING
FORWARD

The growing awareness of microbial EPS and their influences
on ocean processes are evidenced in this special issue and offers
many avenues for future research. It is emphasized here that the
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secretion of EPS is an adaptive response employed by microbes
to enhance their metabolic efficiency and survival. An extensive
literature on EPS and biofilms that is available in other areas of
microbiology may have relevance to ocean studies.

Finally, there were many aspects of EPS that were not
covered in this relatively short overview, but are important to
understanding the dynamics of microbial extracellular biology.
For example, we have not addressed: (1) EPS as electron-transfer
vehicles; (2) the concentration of viruses; (3) molecular pathways
of EPS secretion; and (4) the roles of biofilms in the search for life
elsewhere. In addition, we anticipate that the roles of EPS in ocean
systems will be integrated into the fundamental microbiology
of the ocean, and into larger-scale topics such as global climate
change, biotechnological applications of EPS, and the search for
novel antibiotics and other medicinal compounds.
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