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The framework of ecological stoichiometry was developed primarily within the context
of “green” autotroph-based food webs. While stoichiometric principles also apply in
“brown” detritus-based systems, these systems have been historically understudied
and differ from green ones in several important aspects including carbon (C) quality
and the nutrient [nitrogen (N) and phosphorus (P)] contents of food resources for
consumers. In this paper, we review work over the last decade that has advanced the
application of ecological stoichiometry from green to brown food webs, focusing on
freshwater ecosystems. We first review three focal areas where green and brown food
webs differ: (1) bottom–up controls by light and nutrient availability, (2) stoichiometric
constraints on consumer growth and nutritional regulation, and (3) patterns in consumer-
driven nutrient dynamics. Our review highlights the need for further study of how light
and nutrient availability affect autotroph–heterotroph interactions on detritus and the
subsequent effects on consumer feeding and growth. To complement this conceptual
review, we formally quantified differences in stoichiometric principles between green
and brown food webs using a meta-analysis across feeding studies of freshwater
benthic invertebrates. From 257 datasets collated across 46 publications and several
unpublished studies, we compared effect sizes (Pearson’s r) of resource N:C and P:C
on growth, consumption, excretion, and egestion between herbivorous and detritivorous
consumers. The meta-analysis revealed that both herbivore and detritivore growth are
limited by resource N:C and P:C contents, but effect sizes only among detritivores were
significantly above zero. Consumption effect sizes were negative among herbivores but
positive for detritivores in the case of both N:C and P:C, indicating distinct compensatory
feeding responses across resource stoichiometry gradients. Herbivore P excretion rates
responded significantly positively to resource P:C, whereas detritivore N and P excretion
did not respond; detritivore N and P egestion responded positively to resource N:C and
P:C, respectively. Our meta-analysis highlights resource N and P contents as broadly
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limiting in brown and green benthic food webs, but indicates contrasting mechanisms of
limitation owing to differing consumer regulation. We suggest that green and brown food
webs share fundamental stoichiometric principles, while identifying specific differences
toward applying ecological stoichiometry across ecosystems.

Keywords: food quality, detrital food webs, light nutrient hypothesis, growth, excretion, egestion

INTRODUCTION

Ecological stoichiometry was developed and has been considered
extensively within the context of autotroph-based, or “green”
food webs (Sterner and Elser, 2002) that conform nicely to
the classic trophic level concept of primary producers and
upper level consumers (Lindeman, 1942; Hairston et al.,
1960). Although most energy and organic nutrients available
to organisms are ultimately derived from autotrophs, the
majority of energy [carbon (C)] fixed by primary producers
enters the pool of detritus and becomes part of the “brown,”
detritus-based food web (Cebrian, 1999; Cebrian and
Lartigue, 2004). Brown food webs remain comparatively
under-studied by ecological stoichiometry theory, but the
framework can provide insight into controls on brown
trophic processes by examining the interplay of materials
and energy between detritus, decomposer microbes, and
detritivores (Moore et al., 2004). While there are shared
stoichiometric constraints, there are still notable differences
between green and brown food webs. For example, unlike
green food webs in which herbivores directly ingest but do
not themselves contribute organic C and organic nutrients
to the autotroph pool, detrital organic carbon and nutrients
are repackaged and consumed several times in brown food
webs, resulting in a “microbial loop” or “detrital processing
chain.” This and other inherent differences may result in distinct
stoichiometric principles throughout green versus brown food
webs.

In this paper, we use a conceptual review and quantitative
meta-analysis to summarize work over the last decade that has
developed the application of ecological stoichiometry from green
to brown food webs. We first identify three main areas where
green and brown food webs differ, yet stoichiometric principles
are shared and translate from green to brown systems. First, light
is not a direct nutritional resource for heterotrophic organisms
and the light and nutrient resource gradient that is recognized
as an important control on the autotrophic community and
primary production (Sterner et al., 1997) has received less
attention within the context of the ecological stoichiometry of
brown food webs than green ones. Second, detritivores have
evolved with lower quality [<nutrient:C] food resources than
herbivores (Frost et al., 2006) and their physiological responses
to food resource enrichment may differ, having consequences for
community structure and consumer-driven nutrient dynamics
(CND). Third, the stoichiometry of CND in brown food webs
has received much less consideration than that in green food
webs (Moe et al., 2005; Halvorson et al., 2015a; Atkinson et al.,
2016), and we highlight how CND may differ between the two
trophic systems. We complement our review with a meta-analysis

of existing studies from aquatic ecosystems, assessing how
stoichiometric constraints on consumer growth, consumption,
and waste production (egestion/excretion) compare between
green and brown benthic food webs. The meta-analysis provides
a focused, quantitative test of several predictions generated by our
conceptual review. Throughout this paper we focus on plant litter
as the basis of brown food webs, because it is a widespread form
of detritus across inland ecosystem types.

LITERATURE REVIEW – COMPARING
ECOLOGICAL STOICHIOMETRY OF
GREEN AND BROWN FOOD WEBS IN
THREE MAIN AREAS

Comparing Light and Nutrient Effects on
the Resource Base of Green and Brown
Food Webs
Autotroph stoichiometry varies widely across resource gradients
(e.g., light and nutrients) due to their ability to store nutrients
beyond what is needed for growth (Sterner et al., 1997; Persson
et al., 2010). Autotrophs also tend to have lower N:C and P:C
ratios than heterotrophs due to the presence of a cell wall and
greater structural C material like cellulose and lignin (Sterner and
Elser, 2002). Algal N:C and P:C tend to be lower than terrestrial
plant tissue due to the presence of more structural material in
plants (Elser et al., 2000), and the stoichiometry of different
tissues varies across leaves, stems, wood, and roots (Sterner and
Elser, 2002). Given this variation, plant litter that contributes
regularly to detrital pools varies widely across species and biomes
(Mcgroddy et al., 2004; Cornwell et al., 2008; Vergutz et al., 2012).
Large particulate detritus tends to have even lower N:C and P:C
than living plant tissue, due to resorption and leaching of soluble
compounds after senescence. This resorption and leaching results
in generally N- and P-deplete resources at the base of brown
compared to green food webs (Lemoine et al., 2014).

One complication in examining basal food resource
stoichiometry for macroconsumers in brown relative to
green food webs is that detrital stoichiometry is derived from
autotrophic as well as microbial heterotrophic decomposer
tissue. Heterotrophic bacteria and fungi tend to have higher
N:C and P:C ratios than leaf litter (Makino et al., 2003; Danger
and Chauvet, 2013) and elemental imbalances between the
microbial decomposers and the detritus can be alleviated at
the organismal level by flexible stoichiometry or by changing
physiological efficiencies (Manzoni et al., 2008, 2010; Kaiser
et al., 2014; Manzoni, 2017). The limited data available for
fungi suggest that they can have flexible nutrient:C ratios across

Frontiers in Microbiology | www.frontiersin.org 2 June 2017 | Volume 8 | Article 1184

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01184 June 27, 2017 Time: 12:17 # 3

Evans-White and Halvorson Comparing Stoichiometry in Food Webs

resource gradients and that their biomass can range more
broadly in elemental composition than other heterotrophs
(Danger and Chauvet, 2013; Danger et al., 2016); however,
autotroph elemental composition still varies more broadly than
heterotrophs (Sterner and Elser, 2002; Mcgroddy et al., 2004).
Bacteria can also have variable P:C stoichiometry across strains
(Scott et al., 2012) and some are more homeostatic than others
(Cotner et al., 2006, 2010; Godwin and Cotner, 2014, 2015).
Together, this variation across heterotrophic microbes results in
a greater possible range of detrital stoichiometry, additional to
that attributable to variation across plant tissues alone (Fanin
et al., 2013).

Nutrients and light availability are key controls on resources
in both green and brown food webs, because both factors can
stimulate primary production, increasing the flux and changing
the chemical quality of autotroph material that interacts with
or enters the detrital pool (Gusewell and Gessner, 2009; Valera-
Burgos et al., 2013; Liu et al., 2016). Nutrient enrichment
often alleviates autotroph growth limitation, enhancing biomass
(Elser et al., 2007) and increases the N:C and P:C of algal
tissue and the nutrient:lignin and nutrient:C ratios of plants
(Coulson and Butterfield, 1978; Aerts, 1997; Xu and Hirata,
2005). Further, nutrients may interact with light availability to
determine the stoichiometry of autotrophs; the nutrient:light
hypothesis (note we have switched numerator and denominator
to provide consistency with our use of nutrient:C ratios) suggests
that the balance between these two autotroph resources regulates
autotroph nutrient:C ratios. Autotroph nutrient:C ratios should
be positively related to the nutrient:light ratio (Sterner et al.,
1997). Tests of the nutrient:light hypothesis have primarily
focused on pelagic ecosystems and relationships between P:light
and seston or autotroph P:C (Sterner et al., 1997). A few studies
have applied the nutrient:light hypothesis to benthic aquatic algae
(Hill and Fanta, 2008; Hill et al., 2009; Fanta et al., 2010), but
few studies have extended it to terrestrial plants and they have
primarily focused on plant:mycorrhizal interactions (Elliott and
White, 1994; Treseder, 2004; Johnson et al., 2010). This extension
will be key to understanding the broader applicability of this
stoichiometric concept across interfaces of green and brown
trophic systems, especially because terrestrial plant litter provides
a major resource base for brown food webs.

As in green food webs, nutrient enrichment in brown
food webs increases the P:C and N:C ratios of basal food
resources because microbial decomposers on detritus are capable
of assimilating dissolved N and P from the water column
(Suberkropp and Chauvet, 1995; Cheever et al., 2013; Scott
et al., 2013). Since heterotrophic bacteria and fungi can have
weakly flexible N:C and P:C that are higher than the detrital
substrate (Makino et al., 2003; Danger and Chauvet, 2013), their
growth and nutrient storage can result in increased N and P
contents of detritus during decomposition. Notably, increased
microbial biomass also enhances the quality of detrital C,
through accumulation of microbial lipids, soluble carbohydrates,
and protein that are nutritionally valuable compared to plant
polysaccharides like cellulose and lignin that dominate detrital
substrate C and are resistant to breakdown and assimilation
(Martin et al., 1980; Chung and Suberkropp, 2009a,b). As elevated

nutrients stimulate microbial growth, increased decomposition
rates often accompany nutrient enrichment (Ferreira et al., 2015;
Kominoski et al., 2015; Manning et al., 2015, 2016), stimulating
C loss from ecosystems (Benstead et al., 2009; Rosemond
et al., 2015). In this way, nutrient enrichment increases the
quality (nutrient:C) of basal food resources in both green and
brown food webs. However, enrichment has contrasting effects
on resource quantity because nutrients stimulate autotroph
growth, enhancing resource quantity in green food webs, whereas
nutrients increase decomposition rates and therefore reduce
resource quantity in brown food webs (Rosemond et al., 2015).

The role of light availability in brown food webs is less clear
than in green food webs, because microbial decomposers cannot
directly use light as a resource and detritus is only affected
directly by light through photolysis that stimulates breakdown
(Wetzel et al., 1995). The role of light in decomposition has been
largely neglected under the assumption that most decomposition
occurs in low-light environments with minimal algal biomass
(Fisher and Likens, 1973). However, sufficient light can occur
in many aquatic settings, where light permits algal growth on
detritus, changing the microbial assemblage and altering detrital
stoichiometry and decomposition (Lagrue et al., 2011; Danger
et al., 2013a; Kuehn et al., 2014). Notably, periphytic algae
could reduce detrital P:C or N:C under low nutrient levels, but
increase the maximum detrital P:C or N:C under high nutrient
levels, because of autotrophs’ greater stoichiometric flexibility
and ability to store excess nutrients (Persson et al., 2010; Danger
et al., 2013a; Halvorson et al., 2016a). A key indirect effect of light
may also be to “prime” decomposition because algae exude fresh,
labile C that may be used by fungi and bacteria to invest in growth
or enzyme production, stimulating breakdown of recalcitrant
detritus via the priming effect (Kuzyakov et al., 2000; Guenet
et al., 2010; Kuehn et al., 2014). This coupling of periphytic
autotrophs and heterotrophs may depend on the nutrient:light
ratio, which influences autotroph nutrient:C ratios and algal C
exudation rates that probably elicit the priming effect (Sterner
et al., 1997; Guenet et al., 2010; Wyatt and Turetsky, 2015).
Existing studies suggest high light and nutrient levels suppress
decomposition through negative priming effects, whereas high
light and low nutrient levels stimulate decomposition through
positive priming effects (Danger et al., 2013a; Halvorson et al.,
2016a). Further studies are clearly needed to address the
interactive effects of light and nutrients on brown food webs,
especially regarding variation in detrital stoichiometry and
recalcitrance, the stoichiometry of algal-heterotroph interactions,
and implications of periphytic algae for detrital food quality to
detritivores (Guo et al., 2016).

Effects of Food Resource Nutrient
Enrichment in Brown and Green Food
Webs
Physiological responses to food resource elemental ratios
are central to understanding organismal homeostasis, growth,
fitness, and nutrient cycling (Sterner and Elser, 2002; Cross et al.,
2005; Frost et al., 2005a; Sperfeld et al., 2017). Although the
degree of stoichiometric homeostasis varies across metazoans
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(Persson et al., 2010), often some degree of constraint on
body elemental contents and ratios occurs due to biomolecular
composition, body plans, and life history traits (Elser et al., 1996;
Sterner and Elser, 2002). These constraints are common and
shape stoichiometric principles throughout a diversity of food
webs. Indeed, since the turn of the century, studies have shown
herbivores and detritivores often have higher N:C and P:C ratios
than their food resources (Elser et al., 2000; Lemoine et al., 2014)
potentially leading to widespread nutrient limitation of growth.
Understanding how resource stoichiometry affects consumer
growth and physiology is key to comparing stoichiometric
constraints in green and brown food webs, including under
anthropogenic enrichment that broadly increases resource N:C
and P:C (Cross et al., 2003; Peñuelas et al., 2013).

Herbivore and detritivore responses to nutrient enrichment
will likely differ due to contrasting stoichiometry and C quality
(recalcitrance and digestibility) of autotroph versus detrital food
resources. Because organism nutrient:C ratios often decrease as
one moves from unicellular autotrophs to land plants, terrestrial
herbivores and detritivores, as well as aquatic detritivores, rely
on food resources of lower nutrient contents compared to
aquatic herbivores (Cebrian and Lartigue, 2004). These taxa
have therefore likely faced greater elemental imbalances during
their evolutionary history than aquatic herbivores, and may
have evolved lower demands for nutrients in food resources
(Frost et al., 2006). As autotroph nutrient:C ratios decrease,
C quality also declines across the spectrum from unicellular
autotrophs to vascular plants, leading to greater digestion
resistance and constraining the proportion of resource C
assimilated by consumers of vascular plant tissue (Sterner and
Elser, 2002; Cebrian, 2004). The quality of C available further
differs between living, actively growing plant material consumed
by herbivores versus dead plant litter consumed by detritivores
(Vergutz et al., 2012), setting an additional contrast between
resources of the two trophic groups. These differences will
shape consumers’ response to nutrient enrichment because C
assimilation constrains animals’ ability to use ingested nutrients
(DeMott et al., 2010; DeMott and Van Donk, 2013). Together,
these trends support a general prediction that herbivores may
be better-equipped to respond positively to resource nutrient
enrichment, relative to detritivores.

The consumption response to resource stoichiometry is an
important component of growth, but the direction (positive or
negative) and magnitude in response to nutrient enrichment
may differ between herbivores and detritivores. Detritivores
targeting the acquisition of limiting resources may increase their
consumption rates (Ott et al., 2012; Flores et al., 2014; Fuller
et al., 2015) or selectively feed on food resources more rich in
potentially limiting nutrients (Frainer et al., 2016). On the other
hand, herbivores tend to exhibit reduced consumption on higher-
nutrient diets (Plath and Boersma, 2001; Boersma and Elser,
2006; Fink and Von Elert, 2006) and detritivore consumption
rates increase at a similar rate with the nutrient content and the
production of their autotrophic and detrital food resources across
terrestrial and aquatic ecosystems (Cebrian and Lartigue, 2004).
Therefore, we may expect aquatic herbivores and detritivore
consumption rates to increase similarly as their food resources

become enriched although herbivore responses may be weaker
than detritivores’.

The complexity of detritivore food resources (e.g., recalcitrant
N bound to lignin; Chapin et al., 2002) and lower nutrient
content (Cross et al., 2003) relative to living autotrophic tissue
may result in lower detritivore assimilation efficiencies (AEs) and
lower GGEs compared to herbivores. A meta-analysis found that
detritivores tended to have a lower C GGE than herbivores (Frost
et al., 2006), but other element-specific GGEs and AEs were not
commonly available across feeding guilds, and it remains unclear
how efficiently detritivores assimilate and convert nutrients into
new growth. However, recent estimates for aquatic detritivore
element-specific AEs and GGEs (Halvorson et al., 2015b, 2016b)
suggest that N- and P-specific AE and GGE are lower than those
estimated for aquatic herbivores (DeMott et al., 1998; Ferrão-
Filho et al., 2007). Therefore, detritivores will likely excrete
elements at lower and egest at higher rates than taxa in other
feeding guilds (McManamay et al., 2011). This trend is likely to
persist even with nutrient enrichment of food resources, because
nutrient enrichment does not appear to improve detritivore AE
or GGE, possibly because the recalcitrance of detrital C ultimately
constrains detritivores’ ability to invest energy or resources
toward acquisition of added nutrients (Halvorson et al., 2015b,
2016b).

Bioenergetic models indicate that aquatic herbivores have a
greater growth demand for P relative to C (i.e., higher P:C
threshold elemental ratios) and greater C GGEs than do aquatic
detritivores (Frost et al., 2006). A positive relationship between P
demand and growth has been observed across broad taxa (Elser
et al., 2003) and across aquatic taxa (Frost et al., 2006; Benstead
et al., 2014) suggesting aquatic detritivores may have traded the
ability to grow fast for the ability to utilize food resources with
a low P:C (i.e., terrestrial detritus). Even within herbivorous
zooplankton, species C- and P- specific growth rates are coupled
and growth rate is an important predictor of taxa responses to P
enrichment of food resources (Hood and Sterner, 2014). Aquatic
herbivores may have evolved greater growth rates and may have
a greater capacity for growth responses to nutrient enrichment
of food resources compared to aquatic detritivores. We address
many of these questions below in a meta-analysis comparing
aquatic herbivore and detritivore responses to resource N:C and
P:C in controlled feeding studies.

Comparing Consumer-Driven Nutrient
Dynamics in Green and Brown Food
Webs
Consumers can play important roles in ecosystem nutrient
dynamics (Elser and Urabe, 1999; Vanni, 2002; Pastor et al.,
2006), but these roles likely differ in green and brown food webs
due to contrasting resource stoichiometry and recalcitrance, as
well as differing processing of consumer wastes after release.
Most studies of consumer-driven nutrient dynamics (CND) have
focused on herbivores in pelagic green food webs, where the
unidirectional flow of energy and nutrients and tight consumer-
resource feedbacks may, in part, simplify CND (Elser and Urabe,
1999). While CND can be easily translated across systems, CND
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is probably more complex in terrestrial systems and in aquatic
brown food webs, because multiple forms of waste – including
excreta, egesta, exuvia, and carcasses – must be considered as
components of CND, with potential to affect nutrient availability
and consumer-resource feedbacks (Vanni et al., 2013; Sitters et al.,
2017). In particular, the iterative re-packaging and processing
of detritus along a transfer chain may result in multiple steps
and controls on the strength of CND in brown food webs
(Heal and Maclean, 1975; Navel et al., 2011; Bundschuh and
Mckie, 2016). Further understanding of CND in brown and
green food webs will be important to quantify the broad roles
of animals in ecosystem nutrient cycles (Vanni, 2002; Atkinson
et al., 2016), including under prevalent “multichannel” feeding
by omnivorous taxa (Wolkovich et al., 2014).

Ecological stoichiometry has historically focused on dissolved
and bioavailable excreta rather than particulate wastes like
egesta, because autotrophs are capable of directly assimilating
excreta, forming direct consumer-resource nutrient feedbacks
(Sterner, 1986; McNaughton et al., 1997b; Elser and Urabe,
1999; Evans-White and Lamberti, 2005). Moreover, dissolved
excreta are often considered the dominant nutrient waste
flux from the consumer pool (Zanotto et al., 1993; DeMott
et al., 1998); these assumptions are directly tied to the
natural history and community structure of green food webs
(but see Higgins et al., 2006). However, brown food webs
can also show a tight interplay between consumer wastes
and heterotrophic activity, because microbial heterotrophs are
capable of assimilating consumer excreta (Fornara and Du Toit,
2008; Cheever et al., 2012; Rugenski et al., 2012; Villanueva
et al., 2012). In this way, consumer nutrient recycling is
likely to promote biomass turnover of both autotrophic and
heterotrophic microbes (Hill and Griffiths, 2017); however, in
green food webs with plentiful light, this may come with minimal
reductions in autotroph standing stocks (Hobbs, 1996; Knoll
et al., 2009), whereas in brown food webs with limited detrital
stocks, consumers will enhance decomposition both directly via
consumption and indirectly via nutrient recycling that stimulates
heterotrophy.

Studies from both green and brown food webs increasingly
consider nutrient wastes released as egesta (Liess and Haglund,
2007; Hood et al., 2014; Halvorson et al., 2015a). Nutrient
egestion rates by aquatic herbivores and detritivores can equal or
exceed excretion rates (Hood et al., 2014; Liess, 2014; Halvorson
et al., 2015a; Norlin et al., 2016). In terrestrial settings, both
egesta and excreta are substantial, often concurrent nutrient
subsidies of consumers to soils (McNaughton et al., 1997a;
Clay et al., 2014; Sitters et al., 2014), and both forms of
waste have historically been considered as important pathways
of CND (Hobbs, 1996). The relative importance of egestion
versus excretion as components of CND will likely vary
with the resource N and P contents (Zanotto et al., 1993;
Hobbs, 1996; Halvorson et al., 2015a) and the recalcitrance
of ingested nutrients, including whether ingested nutrients
are bound in living versus dead tissues. The recalcitrance of
associated C may also set limits on assimilation and subsequent
growth and storage of nutrients in animal tissues (Atkinson
et al., 2016). Given greater recalcitrance of detrital C and

nutrients compared to autotrophic C and nutrients, egestion
is likely to play a relatively greater role in CND in brown
food webs than in green food webs. However, the ecological
importance of egestion versus excretion will also depend on
environmental processing of each form of waste (Liess and
Haglund, 2007; Sperfeld et al., 2016); egesta, in particular,
can play diverse roles in nutrient dynamics because they are
subject to microbial breakdown, direct ingestion by animals, and
transport/deposition (Wotton and Malmqvist, 2001). Egested
nutrients probably occur in recalcitrant forms that limit the rate
and magnitude of nutrient release, slowing nutrient turnover
relative to excretion (Liess and Haglund, 2007; Sperfeld et al.,
2016). Furthermore, decomposing egesta may exhibit uptake of
inorganic nutrients to support microbial growth, which would
slow ecosystem-level nutrient turnover (Halvorson et al., 2017).
As a subsidy of C and nutrients to depositional zones like soil
or the aquatic hyporheos, egestion probably fuels ecosystem
respiration and supports the subterranean food web (Navel et al.,
2011). Overall, the fates of animal egesta versus excreta must
be further studied to holistically understand CND, especially in
brown food webs (Navel et al., 2011; Bundschuh and Mckie,
2016).

The lower nutrient content of detrital resources, compared
to living plant matter, may indicate brown food webs to
be more strongly nutrient-limited than green food webs,
and therefore animals may be generally less-efficient recyclers
of nutrients in brown food webs. This is consistent with
evidence that aquatic detritivorous animals display lower N
and P excretion rates than their herbivorous counterparts
(McManamay et al., 2011), but comparisons from additional
settings are clearly needed. Moreover, generalizations of bulk
detritus as the stoichiometry of ingested resources are likely
to underestimate excretion and egestion rates (Hood et al.,
2014). This is because detritivorous animals selectively feed
on nutrient-rich biofilms on detritus. Such selective feeding
likely varies across animal species (Arsuffi and Suberkropp,
1989) and confounds predictions of aquatic CND across
animals (Dodds et al., 2014). Predictions of CND could be
aided by quantifying the degree of selectivity across species
and identifying trends across coarse traits such as mouthpart
morphology, trophic mode, or body size (Dodds et al., 2014),
as done among large terrestrial herbivores (Pastor et al., 2006).
This work is necessary to accurately place animals within
ecosystem processes, including consumption, release, and storage
of nutrients, and thereby understand how CND may depend
on an ecosystem’s trophic basis (Atkinson et al., 2016; Hill and
Griffiths, 2017).

In many systems, CND may also provide a link between
seemingly disparate nutrient dynamics in green and brown
food webs (Cherif and Loreau, 2013; Zou et al., 2016).
Because autotrophs and heterotrophs share the same pool
of inorganic nutrients, inorganic wastes from consumers can
easily interchange between detritus and autotrophs, resulting
in complex interplay between trophic processes in each food
web (Zou et al., 2016). Moreover, herbivores themselves
produce organic wastes including egesta, and these wastes are
subject to microbial and other breakdown processes within
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the pool of detritus, but do not return to autotrophs until
mineralization (Hawlena and Schmitz, 2010). The entanglement
of CND between green and brown food webs challenges the
traditional dichotomy between these energy flow channels,
leading toward weaker consumer-resource nutrient feedbacks
when a consumer’s nutrient wastes are incorporated by a food
resource inaccessible to that consumer (i.e., herbivore excreta
are assimilated by heterotrophic decomposers; Fornara and
Du Toit, 2008; Zou et al., 2016). The nutrient interchange
between green and brown food webs also occurs when omnivores
consume and subsequently recycle nutrients derived from both
autotrophs and detritus (Polis and Strong, 1996; Wolkovich
et al., 2014). In this way, CND provides a connection between
green and brown food webs, but may not facilitate the tight
feedbacks between consumers and their resources originally
conceived by ecological stoichiometry theory (Elser and Urabe,
1999).

META-ANALYSIS OF FRESHWATER
BENTHIC INVERTEBRATE FEEDING
STUDIES TO QUANTITATIVELY
COMPARE ECOLOGICAL
STOICHIOMETRY IN BROWN AND
GREEN FOOD WEBS

Methods
We sought to assess the current literature regarding
stoichiometric constraints on organismal growth and
stoichiometric regulation in green and brown food webs,
because many existing studies remain limited to single or a
handful of similar taxa, and there has been little synthesis across
the breadth of studies, and few formal comparisons between
green and brown food webs (but see Lemoine et al., 2014). We
collected data on freshwater benthic invertebrate herbivore
and detritivore taxa that had been fed food resources where
nutrient:C ratios were controlled or manipulated. Published
datasets were identified using the following search strings in
Web of Science, searched on September 15, 2016 (TS means
“topic search”; keywords): TS = (herbivor∗ OR graz∗ OR
detritivor∗ OR invertebrate OR shredd∗ OR macroinvertebrate
OR zooplankton) AND TS = (stoichiometr∗). This search
yielded 1,144 studies, from which we identified publications
suitable for data extraction. Although we initially planned to
include zooplankton, we narrowed our selection to benthic
invertebrates to focus the meta-analysis. We supplemented the
Web of Science search with a Google Scholar search of 2,000
additional hits for more recent literature and dissertations/theses
(excluding any duplicate publications). From each study, we
used figures (extraction using DataThief), tables, and appendices
to collect the following variables where available: diet N:C and
P:C, growth rates, consumption rates, and N and P excretion
and egestion rates. We also noted sample sizes, consumer
trophic mode (detritivore or herbivore), consumer and diet
taxonomy, whether dietary gradients were monospecific or
across multiple species, and temperature. To a total of 46

published studies ultimately included in the meta-analysis, we
added eight unpublished studies of our own. Because many
publications reported data from >2 experiments such as at
multiple temperatures, contrasting diet types (e.g., litter or algal
species) or from multiple consumer species, we treated each
experiment as an independent dataset suitable for inclusion in the
meta-analysis. Note our meta-analysis assumed independence
of datasets among closely-related taxa and when datasets were
from the same study or research group. Where studies used only
two levels of resource N:C or P:C, we obtained raw data from
the corresponding author to permit calculation of effect size. We
also excluded datasets in which minimum and maximum mean
resource N:C or P:C overlapped within 1 SD, ensuring a robust
gradient of resource stoichiometry (Halvorson and Small, 2016).
Altogether, 257 datasets were included in the meta-analysis.

From each dataset, we calculated effect sizes of resource
P:C or N:C (Pearson’s r) on each response variable (growth,
consumption, excretion, or egestion), such that positive effects
indicate a positive response to food resource nutrient enrichment
(Persson et al., 2010). Pearson’s r was transformed to Fisher’s
Z and weighted according to its variance as [1/(n-3)] where
n = sample size for a dataset (Rosenberg et al., 2013). We used
a weighted mixed effects model to test differences in effect size
between detritivorous and herbivorous taxa (Rosenberg, 2013).
This model treated trophic mode (categories = herbivore or
detritivore) as a fixed effect and dataset identity as a random
effect. The use of random effects accounts for heterogeneity
across studies due to variable factors including temperature,
taxonomy, and diet. We assessed heterogeneity of effect sizes
across studies using the I2 statistic, which equates to the
proportion of total heterogeneity attributable to between-study
variance (Table 1) (Senior et al., 2016). Because of insufficient
datasets regarding N and P egestion by herbivores, we decided
to exclude herbivores from the meta-analysis of those effect
sizes and focus only on detritivore datasets. I2 and the random
variance terms are calculated only for a global mean model
(null hypothesis = effect size of zero) in those sets, accordingly.
We also used one-sample weighted t-tests to determine if effect
sizes differed from a null hypothesis of Z = 0 (no response to
resource stoichiometry) for each trophic mode in each analysis.
All statistics were conducted using R version 3.3.1 (R Core Team,
2013) and the R package ‘weights’ (Pasek, 2016).

Results
We report sample sizes, I2, and random effects variance of
the meta-analysis in Table 1. Further description of datasets
and associated effect sizes and citations can be found in
Supplementary Table 1.

Across feeding studies included in the meta-analysis, resource
N:C and P:C contents spanned a wide range across all datasets
(Figure 1). Although there was notable overlap in the overall
range, herbivores’ resources (autotrophs) were generally greater
in N:C and P:C contents compared to detritivores’ resources
(detritus; Figure 1). The datasets spanned organisms from
eight taxonomic orders, with most herbivore studies using
Gastropoda and detritivore studies showing a broader diversity,
but primarily using Trichoptera, Plecoptera, Amphipoda, and
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TABLE 1 | Sample sizes, I2, and random effects variance for each of eight
variables in response to resource N:C or P:C manipulations in the met-analysis.

Response
variable

Resource
manipulation

# Datasets I2 Random
effects

variance

Growth N:C 39 93.6% 0.486

Growth P:C 54 96.5% 0.900

Consumption N:C 44 96.2% 0.638

Consumption P:C 34 96.6% 0.572

N excretion N:C 15 87.5% 0.423

P excretion P:C 23 96.5% 1.221

N egestion N:C 21 92.8% 0.730

P egestion P:C 27 91.0% 0.584

For a summary of all datasets and effect sizes, see Supplementary Table 1.

FIGURE 1 | Boxplot of minimum and maximum resource N:C contents (A)
and P:C contents (B) in benthic detritivore and herbivore feeding studies
included in the meta-analysis. Note the logarithmic Y-axis in (B). The black
horizontal lines indicate median values within each group.

Diptera (Supplementary Figure 1). Most studies used organisms
from streams or rivers, followed by lakes and wetlands/ponds
(Supplementary Figure 2).

Detritivore and herbivore growth responses to resource N:C
contents were similar and positive, although only the detritivore
response was significantly greater than zero (t1,27 = 5.39,
P < 0.001; Figure 2A). The two trophic modes also did not differ
in growth responses to resource P:C. Detritivorous taxa showed

a positive P:C-growth response significantly greater than zero
(t1,33 = 3.14; P < 0.01) whereas the herbivore response did not
differ from zero (Figure 2B).

Effect sizes of resource N:C on herbivore consumption
were significantly lower than effects on detritivore consumption
(P < 0.001; Figure 2C). Herbivore consumption responded
negatively to resource N:C, but mean effect size was not
different from zero, whereas detritivore consumption rates
responded significantly positively to resource N:C (t1,37 = 3.31,
P < 0.01; Figure 2C). Similarly, herbivores and detritivores
differed significantly in the effect size of P:C on consumption
(P < 0.001; Figure 2D). The P:C-consumption effect size was
significantly greater than zero for detritivores (t1,29 = 2.75,
P < 0.05) whereas that of herbivores was below zero (t1,3 = 3.22;
P < 0.05; Figure 2D).

The effects of resource N:C on N excretion did not differ
between trophic modes, and neither mode exhibited effect sizes
significantly different from zero (Figure 2E). In contrast, the
effect size of P:C on P excretion differed between trophic
modes, with herbivores displaying a higher, positive effect size
significantly greater than zero (t1,6 = 3.63, P < 0.05) compared
to an effect size indistinguishable from zero among detritivores
(Figure 2F).

We limited our meta-analysis of N and P egestion to
detritivores because we obtained only two herbivore datasets.
The response of detritivore N egestion to resource N:C was
significantly greater than zero (t1,20 = 2.49, P < 0.02; Figure 2G),
as was the response of P egestion to resource P:C (t1,26 = 5.31,
P < 0.001; Figure 2H).

Discussion
Our meta-analysis of feeding studies supports broad N and P
growth limitation among both herbivorous and detritivorous
freshwater invertebrates. However, only detritivores exhibited
N and P growth effect sizes significantly different from zero
(Figures 2A,B), suggesting that counter to our predictions in
the review above, detritivores’ growth responses to nutrient
enrichment may actually be stronger than herbivores’. The
greater strength and consistency of limitation among detritivores
may be partly attributable to larger sample sizes from
detritivorous taxa throughout the meta-analysis, highlighting
a literature gap of feeding studies from benthic herbivores,
especially among non-Gastropoda (Supplementary Figure 1).
Despite limited sample sizes, the mechanisms of growth
limitation also appear to differ between trophic modes, given
contrasting responses of consumption and P excretion to food
resource nutrient enrichment (Figures 2C,D,F). These results
indicate distinct responses of brown versus green benthic food
webs to nutrient enrichment, likely driven by inherent differences
in the stoichiometry (Figure 1) and C quality of detrital versus
autotrophic resources.

Compared to herbivores, detritivores may display stronger
and less variable growth responses to elevated resource nutrients
because elevated detrital N and P are accompanied by greater C
quality in the form of increased microbial biomass (Gulis and
Suberkropp, 2003; Manning et al., 2015), whereas autotrophic
C quality may only weakly co-vary with N and P contents.
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FIGURE 2 | Mean ± 95% CI effect sizes (weighted Z-scores) of resource
molar N:C contents (A,C,E,G) and P:C contents (B,D,F,H) on rates of growth
(A,B), consumption (C,D), N excretion (E), P excretion (F), N egestion (G),
and P egestion (H) of detritivorous and herbivorous benthic invertebrates.
Sample sizes (n) are indicated to the left of each effect size. Asterisks indicate
effect sizes different from zero (t-test, P < 0.05). Letters indicate effect sizes
differ between trophic modes (ANOVA, P < 0.05). Only detritivores were
included in (G,H) due to insufficient egestion datasets from herbivores (n = 2).

Given the importance of microbial C in supporting detritivore
growth (Chung and Suberkropp, 2009a; Halvorson et al., 2016b),
it is difficult to determine whether positive growth effect sizes
are driven by elevated dietary microbial biomass or increased

N and P availability. However, one feeding study explicitly
manipulated detrital P content without changing fungal biomass
and still found strong P-limitation of growth, suggesting P
can limit detritivore growth, independent of microbial biomass
(Danger et al., 2013b). In the case of autotrophs, increased N
and P contents may not affect or may actually drive lower
C quality, for example due to diminished eicosapentaenoic
acid contents as cyanobacteria form a greater proportion of
algal assemblages (Muller-Navarra et al., 2000), which could
dampen the herbivore growth response to elevated autrotroph
N and P contents. We also note that most herbivore feeding
studies (69% of datasets) used resource gradients containing
multiple species – especially periphyton composed of multi-
species assemblages – which could have weakened or increased
variation among herbivore effect sizes. This is in contrast to
the majority of detritivore feeding studies (76% of datasets)
that employed resource gradients using litter from only one
plant species (Supplementary Figure 3). Although microbial
taxa on detritus may shift with N or P availability (Lecerf and
Chauvet, 2008), a consistent detrital substrate across resource
stoichiometry gradients could reduce inter-individual variation
and increase growth effect sizes within detritivore feeding studies.
While the growth effect sizes are similar, we expect the underlying
mechanisms of enhanced growth (e.g., altered consumption or
assimilation) to differ between herbivorous and detritivorous
taxa, due to inherent contrasts between autotrophic and detrital
food resources (see above).

The contrasting consumption effect sizes suggest different
bottom–up effects of nutrients on consumption in green
versus brown food webs, given benthic detritivores and
herbivores exhibit different compensatory feeding with increased
resource nutrient content (Figures 2C,D). While herbivores may
up-regulate consumption on low-nutrient resources, perhaps
to increase intake of limiting nutrients (Fink and Von Elert,
2006; Liess, 2014), detritivores up-regulate consumption on high-
nutrient resources. This is surprising in light of predictions that
both herbivore and detritivore consumption increase positively
with resource nutrient enrichment (see review above; Cebrian
and Lartigue, 2004). We attribute this dichotomy to the lower
nutrient content (Figure 1) and low C quality of detritus, relative
to that of autotrophs. Detritivores fed low-nutrient resources
probably slow their feeding rates to increase gut residence time
and maximize assimilation of limiting C and nutrients (Golladay
et al., 1983). Indeed, assimilation probably imposes strong limits
on detritivore growth, owing to the recalcitrance of detrital C
and nutrients that set low maximum assimilation efficiencies
(Halvorson et al., 2015b, 2016b). In contrast, herbivores fed low-
nutrient resources may retain comparatively high assimilation
efficiencies and improve growth by increasing intake rates (Fink
and Von Elert, 2006; Liess, 2014). In this way, our meta-analysis
suggests herbivores and detritivores exhibit divergent strategies
of handling low-nutrient diets and responding positively to
nutrient enrichment. Notably, elevated detritivore consumption
on high-nutrient litter would contribute to enhanced detritivore-
mediated decomposition under nutrient enrichment (Manning
et al., 2016), whereas reduced herbivore consumption on high-
nutrient diets would alleviate grazing pressure, magnifying
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the stimulatory bottom–up effects of dissolved nutrients on
autotroph biomass (Dodds, 2007).

Although excretion may be an important means for
consumers to regulate stoichiometric homeostasis as resources
increase in nutrient contents (DeMott et al., 1998; Frost et al.,
2005b), we observed no response of N excretion to resource
N:C, and only herbivores elevated P excretion on high-P:C
resources (Figures 2E,F). The small N excretion effect size
suggests that in benthic systems, detrital and autotrophic
resources may rarely reach a point of excess N contents
relative to consumer demands, unlike higher resource P contents
that can inhibit growth and are accompanied by elevated P
excretion (Boersma and Elser, 2006; Morehouse et al., 2013).
One factor shaping these excretion patterns is probably body
stoichiometry, especially the stoichiometry of growth, which
determines consumer stoichiometric demands (Vanni et al., 2002;
Hood and Sterner, 2014; Halvorson et al., 2015b). We did
not collect body stoichiometry data in our meta-analysis, but
based on limited body stoichiometry data from field-collected
benthic invertebrates, body N contents stay consistently high
through development and may therefore dampen up-regulated
N excretion on high-N:C resources, whereas body P contents
often decline during development and could cause individuals to
exhibit lower P growth demands and excrete excess P on high-P:C
resources (Back and King, 2013). The lack of N or P excretion
responses among benthic detritivores suggests other regulatory
pathways of nutrient release – namely egestion – may increase
when detritivores are fed high-nutrient litter. Indeed, we found
detritivores consistently increase N and P egestion when fed
high-N:C and high-P:C resources, respectively (Figures 2G,H).
However, we were unable to assess egestion effect sizes among
herbivores, and we reiterate calls for additional excretion and
egestion data from diverse taxa, which will help resolve animal
nutrient budgets and CND in aquatic ecosystems (McManamay
et al., 2011; Vanni and Mcintyre, 2016). One key implication of
our meta-analysis is that P enrichment may increase the strength
of dissolved CND in green food webs, via increased P excretion,
indicative of tight herbivore-autotroph links that we predict in
our review. In contrast, brown food webs may exhibit little
change in dissolved CND with P enrichment, indicative of weaker
detritivore-heterotroph linkages in brown food webs. Instead,
nutrient enrichment in brown food webs will elicit strong effects
on particulate CND, affecting nutrient availability throughout
particle processing chains (Halvorson et al., 2015a).

Our meta-analysis synthesizes current data regarding N and
P limitation of freshwater benthic invertebrates, but it carries
some weaknesses that limit inferences and should be addressed
by future experiments and meta-analyses. First, we narrowed our
data collection to controlled feeding studies, primarily from the
laboratory, because field studies often have difficulty accurately
characterizing resource stoichiometry, face many confounding
factors across study sites, and typically have low sample sizes
(Halvorson and Small, 2016). During our literature search,
however, we found many studies across resource stoichiometry
gradients in the field (e.g., Cross et al., 2006; Rothlisberger
et al., 2008; McManamay et al., 2011), and a separate meta-
analysis of these field studies is warranted to compare effect

sizes from controlled studies (see Moody et al., 2015). Second,
our meta-analysis addressed consumer limitation by resource
N and P separately, but availability of these two elements was
likely positively correlated in many studies, and therefore some
responses may be driven by increases of N and P together.
Among the 46 publications included in our meta-analysis, 27
(59%) manipulated both resource N and P contents. For this
reason, we hesitate to explicitly compare effect sizes between
the N and P datasets, and we suspect co-limitation by N
and P may partly drive the effect sizes in our meta-analysis.
Third, we note that herbivore feeding studies on average used
higher temperatures (18.2◦C) than detritivore feeding studies
(10.8◦C), which may partly drive different responses between
trophic modes (Supplementary Figure 4), especially if the effects
of nutrients depend on temperature (Kendrick and Benstead,
2013; Cross et al., 2015). While a temperature scaling coefficient
could standardize metabolic rates across varying temperatures
(e.g., Vanni and Mcintyre, 2016), such standardization would
not affect our inferences because each effect size was calculated
from individuals held at the same temperature. Many of the
factors that differed across studies likely drove high heterogeneity
(I2) across effect sizes (Table 1), but this heterogeneity was
accounted by using a mixed effects model and I2 was similar
to that reported across other meta-analyses in ecology (Senior
et al., 2016). Finally, our classification of benthic invertebrates
into herbivores versus detritivores was based solely on diets
fed in experiments, and may not reflect feeding ecology or the
stoichiometry of feeding in the field, where animals can feed
selectively on nutrient-rich biofilms (Hood et al., 2014) or forage
on multiple resource types and confound trophic classification
(Wolkovich et al., 2014; Snyder et al., 2015; Stoler et al., 2016).
Future studies should investigate consumer feeding behavior
in the field to accurately quantify bottom–up constraints on
consumer growth, consumption, and excretion/egestion in green
and brown benthic food webs.

CONCLUSION

Our review and meta-analysis focusing on freshwater systems
highlight current understanding of ecological stoichiometry
in brown food webs, providing conceptual and quantitative
comparison to green food webs. Although stoichiometric
principles apply to both trophic systems, we suggest the nature
of these principles differs in several important ways. Notably,
inorganic nutrients and light availability can affect resource
quantity and quality in both brown and green food webs,
but in the former, both factors are likely to reduce detrital
quantity via stimulated decomposition (Danger et al., 2013a;
Rosemond et al., 2015) while enhancing detrital quality (Cross
et al., 2003; Manning et al., 2015; Halvorson et al., 2016a),
whereas in the latter, light and nutrients are likely to concurrently
increase autotroph quantity while eliciting opposing effects on
autotroph quality (nutrient:light hypothesis; Sterner et al., 1997).
We suggest detrivorous and herbivorous consumers may respond
differently to elevated resource nutrient contents, because
herbivores have evolved to use resources of greater C quality
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and nutrient contents compared to detritivores; underlying
mechanisms of these responses are also likely to differ, owing to
contrasting consumption responses and assimilation efficiencies
between trophic modes (Cebrian, 2004; Frost et al., 2006).
Patterns in consumer-driven nutrient dynamics (CND) are also
likely to differ, with egestion playing a greater relative role
than excretion in brown food webs due to the recalcitrance
of detrital C and nutrients, but we note excretion connects
detritivores and herbivores to a shared inorganic nutrient pool,
weakening direct consumer-resource feedbacks and increasing
nutrient exchange between green and brown food webs (Zou
et al., 2016). In a meta-analysis across controlled feeding
studies, we directly compared stoichiometric constraints on
invertebrates in green versus brown benthic food webs. The
meta-analysis shows that herbivore and detritivore growth
rates often increase with greater resource N and P contents.
However, we found contrasting responses of consumption
and P excretion between trophic modes, reflecting distinct
herbivore and detritivore regulatory responses to elevated
nutrients, probably due to contrasting resource C quality and
stoichiometry.

We see several directions for continued investigation of
ecological stoichiometry in both autotroph- and detrital-
based systems, especially at interfaces of autotrophic and
detrital-heterotrophic biomass and activity. First, there is a
need for further study of how light and inorganic nutrient
availability affect autotroph–heterotroph interactions on
submerged detritus (Kuehn et al., 2014; Halvorson et al.,
2016a) and subsequent feeding and growth of consumers
(Guo et al., 2016; Stoler et al., 2016). In both trophic
systems, but particularly among brown food webs, it remains
difficult to accurately characterize the stoichiometry of ingested
resources relative to that of bulk resources (Hood et al.,
2014) and studies must address selective feeding and other
foraging behavior as a mechanism of stoichiometric regulation,
especially when animals may actively choose nutrient-rich
resources (Dodds et al., 2014; Snyder et al., 2015; Sperfeld
et al., 2017). The role of selective feeding is especially
important to understand roles of multichannel consumers
that can feed on both autotrophs and detritus, blurring the
distinction between green and brown food webs (Wolkovich
et al., 2014). Finally, our meta-analysis documents a lack

of feeding experiments measuring herbivore consumption,
excretion, and (especially) egestion across resource stoichiometry
gradients in benthic systems. This is important because
there may be distinct top–down effects of consumers on
nutrient dynamics in green versus brown food webs that
remain poorly known, given the lack of data. Indeed, the
understudied components of CND (e.g., egestion, storage,
and mortality) could notably distinguish brown food webs
from their green counterparts (Atkinson et al., 2016). These
directions will help workers understand the interplay of energy
flow and nutrient cycling between green and brown food
webs, advancing understanding of bottom–up changes like
nutrient enrichment and furthering the application of ecological
stoichiometry to systems along the continuum between green or
brown.
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