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Elevated sea surface temperatures from a severe and prolonged El Niño event
(2014–2016) fueled by climate change have resulted in mass coral bleaching (loss of
dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent
coral mortality, devastating reefs worldwide. Genetic variation within and between
Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent
papers have called for genetic engineering of Symbiodinium to elucidate the genetic
basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been
intensively studied for over 50 years, genetic transformation of Symbiodinium has seen
little success likely due to the large evolutionary divergence between Symbiodinium and
other model eukaryotes rendering standard transformation systems incompatible. Here,
we integrate the growing wealth of Symbiodinium next-generation sequencing data
to design tailored genetic engineering strategies. Specifically, we develop a testable
expression construct model that incorporates endogenous Symbiodinium promoters,
terminators, and genes of interest, as well as an internal ribosomal entry site from a
Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome
editing through new analyses of the three currently available Symbiodinium genomes.
Finally, we discuss how genetic engineering could be applied to enhance the stress
tolerance of Symbiodinium, and in turn, coral reefs.

Keywords: synthetic biology, genetic engineering, dinoflagellate, Symbiodinium, zooxanthellae, coral bleaching

INTRODUCTION

Photosynthetic dinoflagellates are critical primary producers in the aquatic environment, yet, their
functional genomics are largely unexplored (Leggat et al., 2011; Murray et al., 2016). Symbiodinium
is considered one of the most important dinoflagellate genera given its role as the essential
photosymbiont of many tropical reef invertebrates, notably reef-building corals (Trench and
Blank, 1987). Provision of photosynthetically derived metabolites from Symbiodinium to the coral
host drives coral calcification and growth that forms the foundation of coral reef ecosystems
(Muscatine and Porter, 1977; Muscatine, 1990; Kirk and Weis, 2016). Thermal and light stress
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cause photosynthetic dysfunction of Symbiodinium and increased
leakage of harmful reactive oxygen species from their cells, a
process considered largely responsible for the dissociation of
Symbiodinium from corals characterized as “coral bleaching”
(Warner et al., 1999; Suggett et al., 2008; Weis, 2008; Levin et al.,
2016). Symbiodinium has therefore become established as a major
focus for research globally, and in effect, a model genus for
dinoflagellates.

Dinoflagellates evolved an estimated 520 million years
ago (Moldowan and Talyzina, 1998) and exhibit substantial
evolutionary divergence from model eukaryotic organisms
including other microalgae such as Chlamydomonas and
diatoms (Shoguchi et al., 2013). Consequently, dinoflagellates
possess unusual biological features that have hindered research
progress, such as some of the largest known nuclear genomes
(1.5–112 Gbp, typically exceeding the size of the human
haploid genome), permanently condensed liquid-crystalline
chromosomes, trans-splicing of polycistronic mRNAs, and
plastid genomes that are divided up into minicircles (Shoguchi
et al., 2013; Zhang et al., 2013; Lin et al., 2015; Murray
et al., 2016). The Symbiodinium genus evolved an estimated
50 million years ago and is highly diverse, containing nine
major evolutionary lineages or “clades” (A–I; Coffroth and
Santos, 2005; Pochon et al., 2006; Pochon and Gates, 2010) with
hundreds of genetically distinct “types/sub-clades” considered
to be different species1 (Tonk et al., 2013). Genetic factors that
promote differences in stress tolerance between Symbiodinium
variants (both inter- and intra-specific) strongly influence coral
gene expression and bleaching susceptibility (Berkelmans and
van Oppen, 2006; DeSalvo et al., 2010; Yuyama et al., 2012; Levin
et al., 2016). However, the capacity to fully explore Symbiodinium
genetics is currently restricted by a lack of genetic engineering
capability. Genetic engineering has been central to the study
of gene function and phenotypic enhancement in organisms
ranging from microbes to mammals and a key platform for
socioeconomic industries and biotechnologies; yet only two
cases of transgene expression in Symbiodinium have ever been
validated (ten Lohuis and Miller, 1998; Ortiz-Matamoros et al.,
2015a).

In 1998, a type A1 strain was transformed at very low
efficiencies using silicon carbide whiskers with plasmids encoding
expression constructs with plant, plant-viral, and agrobacterial
promoters (nos, CaMV 35S, and p1′2′) to drive transcription
of antibiotic resistance genes (nptII and hptII) and a reporter
gene (GUS) (ten Lohuis and Miller, 1998); however, these
results have yet to be reproduced. It was not until 2015 that
another case of transgene expression in Symbiodinium was
reported (Ortiz-Matamoros et al., 2015b). Plasmids encoding
expression constructs with plant and plant-viral promoters
(nos and double CaMV 35S) to drive transcription of a
herbicide resistance gene (bar) and a reporter gene (GFP) were
introduced to type A1, B1, and F1 strains using glass beads.
Whilst cells transiently exhibited improved herbicide resistance
and suggestive GFP signal, transformations were not validated
through DNA, RNA, or protein analysis (Ortiz-Matamoros et al.,

1http://www.symbiogbr.org/

2015b). Further transformation of these strains was attempted
using Agrobacterium carrying plasmids with the same expression
constructs, but the transformants were transient and unable to
divide (Ortiz-Matamoros et al., 2015a). Of these studies, none
attempted manipulation of ecologically relevant genes thereby
limiting new insight gained into Symbiodinium biology.

Therefore, in an attempt to overcome the bottleneck that has
become established in transforming Symbiodinium (and other
dinoflagellates), we recommend a new approach that capitalizes
on the recent surge in “omics” breakthroughs (Figure 1). By
evaluating the rapidly increasing supply of next-generation
sequencing (NGS) data, we propose a genetic engineering
framework for Symbiodinium that may markedly advance our
understanding of these important dinoflagellates. Furthermore,
genetic manipulation of Symbiodinium in order to reduce coral
bleaching has been hypothesized as a strategy to facilitate coral
management as reefs continue to rapidly deteriorate under
climate change (van Oppen et al., 2017). Combatting the impacts
of climate change and conserving marine organisms are both
key goals for sustainable development set forth by the United
Nations2. Thus, we believe genetic engineering of Symbiodinium
may open a novel avenue to achieve these goals by protecting
corals from climate change.

TAILORING A GENETIC ENGINEERING
FRAMEWORK FOR Symbiodinium

Fundamental components of Symbiodinium biology have
recently been uncovered through a boom in NGS (Figure 1),
particularly the assembly of the first Symbiodinium genomes
and transcriptomes, direct correlation between Symbiodinium
transcriptional and physiological states, and discovery of genes
from viruses actively infecting Symbiodinium cells. Furthermore,
NGS of Symbiodinium has revealed genetic elements that may
allow for transformation of Symbiodinium. In the following
sections, we detail how unique Symbiodinium promoters, specific
Symbiodinium genes underpinning important phenotypes, and a
viral internal ribosomal entry site recognized by Symbiodinium
ribosomes could be integrated to build expression constructs for
Symbiodinium.

TRANSCRIPTIONAL PROMOTERS AND
TERMINATORS

Currently, dinoflagellate nuclear genome assemblies are all from
the genus Symbiodinium (types A1, B1, and F1; Shoguchi et al.,
2013; Lin et al., 2015; Aranda et al., 2016), emphasizing the
importance of Symbiodinium to dinoflagellate research. The
assemblies have revealed the immense size of Symbiodinium
genomes with 36,850–49,109 genes, unidirectional gene
orientation, prevalent gene tandem arrays, microRNAs along
with putative gene targets, and unique promoter architecture
(Shoguchi et al., 2013; Lin et al., 2015; Aranda et al., 2016).

2https://sustainabledevelopment.un.org/?menu=1300, last accessed March 2017.
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FIGURE 1 | Breakthroughs in NGS of Symbiodinium. A timeline highlighting the key genomic (gray), transcriptomic (blue), and virus RNA (red) findings from recent
NGS studies of Symbiodinium.

Rather than the traditional TATA-box of eukaryotic promoters,
Symbiodinium promoters appear to have a TTTT-box that is
followed by a unique transcription start site (YYANWYY),
branch point (YTNAY), and acceptor for the dinoflagellate
spliced leader (AG) (Lin et al., 2015). Additionally, instead
of the typical eukaryotic polyadenylation signal AAUAAA,
dinoflagellate terminators use AAAAG/C (Bachvaroff and
Place, 2008). Hence, utilization of endogenous Symbiodinium
promoters and terminators (as opposed to promoters and
terminators from other organisms) would likely improve
expression and stability of transgenes introduced into
Symbiodinium. By chance, the CAMV 35S (plant-viral) promoter
happens to contain all of the described Symbiodinium promoter
elements, and the CAMV 35S (plant-viral) and nos (plant)
terminators both contain the dinoflagellate polyadenylation
signal; this may have contributed to their ability to drive
transgene expression in Symbiodinium previously (ten Lohuis
and Miller, 1998; Ortiz-Matamoros et al., 2015a).

Recent transcriptomic studies have identified highly expressed
Symbiodinium nuclear genes that can be genome-mapped to
uncover strong, endogenous promoters and their corresponding
terminators. These promoters and terminators can be isolated
from purified genomic DNA (gDNA) through PCR and

incorporated into custom DNA expression constructs
for Symbiodinium (Figure 2). Among the most highly
expressed transcripts in Symbiodinium transcriptomes are
genes for peridinin-chlorophyll a-binding protein, caroteno-
chlorophyll a-c-binding protein, major basic nuclear protein 2,
dinoflagellate viral nucleoprotein, and glyceraldehyde-3-
phosphate dehydrogenase (Baumgarten et al., 2013; Levin et al.,
2016; Parkinson et al., 2016); though all are multi-copy genes
(Shoguchi et al., 2013; Lin et al., 2015; Aranda et al., 2016).
Ideally, highly expressed nuclear genes chosen for promoter
selection should not have high copy numbers, as their expression
levels may largely be due to prevalence in the genome rather
than strong promoters. Constitutively expressed nuclear genes
are also desirable for selection of promoters that drive consistent
transcription regardless of experimental conditions, and thus,
drive reliable transgene expression.

To illustrate this approach of Symbiodinium promoter
selection, we examined NGS data from a type A1 Symbiodinium
strain for which the nuclear genome has been recently sequenced
(Aranda et al., 2016) and the transcriptional responses to
various conditions (temperatures, ionic stress, dark stress, and
contrasting circadian rhythm time points) have been determined
(Baumgarten et al., 2013). Locus 144 and Locus 1768 in the
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FIGURE 2 | Design of a tailored expression construct for Symbiodinium. Genetic elements that can be isolated from Symbiodinium cells: Symbiodinium genomic
DNA (dark gray), Symbiodinium messenger RNA (blue), resident virus genomic DNA (light gray), resident virus genomic or messenger RNA (red). Solid lines (identified
elements) and dashed or dotted lines (unidentified elements) are used to arrange the elements into a Symbiodinium expression construct. The pictured
Symbiodinium cell (type C1) was stained with DAPI for imaging on a DeltaVision OMX Blaze microscope (excitation/emission: 405 nm/419–465 nm).

type A1 transcriptome, a subunit of a large neutral amino
acids transporter and a putative ATP-binding cassette transporter
gene, both show high expression across all conditions (average
expression in the top 2% of all genes; Baumgarten et al., 2013)
and map tightly to the type A1 genome scaffolds 710 and 484,
respectively. No significant open reading frames are found >5 kb
up- or down-stream of either gene, confirming that they are
not part of tandem arrays. For each gene, all Symbiodinium
promoter elements are within 1 kb of the start codon, and
the dinoflagellate polyadenylation signal is found ∼300 bp after
the stop codon. These promoter and terminator regions could
therefore be isolated and utilized to drive high and consistent
expression of transgenes in a Symbiodinium expression construct.

GENES OF INTEREST

Recent transcriptomic studies have been fundamental in
the discovery of Symbiodinium nuclear genes that underpin
phenotypic traits, such as those related to cell adhesion (e.g.,
GspB, Svep1, Slap1; Xiang et al., 2015), sexual reproduction
(e.g., Msh4, Msh5, Spo11-2; Chi et al., 2014; Levin et al., 2016;
Gierz et al., 2017), antiviral response (e.g., Birc3, Ns1bp, Ifih1;
Levin et al., 2017a), and antioxidant activity/thermal tolerance

(e.g., Fe-sod, Mn-sod, Pxrd, Hsp70; Levin et al., 2016; Gierz
et al., 2017). Symbiodinium antioxidant genes are of particular
interests because of their potential role in defining bleaching
susceptibility of the coral host (Krueger et al., 2015; Levin et al.,
2016). For instance, iron-type superoxide dismutase (Fe-sod)
genes are believed to minimize thermally induced oxidative
damage to photosynthetic apparatuses and leakage of harmful
reactive oxygen species from type C1 Symbiodinium cells—
determinants of coral bleaching (Weis, 2008); however, these
genes are not expressed at detectable levels in all Symbiodinium
variants (Krueger et al., 2015; Levin et al., 2016). A Fe-sod
gene could therefore be inserted after a strong Symbiodinium
promoter in an expression construct to drive its over-expression
for evaluation of its phenotypic influence on Symbiodinium.
Endogenous genes of interest should be isolated through PCR of
complementary DNA (cDNA) reverse transcribed from purified
mRNA, since gDNA introns may prevent proper expression in
constructs (Figure 2).

Expression of exogenous genes of interest in Symbiodinium
could also greatly advance investigations of ecological processes
central to coral reef health. For instance, documenting
competition between Symbiodinium types, transmission
and acquisition of Symbiodinium types by the coral host,
and shuffling of Symbiodinium types within host tissues
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(Toller et al., 2001; van Oppen et al., 2001; Little et al., 2004;
Berkelmans and van Oppen, 2006; Byler et al., 2013; Boulotte
et al., 2016) is currently reliant upon sequencing since it is not
possible to visually differentiate many types. As a result, studies
have been restricted to low temporal and spatial resolution
relative to real-time imaging. Instead, the ability to color-code
Symbiodinium types through genetic transformation with
various fluorescent proteins could illuminate these phenomena
by enabling real-time imaging for visually differentiating types.
Additionally, tagging endogenous genes of interest through
fluorescent protein fusions would permit imaging of protein
localization within Symbiodinium cells and potential protein
secretion out of Symbiodinium cells (Xiang et al., 2015). When
selecting appropriate fluorescent proteins, it will be imperative
to consider the extreme autofluorescence of Symbiodinium
(Shaner et al., 2005); for example, venus (excitation/emission:
515/528 nm), tdTomato (excitation/emission: 554/581 nm),
and mCherry (excitation/emission: 587/610 nm) are promising
candidates as their fluorescence properties are off-peak of
the Symbiodinium excitation and emission spectra (Hennige
et al., 2009; Jiang et al., 2012). Finally, codon optimization
may be necessary for optimal exogenous gene expression in
Symbiodinium since codon usage of Symbiodinium genes can
be divergent from foreign genes (Levin et al., 2017a) and even
between Symbiodinium nuclear and minicircle genes (Bayer
et al., 2012).

SELECTABLE MARKER GENES

Although antibiotics have previously been used to select
transformed Symbiodinium (ten Lohuis and Miller, 1998; Ortiz-
Matamoros et al., 2015a), their use is problematic for two main
reasons. Firstly, eliminating wild-type Symbiodinium in culture
requires high concentrations of antibiotics (e.g., 3 mg/ml of
G418 or hygromycin; ten Lohuis and Miller, 1998), making
experimentation and long-term maintenance of transformed
cell lines extremely costly. It is also important to note that
natural antibiotic resistances are not uniform across all strains
(Supplementary Table 1), so dosage curves are necessary
before conducting transformation trials. Secondly, dinoflagellates
including Symbiodinium require symbiotic bacteria to grow
optimally (Alavi et al., 2001; Croft et al., 2005; Miller and Belas,
2006; Ritchie, 2012). Since eukaryotic antibiotics can also be
toxic to prokaryotes (Gonzalez et al., 1978; Colanduoni and
Villafranca, 1986; Pline et al., 2001; Vicens and Westhof, 2003),
bacterial communities in Symbiodinium cultures are removed
during antibiotic selection.

To preserve symbiotic bacteria, alternatives to antibiotic
selection markers should be considered, such as genes that
provide growth advantages under specific conditions by
increasing pathogen resistance, increasing thermal tolerance,
or allowing for utilization of non-metabolized carbohydrates
(Breyer et al., 2014). The precise functions of these alternative
marker genes (e.g., phosphomannose isomerase) are well
defined and shown to be applicable to many photosynthetic
species (Stoykova and Stoeva-Popova, 2011), though their

compatibilities with dinoflagellates are unknown. Discovery
of endogenous selectable markers should therefore also be
pursued. Recent Symbiodinium transcriptomic studies have
uncovered genes involved in selection-relevant phenotypes like
photosynthetic ability at unique light regimes (Parkinson et al.,
2016) or tolerance to increased temperature regimes (Levin
et al., 2016). These Symbiodinium genes could first be expressed
in more easily transformed microalgae like Chlamydomonas
and diatoms to gauge the potential for their up-regulation
to grant a significant selectable advantage under specific
conditions.

VIRAL ELEMENTS

Viral promoters and terminators, internal ribosome entry
sites (IRES), and 2A peptides are staple regulatory elements
incorporated in expression constructs since they have evolved to
be recognized by eukaryotic machinery for efficient and stable
foreign gene expression (Benfey and Chua, 1990; Martínez-Salas,
1999; Levin et al., 2014). Symbiodinium transcriptomics have led
to the discovery of genes, as well as an entire RNA genome, from
novel eukaryotic viruses that infect Symbiodinium (Correa et al.,
2013; Levin et al., 2017a). A putative viral IRES, which allows
cap-independent translation to produce separate proteins from
one mRNA transcript, was found between the two open reading
frames in the RNA genome of the+ssRNA virus infecting type C1
Symbiodinium (GenBank accession: KX538960 and KX787934;
Levin et al., 2017a). The+ssRNA virus transcripts were extremely
abundant in a type C1 Symbiodinium transcriptome (Levin et al.,
2017a), and such rampant +ssRNA virus replication indicates
that Symbiodinium ribosomes have high affinity to this IRES.

IRES sequences enable the creation of polycistronic constructs
transcriptionally controlled by a single promoter (Martínez-
Salas, 1999). By permitting simultaneous expression of two
independent proteins from one mRNA, a bicistronic construct
can achieve long-term expression of a gene of interest because
the gene of interest is transcriptionally fused to the selectable
marker gene (Gurtu et al., 1996; Figure 2). Conversely, in
monocistronic constructs, the selectable marker gene often
maintains expression, while the gene of interest becomes
transcriptionally repressed over time if it does not increase
fitness of the cell (Allera-Moreau et al., 2007). Therefore, the
IRES from the Symbiodinium +ssRNA virus is a valuable viral
element that is recognized by Symbiodinium ribosomes and may
improve the stability of transgene expression in Symbiodinium.
Moving forward, NGS data of viruses in Symbiodinium cultures
(Weynberg et al., 2017) and the coral holobiont (Weynberg
et al., 2014; Correa et al., 2016) should be mined for promoter,
terminator, and other regulatory elements from Symbiodinium
viruses, given the proven benefits of viral elements to genetic
engineering. Once assembled, the Symbiodinium expression
construct (Figure 2) can be combined with the backbone of a
standard cloning plasmid; added into an artificial, replicating
minicircle (Nehlsen et al., 2006; Karas et al., 2015); or serve as
a repair template for CRISPR/Cas9 genome editing (Cong et al.,
2013).
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CRISPR/Cas9 GENOME EDITING AND
Symbiodinium

Within the past 5 years, CRISPR/Cas9 has revolutionized genome
editing by allowing precise changes to be made to target sites in
the genome (Cong et al., 2013; Baek et al., 2016; Nymark et al.,
2016). In short, a single guide RNA (sgRNA) is designed to recruit
the Cas9 endonuclease protein and to match a specific, desired
target site in the genome that must be immediately followed
by a protospacer adjacent motif (PAM) sequence (5′-NGG-3′).
Once complexed with Cas9, the sgRNA guides Cas9 to the target
genome site. Cas9 then interacts with the PAM sequence and
creates a double-strand break in the target site. The cell can
either repair the double stranded break through non-homologous
end joining (NHEJ) or homology-directed repair (HDR) (Ran
et al., 2013). NHEJ genome editing arises from introduction of
a random mutation/insertion/deletion when the broken ends of
DNA are directly ligated, which can cause the target gene to
be knocked out (i.e., non-functional). Gene knockout provides
insight into the role and criticality of a gene by assessing the
effect of its absence. Alternatively, HDR genome editing uses a
repair template flanked by 5′ and 3′ homologous arm sequences
that match the up- and down-stream regions of the double-
strand break. The repair template can be designed for gene
knockout, introduction of a specific mutation/insertion/deletion,
or genomic integration of a transgene(s)/entire expression
construct (Ran et al., 2013).

Symbiodinium exhibits an asexual haploid vegetative stage
(Santos and Coffroth, 2003) with sister chromatids developing
in S-phase of the cell cycle (Watrin and Legagneux, 2003), but
HDR has yet to be directly observed in Symbiodinium. Therefore,
CRISPR/Cas9 genome editing of Symbiodinium may be restricted
to NHEJ. Ku70, Ku80, and DNA ligase IV (genes central to
NHEJ; Chu et al., 2015) are all expressed in Symbiodinium
transcriptomes (Levin et al., 2016). That said, some evidence
does suggest Symbiodinium can enter a transient sexual diploid
stage (Chi et al., 2014; Wilkinson et al., 2015; Levin et al., 2016),
which has been documented in other dinoflagellates (Figueroa
et al., 2015). In yeast, ploidy shifts the dominant double-stranded
break repair mechanism—diploid cells favor HDR, while haploid
cells favor NHEJ (Lee et al., 1999). Moreover, genes specific
to meiosis, a process during which HDR occurs (Thacker and
Keeney, 2016), have been found in Symbiodinium genomes and
transcriptomes (Chi et al., 2014; Lin et al., 2015; Rosic et al.,
2015; Levin et al., 2016). Msh4, Msh5, and Spo11-2 are all
highly up-regulated at elevated temperatures (Levin et al., 2016),
suggesting that HDR pathways in Symbiodinium are activated.
Brca2, a gene that controls HDR (Holloman, 2011), is likewise
up-regulated in heat stressed Symbiodinium (SM population:
TR74441| c0_g1; MI population: TR63986| c0_g1; Levin et al.,
2016). Hence, the potential for genomic integration of transgenes
through HDR may improve if Symbiodinium are pre-stressed.
HDR in Symbiodinium may also be increased by suppression of
Ku70, Ku80, or DNA ligase IV (Chu et al., 2015).

The permanently condensed chromosomes of Symbiodinium
could present an obstacle for CRISPR/Cas9 genome editing by

possibly limiting access of sgRNAs to certain target sites. An
additional challenge for genome editing is the abundance of
multi-copy genes in the large Symbiodinium genomes. Gene
redundancy can prevent knockout of gene function since the
CRISPR/Cas9 system is not 100% efficient, meaning uncleaved
functional gene copies can remain. Additionally, CRISPR/Cas9
targeting of genes with high copy numbers has been found to
decrease cell proliferation and survival likely due to an increased
frequency of DNA damage events (Aguirre et al., 2016). Also,
design of sgRNAs requires a sequenced genome, but only three
Symbiodinium genomes—each from a separate evolutionary
lineage—are currently available.

As a first step to overcome some of these limitations, we
analyzed the three published Symbiodinium genomes (types A1,
B1, and F1; Shoguchi et al., 2013; Lin et al., 2015; Aranda
et al., 2016) to identify conserved single copy genes. We then
predicted a target site in each conserved gene with high sgRNA
efficiency and specificity across the genomes (Supplementary
Materials and Methods). Conserved target sites may permit
CRISPR/Cas9 genome editing of Symbiodinium types that have
yet to be sequenced. Our analysis revealed 1792 conserved
single copy orthologs, 261 of which have an optimal target
site compatible with all genomes (Supplementary Dataset 1a).
The 261 single copy orthologs for CRISPR/Cas9 genome editing
were enriched for a wide array of functional gene groups
of interest, including cellular components for photosynthesis
and biological pathways for oxidation-reduction and for
response to UV-B (Supplementary Figure 1 and Supplementary
Tables 2–4). Knockout of these genes would critically improve
our understanding of Symbiodinium gene function, and if HDR
is present in Symbiodinium, these sgRNA target sites could also
be used to introduce genes of interest or entire Symbiodinium
expression constructs into the genome. Furthermore, we
identified sgRNA target sites in the type A1 genome scaffolds
710 and 484 (Aranda et al., 2016) immediately downstream from
the potentially strong, constitutive Symbiodinium promoters
discussed earlier (Supplementary Dataset 1b). Assuming HDR,
reporter genes such as fluorescent proteins could be introduced
at these sites to measure promoter activity.

The CRISPR/Cas9 system can be carried by plasmids that
contain expression constructs for the Cas9, sgRNA, and in the
case of HDR, the repair template with homologous arms. Target
site cleavage is improved by increased CRISPR/Cas9 construct
expression (Hsu et al., 2013), so strong endogenous promoters
and terminators from Symbiodinium discussed earlier could
be employed to drive transcription of Cas9 by Symbiodinium.
However, transcription of sgRNAs requires RNA polymerase III
(Pol III) rather than RNA polymerase II. Therefore, promoters
specifically recognized by Pol III (e.g., promoter of the U6
snRNA gene) are needed. Such promoters have been isolated
from other eukaryotes for sgRNA transcription; but, as discussed
earlier, they contain motifs (e.g., TATA-box) that Symbiodinium
lack (Goomer and Kunkel, 1992; Clarke et al., 2013). In
Symbiodinium, 26 U6 snRNA gene copies have been identified
(see Supplementary Table 5 in Shoguchi et al., 2013), one
of which is unusually located in a cluster with U1, U2, U4,
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U5, 5S, and spliced leader snRNA genes (type B1 genome
scaffold 8131; Shoguchi et al., 2013). Thus, genomic sequences
found upstream and downstream of these Symbiodinium U6
snRNA genes could be isolated and trialed in sgRNA expression
constructs as potential promoters and terminators recognized by
Symbiodinium Pol III. Alternatively, the CRISPR/Cas9 system can
be introduced to cells as pre-complexed sgRNA and purified Cas9
protein, which can achieve higher genome editing specificity by
∼10-fold compared to CRISPR/Cas9 plasmids and also removes
the need to optimize Cas9 codon usage or to find appropriate
promoters that will express Cas9 or sgRNAs (Zuris et al., 2015).

INTRACELLULAR DELIVERY OF
CONSTRUCTS AND COMPLEXES

Verified delivery of expression constructs into Symbiodinium
was previously achieved using silicon carbide whiskers, which
yielded very few transformants (ten Lohuis and Miller, 1998), and
with Agrobacterium, which produced transient transformants
that were unable to divide (Ortiz-Matamoros et al., 2015a).
Low efficiency foreign DNA delivery may be due to obstruction
by the thick, multilayer Symbiodinium cell covering comprised
of an external polysaccharide or glycoprotein layer atop an
internal cell wall (thecal plates and the pellicle) then finally
the plasma membrane (Markell et al., 1992; Wakefield et al.,
2000). To overcome this barrier, methods including high-
voltage electroporation, bioballistics, microinjection, and viral
transduction should be trialed. Continued exploration into
Symbiodinium viruses may facilitate development of a compatible
transduction system. Additionally, the first method to produce
viable Symbiodinium protoplasts (cells with their cell wall
removed) was developed (Levin et al., 2017b). Protoplasts
have been instrumental in genetic manipulation of cell-
walled organisms through somatic hybridization as well as by
allowing for alternate DNA delivery methods (Davey et al.,
2005). Protoplast-dependent methods such as polyethylene
glycol-mediated transformation (Mathur and Koncz, 1998)
and liposome-mediated transformation (Caboche, 1990) may
improve efficiency of construct delivery into Symbiodinium. Cell
walls also serve as a barrier to RNA/protein complexes like pre-
complexed sgRNA and Cas9 protein. Thus, genome editing of
Symbiodinium with pre-complexed sgRNA and Cas9 protein may
require the use of protoplasts (Woo et al., 2015). Polyethylene
glycol-mediated transformation (Woo et al., 2015), cationic
lipid transformation (Zuris et al., 2015), and electroporation
(Baek et al., 2016) have all been used to effectively deliver pre-
complexed sgRNA and Cas9 protein through cell membranes of
other eukaryotes that lacked cell walls.

CAN WE REDUCE CORAL BLEACHING
WITH GENETICALLY ENHANCED
Symbiodinium?

Coral reefs are the most diverse marine habitat per unit area
(Reaka-Kudla et al., 1996; Knowlton et al., 2010) and provide

world economies with nearly US$30 billion in net benefits
from goods and services annually (Cesar et al., 2003). Climate
change impact models predict that most reefs will be severely
damaged or lost in this century unless immediate protection
efforts are made (Hoegh-Guldberg et al., 2007; Pandolfi et al.,
2011; Mora et al., 2016; Hughes et al., 2017) prompting calls for
the development of novel mitigation and restoration approaches
(Rinkevich, 2014; van Oppen et al., 2015, 2017; Piaggio et al.,
2016). Exceptional genetic variability naturally exists within
the genus Symbiodinium, suggesting that seeding vulnerable
corals with more climate-change tolerant Symbiodinium variants
could provide a means to reduce bleaching susceptibility of
corals (van Oppen et al., 2015). Although, uptake of non-
native Symbiodinium variants by corals may not be widely
achievable since many coral species only associate with specific
Symbiodinium types (LaJeunesse et al., 2004). Furthermore, shifts
from innately less stress tolerant Symbiodinium types to more
stress tolerant Symbiodinium types (e.g., from type C2 to D)
can have negative impacts on a number of coral fitness traits
including growth and fecundity (Little et al., 2004; Jones and
Berkelmans, 2011).

Environmental bioengineering is an alternative strategy to
safeguard against climate change (Solé, 2015; Piaggio et al., 2016).
Microalgae, such as Symbiodinium, are clear and promising
candidates for genetic engineering with the aim of regaining and
preserving ecosystem-climate homeostasis (Solé, 2015) because
they can significantly influence the health of entire ecosystems
(Berkelmans and van Oppen, 2006; Kirk and Weis, 2016; Murray
et al., 2016). Genetic engineering to increase stress tolerance
of the Symbiodinium variants that are naturally harbored by
at-risk corals holds potential to reduce bleaching susceptibility
without negatively impacting the fitness of the coral host since
existing Symbiodinium-coral partnerships would be preserved.
Fe-sod, Mn-sod Prxd, and Hsp70 genes from Symbiodinium
(Levin et al., 2016; Gierz et al., 2017; Goyen et al., 2017)
are standout candidates whose engineered up-regulation may
enhance thermal and bleaching tolerance by reducing heat-
induced oxidative damage, but thorough evaluation of how this
artificial up-regulation contributes to long term fitness and the
Symbiodinium-coral symbiosis would be mandatory.

Application of genetic engineering to support environmental
management practices has been gaining momentum. Notably,
sterile male mosquitoes have been engineered to control
mosquito-borne diseases (Gabrieli et al., 2014). Field releases of
the sterile males significantly reduced wild mosquito populations,
supporting their value to disease control (Harris et al., 2012).
Similarly, fungus-resistance has been engineered in American
chestnut trees in order to restore the natural population that
was nearly eradicated from the spread of a foreign fungus.
Introduction of these transgenic trees into the wild may receive
federal approval in just the next few years, which would make
them the first threatened plant species to be restored through
genetic engineering (Jacobs et al., 2013; Powell, 2014).

Considering the great promise shown by genetic engineering-
based approaches to promote environmental health (Jacobs et al.,
2013; Powell, 2014) and human health (Paine et al., 2005;
Harris et al., 2012; Gabrieli et al., 2014), as well as to sustain
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food security (Schroeder et al., 2013), it is logical for genetic
engineering to be proposed as an important component
of the growing repertoire of forward-looking coral reef
management approaches (van Oppen et al., 2015; Piaggio
et al., 2016). Due to the urgent need to protect coral reefs
from climate change, the Symbiodinium research community
must commit to an all-hands-on-deck attitude to achieve
and extensively test genetic enhancement of Symbiodinium
and other novel reef restoration strategies in the laboratory
setting. In parallel, comprehensive cost-benefit-risk evaluation
of the potential ecological and socioeconomic impacts from
implementation of such strategies in the natural environment
must be exhaustive before field-based trials are initiated.
Additionally, transparent dialogs with policy makers, coral reef
managers, and the general public need to be initiated now
to begin the process of education and public acceptance of
genetic engineering approaches for coral reef mitigation and
restoration.

As we have discussed here, recent NGS breakthroughs
have revealed natural genetic elements of Symbiodinium and
their viruses (Figure 1). Based on these discoveries, we
have developed a tailored genetic engineering framework for
Symbiodinium based on empirical data that may also be
applicable to other dinoflagellate genera. In doing so, we have
opened a new prospective avenue to decode Symbiodinium
functional genomics that may ultimately allow for engineering
increased stress tolerance of Symbiodinium to reduce coral
bleaching.
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