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Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any
environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing
Zetaproteobacteria had primarily been observed in benthic and subsurface settings,
but not redox-stratified water columns. This may be due to the challenges that a
pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in
modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause
cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake
Bay oxic–anoxic transition zone, suggesting that they can survive and contribute
to biogeochemical cycling in a stratified estuary. Here we describe the isolation,
characterization, and genomes of two new species, Mariprofundus aestuarium CP-5
and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates
from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8
to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations
due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like
Fe oxyhydroxide structures that are easily shed, which would help cells maintain
suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely
catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both
CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB
and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains
also have two gene clusters associated with biofilm formation (Wsp system and the
Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria.
We propose that biofilm formation enables the CP strains to attach to FeS particles
and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2]
microenvironments within more oxygenated waters. However, the CP strains appear to
be adapted to somewhat higher concentrations of O2, as indicated by the presence
of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in
all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations
for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific
strategies can enable Zetaproteobacteria to live in any environment with Fe(II).
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INTRODUCTION

Chemolithotrophic Fe-oxidizing bacteria (FeOB) use Fe(II)
oxidation for energy and growth, and are therefore thought to
play important roles in Fe cycling. Fe is practically ubiquitous,
raising the question of whether FeOB are active in every
environment with Fe redox cycling, which would likely require
a variety of niche-specific adaptations. Fe cycling is particularly
important at coasts, where Fe transformations affect the
chemistry of waters in coastal sediments and estuaries, and
ultimately the concentrations of nutrients (e.g., Fe, P) and other
metals (e.g., As) transported to the ocean (Charette et al., 2005;
Jung et al., 2009). Significant redox activity occurs in stratified
marine waters, such as the Chesapeake Bay, which experience
seasonal anoxia in bottom waters (Officer et al., 1984). In
our previous studies of the Chesapeake, water samples from
the oxic–anoxic transition zone always yielded enrichments of
chemolithotrophic FeOB (MacDonald et al., 2014; Field et al.,
2016). From these enrichments, we isolated two FeOB, which
represent the first known marine FeOB from the water column
(isolate strain CP-8 previously reported in Field et al., 2016).
The presence of FeOB was somewhat surprising given the
relatively low (micromolar) concentrations of Fe, and the strong
tidal mixing, which may frequently expose FeOB to higher O2
concentrations, making it harder for them to compete with
abiotic Fe(II) oxidation. Further study of these isolates may reveal
their distinct adaptations to life in the estuarine water column,
while also showing commonalities shared among all marine
FeOB across different environments.

The Chesapeake FeOB isolates are members of the
Zetaproteobacteria, all of which are marine neutrophilic
chemolithotrophic FeOB. The other Zetaproteobacteria isolated
to date primarily originate from deep sea hydrothermal
microbial mats and sediments (Emerson et al., 2007; McAllister
et al., 2011; Field et al., 2015; Makita et al., 2016), with some from
coastal sediment (Laufer et al., 2016, 2017). Zetaproteobacteria
sequences have also been found in coastal groundwater and
worm burrows (16S rRNA gene analysis; McAllister et al., 2015)
and briny terrestrial groundwater (metagenomics; Emerson
et al., 2016). Steel coupon incubation experiments provide
sequence and culture-based evidence that Zetaproteobacteria
inhabit coastal waters (Dang et al., 2011; McBeth et al., 2011;
Mumford et al., 2016), but the Chesapeake isolates are the
first Zetaproteobacteria isolated directly from a coastal redox-
stratified water column. In total, previous studies show that
Zetaproteobacteria grow at oxic–anoxic interfaces where Fe(II)
and O2 are available, typically preferring lower O2 concentrations
(Chan et al., 2016), though Mariprofundus sp. DIS-1 is an
exception in that it tolerates saturated O2 conditions (Mumford
et al., 2016). The molecular mechanism of neutrophilic Fe(II)
oxidation is not well-known; comparative analysis of six existing
Zetaproteobacteria isolate genomes with freshwater FeOB
genomes has resulted in hypothesized pathways (Singer et al.,
2011; Liu et al., 2012; Barco et al., 2015), but differences in
single amplified genomes (SAGs) and metagenomes suggest
that the pathway has some variants (Field et al., 2015; Fullerton
et al., 2017). Fe(II) oxidation by the Zetaproteobacteria results in

Fe(III) oxyhydroxides, typically in the form of twisted ribbon-like
stalks, which form the framework of Fe microbial mats (Chan
et al., 2016). Such large, dense stalk structures would make it
difficult for a pelagic FeOB to maintain buoyancy. In sum, our
knowledge of benthic Zetaproteobacteria may not necessarily be
representative of FeOB in the water column.

Here we detail the isolation, physiological characterization,
and genomic analysis of two new Fe-oxidizing Zetaproteobacteria
from the Chesapeake Bay, Mariprofundus aestuarium CP-5 and
Mariprofundus ferrinatatus CP-8. We compare the CP strains
to the other Zetaproteobacteria and propose that physiological
and genomic distinctions represent adaptive strategies for the
Chesapeake Zetaproteobacteria to scavenge Fe in low Fe(II)
waters and to withstand highly variable oxygen conditions
associated with physically dynamic redoxclines.

MATERIALS AND METHODS

Sampling, Enrichments, and Isolation
The redox-stratified waters of the Chesapeake Bay at Station 858
(38◦58.600 N, 076◦22.080 W) were sampled aboard the R/V Hugh
R Sharp in August, 2014. Details of sampling and the geochemical
conditions can be found in Field et al. (2016). Water samples
collected from the oxic–anoxic transition zone were used to
inoculate FeOB enrichment cultures. Agarose-stabilized gradient
tube cultures (Emerson and Floyd, 2005) were set up with a
FeCO3 plug (1% w/v high-melt agarose) and simulated estuary
medium (0.15% w/v low-melt agarose), which is a 50:50 mixture
of modified Wolfe’s mineral medium (MWMM) and artificial
seawater (ASW). Per liter, estuary medium contains 13.75 g NaCl,
2.69 g MgCl2-6H2O, 3.49 g MgSO4-7H2O, 0.36 g KCl, 0.75 g
CaCl2-2H2O, 1 g NH4Cl, 0.05 g KH2PO4, 0.42 g NaHCO3.
After autoclaving, estuary medium was amended with 1 µL/mL
Wolfe’s trace mineral solution and 1 µL/mL vitamin solution and
adjusted to pH 6.2 with CO2. The headspace of all tube cultures
contained a low O2 gas mixture (N2/CO2/O2; 95:4:1).

Strains CP-5 and CP-8 were isolated by serial dilution-
to-extinction from water samples CTD12-5 and IS8-11.3
respectively (water geochemistry in Supplementary Table ST1;
further details in Field et al., 2016). Growth was confirmed
by the development of colonies or distinct growth bands in
agarose-stabilized tubes (Figure 1) and by microscopy. Purity was
checked by microscopic observation, absence of heterotrophic
growth on R2A-estuary medium agar plates, and sequencing of
the 16S rRNA genes amplified with the bacterial-universal primer
sets Bac27F and Uni1492R (Lane, 1991).

Physiological Characterization
To assess alternate substrate usage and optimal growth conditions
of strains CP-5 and CP-8, growth tests were carried out in
agarose-stabilized gradient tubes as described above, but buffered
to pH 7.0 except for pH testing. To test if the strains could
use non-Fe(II) substrates, we tested growth on 5 mM sodium
thiosulfate, 5 mM sodium sulfide, 10 mM sodium pyruvate,
10 mM glucose, 10 mM sodium acetate, and 0.2% w/v yeast
extract. The pH range of growth was determined using several
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FIGURE 1 | (A) CP strain gradient tube cultures with FeCO3 plugs (8 days
old). CP strain-inoculated tubes display distinct orange growth bands
(indicated by white arrows) in contrast to the diffuse oxide cloud in the abiotic
control. The inoculum for the CP strain tubes is visible as thin orange vertical
lines. Fluorescence micrographs of CP-5 (B) and CP-8 (C) cells.

buffers: acetate-acetic acid (pH 5.0 and 5.2, 10 mM), MES
(pH 5.5, 6.0, 6.4 and 6.9, 10 mM), and HEPES (pH 7.2, 7.4,
7.7, 8.0, 8.3 and 8.5, 10 mM). pH measurements taken before
and after cultivation confirmed minimal (0.1–0.2) decreases
during cultivation periods. Preferred growth temperature was
determined by incubating cultures at 5, 10, 15, 20, 25, 30, 35,
and 40◦C, and preferred salinity was determined using different
ratios of MWMM (0h): ASW (35h): 0:10, 1:9, 2:8, 3:7, 4:6, 5:5,
6:4, 7:3, 8:2, 9:1, and 10:0. All cultures were assessed for growth
after 2 weeks based on the development of growth bands and
observation by fluorescent microscopy.

To determine the preferred oxygen concentration for growth,
the dissolved oxygen (DO) within strain CP-5 and CP-8 growth
bands was measured 48 h after inoculation using a Firesting
optical oxygen probe with a needle-type sensor (PyroScience,
Aachen, Germany) mounted on a micromanipulator (Narishige
International, Amityville, NY, United States). Attempts to test
growth under anoxic conditions were also set up by preparing
deoxygenated media (bubbling with N2 and autoclaving in an
N2-flushed vessel), setting up gradient tubes under a stream of

N2, and using a 100% N2 headspace. However, the Firesting
optical oxygen probe detected trace O2 in the gradient tube
medium (∼250 nM) indicating that this procedure did not yield
completely anoxic cultures.

To measure the growth rate of each strain, growth bands
from triplicate gradient tube cultures (buffered with PIPES) were
harvested daily over the course of the experiment (10 and 9 days
for strain CP-5 and CP-8 respectively). Samples were stained
with Syto 13 for cell counting using a Petroff-Hausser counting
chamber. Aliquots of harvested growth bands were also used
to measure total Fe concentrations in cultures over time. Fe
concentrations in abiotic control gradient tubes were measured
as well, using samples at the same height as biotic growth bands.

We used total Fe measurements to follow Fe(II) oxidation
because nearly all Fe accumulated in developing growth bands
was shown to be Fe(III) in the strain CP-5 growth experiment
(data not shown). Samples for total Fe analysis were reduced with
200 mM hydroxylamine for 22–24 h and measured using the
ferrozine method (modified from Stookey, 1970).

Microscopy
Phase contrast and fluorescent micrographs of cultures (stained
with SYBR green I, in the case of fluorescence) were captured
on an Olympus BH-2 microscope with 400x total magnification.
For these analyses, we used liquid cultures (without agarose)
grown for 24 h. Samples for scanning electron microscopy (SEM)
were gently mounted on a 0.2-µm-pore-size polycarbonate filter,
air dried, and coated with gold/palladium for observation, or
with carbon for energy dispersive spectroscopy (EDS) analysis.
Samples for transmission electron microscopy (TEM) were
gently mounted on a Formvar-coated copper grid, air dried,
and coated with gold/palladium. Electron microscopy was
performed at the Delaware Biotechnology Institute Bioimaging
Center, using a Hitachi S-4700 field emission SEM with
an Oxford INCA EDS system and a Zeiss LIBRA 120
TEM.

Genome Sequencing and Analysis
For DNA extraction, strains CP-5 and CP-8 were grown using
25 mL FeCO3 gradient plates (1 L total volume per strain)
under microaerobic conditions (N2/CO2/O2; 95:4:1; Emerson
and Floyd, 2005). Genomic DNA was isolated from these cultures
using the FastDNA Spin Kit for Soil (MP Biomedicals, Santa
Ana, CA, United States). We used the PowerClean Pro DNA kit
(MO BIO Laboratories, Carlsbad, CA, United States) to remove
remaining inhibitors. The purified DNA (2.5 and 0.5 µg of CP-5
and CP-8, respectively) was size-selected using electrophoresis
(BluePippin, Sage Science, Beverly, MA, United States) to a
minimum size of 6 kb, resulting in an average size of 12 kb.
The genomes were sequenced using PacBio RSII technology
at the University of Delaware Sequencing and Genotyping
Center. Size-selected DNA was prepared for sequencing using
the SMRTbell Template Prep Kit 1.0 (PacBio, Menlo Park, CA,
United States) as per the manufacturer’s instructions. One SMRT
cell per genome was sequenced with P6-C4 chemistry and a 6-h
movie. For strain CP-5, sequencing generated 1.37 Gbp of raw
data (mean read length 15,263 bp; N50 26,034 bp); for strain
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CP-8, sequencing generated 0.84 Gbp of raw data (mean read
length 8,877 bp; N50 19,311 bp). Assembly was completed on
the PacBio SMRT Portal. Subreads were filtered to a minimum
length of 1 kb (CP-5) or 2 kb (CP-8) with a polymerase quality
score minimum of 0.8. The hierarchical genome assembly process
3 (HGAP-3) was used to assemble a single high quality contig
from each of the sequencing runs. The average coverage over
the entire sequenced contigs was 382x for strain CP-5 and
300x for strain CP-8. Gepard (v.1.40; Krumsiek et al., 2007)
was used to compare each genome against itself to check for
inverted repeats and to close each contig into a complete circular
genome.

The complete genomes of strains CP-5 and CP-8 were
annotated using the pipeline of the Integrated Microbial Genome
Expert Review (IMG/ER) system (Markowitz et al., 2012).
Manual verification of predicted genes of interest was completed
using MUSCLE alignments in MEGA (v.7.0.14) against reference
gene sequences from UniProt or the RSCB Protein Data Bank
(Edgar, 2004; Kumar et al., 2016). The Rapid Annotation using
Subsystem Technology (RAST) platform (Aziz et al., 2008;
Overbeek et al., 2014) was used to identify possible frameshifts
(none were detected) and to help find genes unique to the CP
strain genomes, with respect to the other Zetaproteobacteria.
Average amino acid identities (AAIs) of bidirectional best hit
proteins were calculated using a web-based calculator1. Reported
AAI values are the average of the separate calculations run in
both directions for each pair (standard deviation < 1.18%).
Average nucleotide identities (ANIs) were calculated using
OrthoANI (Yoon et al., 2017). An AAI heatmap was made
using the R package gplots heatmap.2 (v 3.0.1); hierarchical
clustering using complete agglomeration was used to calculate the
dendrogram.

16S rRNA Gene Analysis
The CP strain 16S rRNA genes were found in their completed
genomes and aligned to the arb-SILVA database using the
SINA online web tool (v.1.2.11; Pruesse et al., 2012). Aligned
sequences were masked to unambiguously aligned base positions
and a maximum-likelihood tree was constructed using RAxML
with the GTR-gamma nucleotide substitution model (v.8.2.8;
Stamatakis, 2014). Bootstrap values were estimated from 500
replicates. To calculate pairwise percent nucleotide identity, we
calculated the Similarity score metric on the Ribosomal Database
Project (RDP) website (Cole et al., 2014).

Genome Accession Numbers and
Culture Availability
GenBank accession numbers for Mariprofundus aestuarium
CP-5 and Mariprofundus ferrinatatus CP-8 are CP018799 and
CP018800 respectively. IMG taxon IDs for strains CP-5 and
CP-8 are 267118011 and 267180111 respectively. Both isolates
are available on request from C.S. Chan (University of Delaware,
United States) and at the Provasoli-Guillard National Center for
Marine Algae and Microbiota (NCMA; Bigelow Laboratory for
Ocean Sciences, United States).

1http://lycofs01.lycoming.edu/~newman/AAI/

RESULTS AND DISCUSSION

Isolation and Physiological
Characterization
Strains CP-5 and CP-8 were both successfully isolated using
Fe(II)/O2 gradient tubes after five transfers of the 10−5 serial
dilutions. Growth consistently appeared as a sharp orange band
typical of microaerophilic FeOB (Figure 1A) and cells appeared
as curved rods under fluorescent microscopy (Figures 1B,C).
Strain CP-5 cells are 0.43 ± 0.05 µm × 1.01 ± 0.18 µm,
and strain CP-8 cells are 0.45 ± 0.04 µm × 0.91 ± 0.08 µm.
Purity was demonstrated by the lack of growth on R2A-estuary
medium plates (no contaminant oligotrophs) and by a single
unambiguous full length 16S rRNA gene sequence amplified from
each culture.

Strains CP-5 and CP-8 have doubling times of 19.5 and
27 h, respectively. These generation times are slower than
M. ferrooxydans PV-1 (12 h), but similar to the 24 h doubling
time reported for the closely related Mariprofundus micogutta.
During growth, strains CP-5 and CP-8 both accelerated Fe(II)
oxidation, compared to uninoculated controls (Figure 2). The
O2 concentration in the growth bands of inoculated gradient
tubes was <2 µM O2 (Supplementary Figure S1), comparable
to or lower than M. ferrooxydans PV-1 (Krepski et al., 2013).
Strains CP-5 and CP-8 appear to be obligate Fe(II)-oxidizers as
neither grew on reduced S or organic carbon substrates (Table 1).
Overall, our experiments suggest that strains CP-5 and CP-
8 are microaerophilic chemolithoautotrophic Fe(II)-oxidizers,
consistent with all other Zetaproteobacteria isolates.

To optimize culturing of the CP strains, growth was tested
over a range of salinity and pH. The preferred salinity was
brackish, 14–17.5h, with no growth at 0h (freshwater) or
35h (normal seawater). The preferred pH range was 6.9–7.2,
and both strains grew at pH up to 8.3, unusually high for
neutrophilic FeOB isolates, which typically prefer pH between
6.0 and 6.5 (e.g., M. ferrooxydans PV-1 and M. micogutta,
Table 1; freshwater FeOB Gallionella capsiferriformans ES-2,
Sideroxydans lithotrophicus ES-1, and Ferriphaselus amnicola
OYT-1; Emerson and Moyer, 1997; Kato et al., 2014). One
exception is Mariprofundus sp. DIS-1, which can grow at pH 8.0
(Mumford et al., 2016). The CP strain salinity and pH preferences
reflect the brackish seawater from which they were sampled.

Phylogenetic Analyses
Strains CP-5 and CP-8 are representative of the Chesapeake
Bay environment, as their 16S rRNA gene sequences match the
dominant 16S rRNA sequences of the original FeOB enrichment
cultures from which each strain was isolated (Supplementary
Figure S2). Phylogenetic analysis of 16S rRNA gene sequences
shows that strains CP-5 and CP-8 are Zetaproteobacteria within
OTUs 18 and 37 respectively (as defined by McAllister et al.,
2011 and determined using ZetaHunter2) and cluster with nearly
all other isolated Zetaproteobacteria (Figure 3). Among the
Zetaproteobacteria isolates and SAGs, strains CP-5 and CP-8

2https://github.com/mooreryan/ZetaHunter
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FIGURE 2 | (A) Strain CP-5 growth curve (left) and corresponding total Fe curve (right) including abiotic controls. (B) Strain CP-8 growth curve (left) and
corresponding total Fe curve (right) including abiotic controls. All cell concentrations are an average of direct cell counts from triplicate samples per time point. Error
bars represent one standard deviation from the mean.

are most similar to each other based on ANI, average AAI,
and 16S rRNA gene identity (Table 2). Because both strains
share less than 97% 16S rRNA gene identity (Stackebrandt and
Goebel, 1994) and have less than 95% ANI (Konstantinidis
and Tiedje, 2005) with all other Zetaproteobacteria isolates and
SAGs, including each other, strains CP-5 and CP-8 are two new
species, with proposed names Mariprofundus aestuarium CP-5
and Mariprofundus ferrinatatus CP-8.

Comparisons of 16S rRNA sequences and %AAI among
Zetaproteobacteria show that most of the isolates fall within a
closely related group, i.e., the genus Mariprofundus (Figure 3).
By 16S rRNA gene identity and %AAI, the CP strains are
most closely related to Mariprofundus sp. DIS-1, isolated from
a steel coupon incubated in a coastal bay (Mumford et al.,
2016), and M. micogutta, isolated from marine hydrothermal
sediment (Table 2 and Figure 3; Makita et al., 2016).
These close relationships show that Mariprofundus is a
cosmopolitan genus that inhabits a variety of environments,
coastal and deep sea, as well as planktonic, benthic, and
subsurface.

Iron Oxyhydroxide Biomineral
Morphology
To investigate how suspended FeOB manage Fe oxyhydroxide
precipitation to avoid sinking, we examined the Fe biominerals
produced by strains CP-5 and CP-8. Both strains produce
bundles of stubby rod-shaped extracellular structures (Figure 4),
confirmed to be Fe-rich by SEM-EDX (Supplementary Figure S3)
and morphologically distinct from abiotic mineral precipitates
(Supplementary Figures S4, S5). This morphology has previously
been identified in freshwater FeOB and referred to as dreadlocks
(or dreads) given their resemblance to the dreadlock hairstyle
(Figure 5; Kato et al., 2015). Dreads are somewhat similar to
the fibrillar twisted Fe stalks produced by other microaerophilic
FeOB (Figure 5B; Chan et al., 2011; Kato et al., 2014), in
that they are bundles of elongated Fe oxyhydroxides (referred
to as oxides from here on). However, dreads are short, never
exceeding 10 µm in length, and many dreads can radiate from,
and surround a single cell. In contrast, Fe oxide stalks range in
length from 10’s of µm to mm, extend from one side of the
cell, and are used by mat-forming FeOB to anchor themselves to
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TABLE 1 | Summary of strains CP-5 and CP-8 genomic and physiological characteristics in comparison to other selected Zetaproteobacteria.

Mariprofundus Mariprofundus Mariprofundus Mariprofundus

Name aestuarium ferrinatatus micogutta ferrooxydans

Strain CP-5 CP-8 ET2 PV-1

Genome size (Mbp) 2.54 2.30 2.50 2.87

GC content (%) 51 54 49 54

Protein coding gene count 2427 2237 2417 2866

tRNA count 50 45 49 48

Doubling time (h) 19.5 27 24 12

Growth salinity (h)

Range 7–31.5 7–31.5 10–40 3.5–35∗∗∗

Optimum 14–17.5 14–17.5 27.5 28–31.5∗∗∗

Growth temperature (◦C)

Range 10–30 15–35 15–30 10–30

Optimum 20–25 25–30 25 30

Growth pH

Range 5.5–8.3 5.5–8.3 5.8–7.0 5.5–7.2

Optimum 6.9–7.2 6.9–7.2 6.4 6.2–6.5

Energy source

Fe(II) + + + +

S∗ − − − −

Organics∗∗ − − − −

Iron biomineral morphology Dreads Dreads Filaments Stalk

Reference This study This study Makita et al., 2016 Emerson et al., 2007;

Singer et al., 2011

∗Sulfide, thiosulfate; ∗∗glucose, acetate, pyruvate, yeast extract, ∗∗∗this study.

surfaces (Chan et al., 2011, 2016). Dreads were closely associated
with CP cells observed by fluorescent microscopy (Figure 4A)
while the radiating arrangement observed under SEM made it
apparent that CP strain cells were once attached (Figure 5A).
In fact, the lack of cell-attached dreads under SEM suggests
they are easily shed. In total, these observations suggest that the
CP strains produce short Fe oxide dreads as an adaptation to
shed their biominerals to maintain suspension within the water
column.

General Genome Features of Strains
CP-5 and CP-8
The CP-5 and CP-8 strain genomes are both single circular
chromosomes, which make them the first and only closed
Zetaproteobacteria genomes. High consensus read coverage
(382x for strain CP-5; 300x for strain CP-8) led to significant
overlap of the ends of each CP strain genome assembly
(15 and 9 kb, respectively), overall providing confidence
in genome accuracy and completion. The CP-5 and CP-8
strain genomes are 2.54 and 2.30 Mbp, respectively; sizes,
GC contents, and COG distributions are comparable to the
other sequenced Zetaproteobacteria isolates (Table 1 and
Supplementary Tables ST2, ST3). The COG distribution
of the two CP strains is highly similar (Supplementary
Table ST3) and there are no obvious major metabolic or
physiological differences apparent in the genes distinguishing
the two strains from one another (Supplementary Tables

ST4, ST5). The CP-5 and CP-8 strain genomes contain 258
and 211 genes without homologs in other Zetaproteobacteria
isolates. As described below, the CP strains share several
genes that are absent or rare in the other sequenced
Zetaproteobacteria and may represent adaptations to life in
the water column.

Electron Transport Chain Analysis
Based on the electron transport-related genes identified in
the genomes (Supplementary Table ST6), strains CP-5 and
CP-8 appear to have an electron transport system similar to
other Zetaproteobacteria (Figure 6), with some key differences,
described below. Like all microaerophilic FeOB, including
Zetaproteobacteria, the CP strains have genes encoding the
putative Fe oxidase, outer membrane cytochrome Cyc2 (e.g.,
Barco et al., 2015; Kato et al., 2015; Mumford et al., 2016),
which has been proven to oxidize Fe(II) in Acidithiobacillus
ferrooxidans (Castelle et al., 2008). The CP strain cyc2 gene
sequences are homologous to characterized cyc2 sequences
from PV-1 (e-values: 10−72 to 10−73; Supplementary Table
ST6; Barco et al., 2015) and each contain a predicted signal
sequence, one CXXCH heme-binding motif, and an outer
membrane beta barrel domain as with other cyc2 gene
sequences (White et al., 2016). The CP strains both lack the
putative outer membrane Fe oxidase MtoA (Liu et al., 2012),
consistent with our observation that Cyc2 is common amongst
microaerophilic and other FeOB, while MtoA is rare (Kato et al.,
2015).
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FIGURE 3 | (A) 16S rRNA gene phylogenetic tree of Mariprofundus ferrinatatus CP-8 and Mariprofundus aestuarium CP-5 and other Zetaproteobacteria.
Thermotoga maritima (AJ401021) and Aquifex pyrophilus (M83548) were used as outgroups (not shown). All sequences were masked to 1275 bp. (B) Heatmap
showing pairwise comparisons of AAI between all Zetaproteobacteria isolates and the most complete SAGs.
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FIGURE 4 | CP strain cell and biomineral micrographs. (A) Phase contrast
and fluorescence micrograph (overlay) of strain CP-5 showing bean-shaped
cells (green), stained with SYBR Green I, and iron oxide dreads. (B) Scanning
electron micrograph of bundles of iron oxide dreads produced by strain CP-8.
(C) Scanning electron micrograph of bundles of iron oxide dreads produced
by strain CP-5.

One unusual feature in the CP strain genomes is the possession
of aa3-type cytochrome c oxidases (Supplementary Table ST6) in
place of the cbb3-type cytochrome c oxidases present in all other

Zetaproteobacteria genomes to date. Several SAGs and isolate
M. micogutta have both aa3 and cbb3-type oxidases (Field et al.,
2015), but no other Zetaproteobacteria has only the aa3-type.
Between the aa3 and cbb3-type oxidases, the cbb3-type oxidase
is considered to be better adapted for low O2 conditions given
its higher affinity for oxygen (Arai et al., 2014), consistent
with the association of Zetaproteobacteria with low O2 habitats.
Conversely, the lower oxygen affinity of the aa3-type oxidase
suggests adaptation to somewhat higher O2 conditions. Though
the Km values of both oxidases would be considered low O2
(Km, cbb3 on the order of nanomolar and Km, aa3 on the scale
of micromolar O2; Arai et al., 2014), the difference suggests
that the CP strains may have a higher O2 niche. Curiously,
the single Zetaproteobacteria isolate shown capable of growing
in O2-saturated waters, DIS-1, possesses only the cbb3-type
oxidase, suggesting other genetic adaptations contribute to its
O2 tolerance. Still, the uncommon possession of only aa3-type
oxidases in the CP strains likely represents an adaptation to
frequent exposure to high O2 waters.

Periplasmic electron carriers are required for electron
transport between Cyc2 and the terminal oxidase. Because of
the high redox potential of Fe(II)/Fe(III)OOH (24 mV for
ferrihydrite; Majzlan, 2012), these electron carriers are most
likely cytochromes. In A. ferrooxidans, the cytochrome Cyc1
is one of these intermediate electron carriers (Malarte et al.,
2005; Castelle et al., 2008). While there are homologs to cyc1
in several Zetaproteobacteria isolate genomes, the CP strain
genomes lack homologs. However, Cyc1 is suggested to interact
specifically with the cbb3-type oxidase in M. ferrooxydans PV-1
(Barco et al., 2015), making the lack of cyc1 homologs in the
CP strains consistent with the absence of the cbb3-type oxidase.
There is a different predicted periplasmic cytochrome found
in the CP strains, which may transfer electrons between Cyc2
and the aa3-type terminal oxidase. This potential periplasmic
cytochrome gene in both strains CP-5 and CP-8 codes for a 127aa
protein, with a signal sequence and one CXXCH heme-binding
motif (Supplementary Table ST6). In the strain CP-8 genome,
this gene is located near the genes encoding the terminal
aa3-type oxidase, but it is in a different genomic neighborhood
in strain CP-5. Homologs of this periplasmic cytochrome are
found in several Zetaproteobacteria isolates (PV-1, JV-1, M34,
and EKF-M39; e-values 10−23 to 10−21) and are also near
terminal oxidases. The genomic context and presence in several
Zetaproteobacteria (including seven SAGs) suggests that this
predicted cytochrome plays a role in Fe(II) oxidation and energy
conservation.

The high potential of Fe(II)/Fe(III)OOH requires FeOB to
regenerate NADH using either reverse electron transport, or
an alternate reductant. Like other Zetaproteobacteria, the CP
strains have the components for reverse electron transport:
a bc1 complex, ubiquinone synthesis genes, and NADH
dehydrogenase (Figure 6). However, the CP strains are the only
Zetaproteobacteria isolates that definitively lack an alternative
complex III, indicating that it is not a necessary component
for neutrophilic Fe(II) oxidation, despite its conservation in
other FeOB (Singer et al., 2011; Kato et al., 2015). Both CP
strains have a cytochrome b/diheme cytochrome c gene cluster
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FIGURE 5 | Scanning electron micrograph of extracellular iron oxide biomineral structures. (A) Dreads produced by strain CP-8, with likely location of missing cell
denoted as a yellow oval. (B) Dreads surrounding a freshwater FeOB Ferriphaselus R-1 cell, highlighted in yellow (modified from Kato et al., 2015). To the right of the
cell, a longer iron oxide stalk produced by R-1 is also visible.

FIGURE 6 | Proposed electron transport system in strains CP-5 and CP-8 based on genomic analysis. See text for further description.

(Supplementary Table ST6) that likely also plays an electron
transport role. Present in all Zetaproteobacteria isolates and
several SAGs, these two genes in each of the CP strains
are also homologous to the fused cytbc gene in the Fe-
oxidizing KS culture Gallionellaceae, which was proposed to
pass electrons from periplasmic cytochromes to quinones and
on toward denitrification (He et al., 2016). The CP strains lack
a dissimilatory nitrate reductase, but this novel bc complex
may still function to reduce quinones for reverse electron
transport. Both CP strains have genes coding sulfide quinone
oxidoreductases (Supplementary Table ST6), which would allow
them to take advantage of the high sulfide concentrations in the
Chesapeake Bay to reduce quinones. The CP strains also have
hoxWHYUF genes, which could allow them to use H2 to reduce
NAD+ to NADH (Tran-Betcke et al., 1990; Thiemermann et al.,
1996), relieving at least some of the need for reverse electron
transport. In sum, the CP strain genomes show multiple options
for regenerating NADH for carbon fixation and biosynthetic
pathways.

Carbon Metabolism Analysis
The CP strain genomes are consistent with autotrophy in these
organisms. The CP strains each possess complete gene sets
for the Calvin–Benson–Bassham (CBB) cycle, including form
II ribulose 1,5-bisphosphate carboxylase (RuBisCO) for fixing
inorganic carbon (Supplementary Table ST7). Also present are
the genes to convert the chief product of the CBB cycle, glycerate
3P, to pyruvate, which can then be utilized in the predicted,
complete tricarboxylic acid (TCA) cycle to generate energy and
biosynthetic precursors (Supplementary Table ST7).

The CP strain genomes each contain form II RuBisCO and lack
form I RuBisCO, as observed in several other Zetaproteobacteria
(e.g., EKF-M39, SV108 M. micogutta, Zetaproteobacteria SAGs).
CO2 concentrations were ∼70–80 µM in the waters from
which the CP strains were isolated (Cai et al., 2017). These
concentrations are within the Km,CO2 ranges for both Form I and
Form II RuBisCO (Badger and Bek, 2008), so either should be
functional in this environment. However, the absence of form
I RuBisCO is somewhat unexpected in the CP strains given
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FIGURE 7 | (A) The Wsp operon in strains CP-5 and CP-8, showing synteny with the well-studied Pseudomonas fluorescens Wsp operon. (B) The WCI genes in
strains CP-5 and CP-8, showing similar gene content, but somewhat different gene order compared to Aggregatibacter actinomycetemcomitans.

that form I is considered to be better adapted to higher O2
conditions than form II (Badger and Bek, 2008) and would
provide a potential adaptation for more efficient carbon fixation
during exposure to higher O2 waters. Indeed, Mumford et al.
(2016) suggest that the presence of both forms of RuBisCO in
DIS-1 helps adapt this strain to a larger range of oxygenated
environments. In any case, the form II RuBisCO genes in the CP
strain genomes support Fe(II) oxidation chemolithoautotrophy,
consistent with all other Zetaproteobacteria.

Support for strict autotrophy comes from the apparent lack
of transporters for organic carbon substrates. Close analysis of a
cluster of genes annotated as phosphotransferase (PTS) system
genes in each CP strain genome suggests they do not make up a
complete system for carbohydrate uptake, but may instead play
a role in nitrogen regulation (Supplementary Table ST7). The
CP strain genomes also lack complete ABC transport systems
for sugars, peptides, and amino acids, making heterotrophy
unlikely.

Unusual Genomic Features for Biofilm
Formation
We surveyed the CP genomes for genes that could represent
adaptations to life in the Chesapeake Bay redoxcline, focusing
on ones that were rare or absent in other Zetaproteobacteria.
We found two gene clusters related to biofilm formation:
the Wsp system, a chemosensory system that produces the
biofilm-inducing signal molecule cyclic dimeric guanosine
monophosphate (c-di-GMP), and the widespread colonization
island (WCI), a pilus assembly system that enables surface
attachment.

Each CP strain genome includes a complete wsp gene cluster
(wspABCDEFR), which encodes the Wsp chemosensory system
(Figure 7 and Supplementary Table ST8). Genetic and protein
functional studies have demonstrated the role of these genes
in biofilm formation in Pseudomonas, the model organism
for the Wsp system (D’Argenio et al., 2002; Hickman et al.,
2005). The Wsp system is homologous to the Che chemotaxis
system; both contain a methyl-accepting chemotaxis protein
(MCP) chemoreceptor and a complex of signal transduction
proteins (Bantinaki et al., 2007). However, the Wsp system
regulates biofilm formation rather than flagellar motor switching
as in the Che system. The major distinguishing feature of the
Wsp system is subunit WspR, a diguanylate cyclase response
regulator required for Wsp system-induced biofilm production.
Phosphorylation stimulates WspR to synthesize the signal
molecule cyclic di-GMP (c-di-GMP), which induces biofilm
formation pathways, including the production of extracellular
polymeric substances (EPSs; D’Argenio et al., 2002; Hickman
et al., 2005; Malone et al., 2007). The signal activating the Wsp
system MCP, WspA, remains unclear, but has been shown to
be related to physical and/or chemical signals associated with
growth on surfaces (Güvener and Harwood, 2007; O’Connor
et al., 2012). This suggests that given a mechanism for initial
surface attachment, the Wsp system could enable the CP strains
to form biofilms to colonize particles in the water column.

Each CP strain genome contains two predicted copies of wspR
that are homologs of the gene sequences of the functionally
and structurally characterized WspR of Pseudomonas aeruginosa
(e-values: 10−111 to 10−93; Supplementary Table ST8; De et al.,
2008). Like Pseudomonas wspR, all CP strain wspR sequences
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contain the conserved C-terminal diguanylate cyclase domain
GGEEF in the active site loop and the RxxD motif making up the
conserved inhibitory site in GGEEF domain-containing proteins
(De et al., 2008, 2009). The remaining Wsp system subunit
genes (wspABCDEF) are also present in the CP strain genomes
and homologous to the wsp counterparts in Pseudomonas
species (e-values 0 to 10−35; Supplementary Table ST8). Other
Zetaproteobacteria genomes either lack wsp gene homologs or
only contain single subunits (TAG-1, wspR; SV108, wspR; M34,
wspE). The exception is Zetaproteobacteria SAG C09, a Loihi
Seamount Fe mat single cell genome (2.45 Mb; Field et al., 2015),
which contains wspABCDEF, but clearly lacks wspR, with the
gene cluster in the middle of a contig. Instead, the immediately
adjacent features are a pseudouridine synthase and a tRNA,
which are not obviously related to biofilm formation, though
further downstream in the cluster (6 ORFs away from wspF),
there is an adenylate cyclase gene. Adenylate cyclase forms the
signal molecule cAMP, which is associated with many processes
(Gancedo, 2013), one of which may be initial cell attachment
to surfaces (O’Toole and Wong, 2016). Nevertheless, the lack
of wspR in Zetaproteobacteria C09 genome suggests that the
wspABCDEF homologs in C09 have a different role and output
than in the CP strains. The absence of complete Wsp systems in
Zetaproteobacteria genomes other than the CP strains suggests
that Wsp-related biofilm formation may be an adaptation specific
to pelagic Zetaproteobacteria for particle colonization.

The second genomic feature of the CP strains that is rare
among Zetaproteobacteria is the WCI, a gene cluster responsible
for tight attachment to surfaces (Figure 7 and Supplementary
Table ST9). The WCI includes flp-1, a gene encoding for the
major structural component of the type IV Flp (fimbrial low-
molecular-weight protein) pili, as well as the tad (tight adherence)
genes, and rcp pilus assembly genes (Planet et al., 2003).
First characterized in Aggregatibacter actinomycetemcomitans,
but studied in numerous other organisms including Caulobacter
and Pseudomonas (Skerker and Shapiro, 2000; Bentzmann et al.,
2006), the WCI genes assemble adhesive Flp pili that mediate
tenacious surface adherence and biofilm formation (Kachlany
et al., 2000, 2001; Planet et al., 2003). The CP strain genomes
each contain flp-1 gene sequences that were confirmed to contain
the conserved processing site motif GXXXXEY (Inoue et al.,
1998; Kachlany et al., 2001), as well as tadABCDEGZ and rcpAC
(Supplementary Table ST9). Both CP strain genomes have two
predicted copies of tadE, one of which is likely tadF given the
high sequence similarity of these two subunits (Tomich et al.,
2006). Two WCI genes, tadV and rcpB, are not present in the
CP genomes, which may be due to the general variability of
WCI organization across bacteria or the potential for individual
species to possess novel genes in place of individual WCI
components (Tomich et al., 2007). For example, P. aeruginosa
was demonstrated to encode a novel prepilin peptidase, FppA,
instead of TadV (Bentzmann et al., 2006), suggesting that the
CP strains could possess different versions of TadV and RcpB
that would not be recognized by genomic analysis alone. The
set of WCI genes in the CP strain genomes is also found in
EKF-M39, but entirely absent from all other Zetaproteobacteria
isolates, suggesting that only a small subset of Zetaproteobacteria

can produce Flp pili. The mechanisms thought to regulate WCI
Flp pilus production vary across species (Tomich et al., 2007)
and could be controlled by c-di-GMP signaling in the CP strains.
In each CP strain genome, predicted WCI components are
adjacent to pilZ domain-containing genes (Supplementary Table
ST9), which have been linked to c-di-GMP-regulated fimbriae
production (Johnson et al., 2011; Wilksch et al., 2011). The
CP strain pilZ sequences contain the c-di-GMP binding motifs
RxxxR-(D/ N)x(S/A)xxG (Ryjenkov et al., 2006; Christen et al.,
2007), and thus may connect Wsp system c-di-GMP synthesis to
WCI Flp pilus production to promote a surface-attached biofilm
lifestyle.

Adaptations of Pelagic
Zetaproteobacteria in Estuarine Water
Columns
In many ways, the Chesapeake strains are like other
Zetaproteobacteria isolates: they are autotrophic, obligate Fe(II)-
oxidizers, with similar electron transport and carbon fixation
mechanisms. However, the CP strains differ in that they produce
distinctive dreadlock-shaped oxides that are much smaller than
the twisted stalks common to other Zetaproteobacteria. This
is likely a key difference between pelagic and benthic FeOB.
Our previous work has shown that Fe biomineral stalks are
the building blocks of Fe microbial mats (Chan et al., 2016).
Millimeters-long stalks create a highly porous framework
unlike any other biofilm or mat, in that the bulk is made of
mineral, without much interstitial EPS. This architecture allows
Fe(II)-bearing fluids to flow through mats, enabling FeOB to
biomineralize and position themselves at a benthic Fe(II)/O2
interface (e.g., hydrothermal vent on the seafloor). In contrast,
for FeOB that need to maintain position in a water column,
large stalk structures would be undesirable because of their
weight. Instead, the CP strains make smaller dreads that can be
constantly shed, thereby eliminating the heavy oxide by-products
to avoid sinking out of the oxic–anoxic transition zone.

Instead of making Fe mats, it appears that the CP strains
have the genes to form standard, EPS-bound biofilms, as is
typical of organisms possessing the WCI and Wsp system.
EPS production enables marine bacteria to colonize suspended
particle surfaces (Decho, 1990), and is likely key for CP strains
to attach to and access nutrients from Fe(II)-bearing minerals
such as FeS. In seasonally stratified Chesapeake Bay waters,
particulate FeS is formed by an O2-Fe-H2S catalytic cycle where
sulfidic (H2S) bottom waters reduce solid Fe(III) oxyhydroxides
to dissolved Fe(II) and react further to precipitate solid FeS
particles (Figure 8A; MacDonald et al., 2014; Hansel et al.,
2015; Field et al., 2016). Indeed, a majority of the Fe(II) in the
Chesapeake Bay oxic–anoxic transition zone was found to be
particulate (Field et al., 2016), likely as FeS. Still, FeS particles
are likely to be sparse given the low overall Fe(II) concentration,
necessitating strategies for the CP strains to recognize and firmly
attach to these Fe(II)-bearing particles. The c-di-GMP produced
by the Wsp system could stimulate WCI Flp pilus production
and other pathways involved in biofilm production to facilitate
tight cell attachment to suspended FeS particles (Figure 8B).

Frontiers in Microbiology | www.frontiersin.org 12 July 2017 | Volume 8 | Article 1280

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01280 July 14, 2017 Time: 15:38 # 13

Chiu et al. Pelagic Zetaproteobacteria from the Chesapeake

FIGURE 8 | Model of CP strain floc formation and interactions with Fe/S biogeochemical cycling in redox-stratified waters. See text for detailed descriptions of (A–E).

These small cell-mineral aggregates could further assemble and
grow into larger flocs, incorporating other suspended particles
and cells (Figure 8C). These flocs could trap more FeS for
consumption (Figure 8D), and any trapped dreads could be
recycled back to FeS if flocs settle into sulfidic bottom waters
(Figure 8E). Floc formation can further benefit the CP strains by
effectively increasing their O2 tolerance, as previously described
for freshwater floc-dwelling FeOB (Elliott et al., 2014). Diffusion
of O2 into flocs is slowed by the EPS matrix (Brezonik, 1993).
If floc-dwelling bacteria consume O2 faster than it can diffuse
in, low oxic or anoxic microenvironments develop within the
floc structure (Flemming and Wingender, 2001; Han et al.,
2012). Should a CP strain floc be mixed into oxic layers of
the water column, low [O2] microenvironments would provide
a niche where the CP strains could still compete with abiotic
oxidation for matrix-bound Fe(II). In all, biofilm-related genes
would give the CP Zetaproteobacteria multiple advantages for
persisting in the water column despite low Fe(II) and fluctuating
O2 conditions.

Mariprofundus aestuarium CP-5 and Mariprofundus
ferrinatatus CP-8 add to the growing number of
Zetaproteobacteria isolates that form a closely related

phylogenetic cluster despite differing environmental origins
and lifestyles. Our analyses suggest that key genes can confer
specialized strategies for these organisms to live in diverse
environmental niches. If broadly true, the Fe-oxidizing
Zetaproteobacteria would be expected to live anywhere that
Fe(II) and O2 are available, and thereby be a widespread driver
of marine Fe cycling.

Description of Mariprofundus
aestuarium sp. nov.
Mariprofundus aestuarium [aes.tu.a’ri.um. L. n. aestuarium an
estuary].

Cells are slightly curved, short rods (0.43 ± 0.05 µm ×
1.01 ± 0.18 µm). Does not form spores. Mesophilic and
neutrophilic. Microaerobic, growing with opposing gradients of
Fe(II) and O2. Autotrophic. Grows at 10–30◦C (optimally at
20–25◦C), pH 5.5–8.3 (optimally at pH 6.9–7.2), and 7–31.5h
salinity (optimally at 14–17.5h salinity). Utilizes ferrous iron
as an energy source for lithotrophic growth. Does not utilize
thiosulfate, sulfide, pyruvate, glucose, or acetate as an energy
source. Produces extracellular dreadlock-like iron oxides around

Frontiers in Microbiology | www.frontiersin.org 13 July 2017 | Volume 8 | Article 1280

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01280 July 14, 2017 Time: 15:38 # 14

Chiu et al. Pelagic Zetaproteobacteria from the Chesapeake

the cell. The doubling time under optimal conditions is 19.5 h.
The type strain is CP-5T, isolated from redox-stratified waters in
the Chesapeake Bay, United States. The total DNA G+C content
of the type strain is 51.5 mol%.

Description of Mariprofundus
ferrinatatus sp. nov.
Mariprofundus ferrinatatus [fer.ri.na’ta.tus. L. neut. n. ferrum
iron; L. masc. n. natatus floating; N.L. masc. n. ferrinatatus
floating iron].

Cells are slightly curved, short rods (0.45 ± 0.04 µm ×
0.91 ± 0.08 µm). Does not form spores. Mesophilic and
neutrophilic. Microaerobic, growing with opposing gradients of
Fe(II) and O2. Autotrophic. Grows at 15–35◦C (optimally at
25–30◦C), pH 5.5–8.3 (optimally at pH 6.9–7.2), and 7–31.5h
salinity (optimally at 14–17.5h salinity). Utilizes ferrous iron
as an energy source for lithotrophic growth. Does not utilize
thiosulfate, sulfide, pyruvate, glucose, or acetate as an energy
source. Produces extracellular dreadlock-like iron oxides around
the cell. The doubling time under optimal conditions is 27 h. The
type strain is CP-8T , isolated from redox-stratified waters in the
Chesapeake Bay, United States. The total DNA G+C content of
the type strain is 53.7 mol%.
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