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Editorial on the Research Topic
Molecular Tracing of Aquatic Viruses: Where Epidemiology Needs to Meet Genomics

Viruses are highly abundant in aquatic environments (Bergh et al., 1989; Suttle, 2007) and can
infect a wide range of organisms, from plankton cells to whales (Suttle, 2005). If aquatic viruses can
cause mortalities among wild fish and shellfish populations, the rapid (and often uncontrolled)
development of intensive aquaculture over the last decades has been a major driver of the
emergence of many viral diseases (Walker and Winton, 2010). As a result, viral diseases now
constitute a real threat for the sustainability of this ever-growing worldwide industry. In addition
to their devastating economic and social impact resulting in losses of several $US billion (Walker
and Mohan, 2009), viruses may also have substantial environmental impacts on the surrounding
ecosystems, either directly (Bunce and Norman, 2000; Dann et al., 2000) or indirectly (Le et al.,
2005; Ali, 2006; Phan et al., 2011).

As stated by Walker and Winton, the extent of disease spread and impacts is greatly affected by
the availability of suitable diagnostic tools for identification of the causative agent or by the ability to
understand the genetic relation of the causative agent with other characterized pathogens (Walker
and Winton, 2010). An example is the emergence of the white spot syndrome in 1992, which has
spread to almost all shrimp-producing countries before its causative agent, the white spot syndrome
virus, could be identified and fully characterized nearly 9 years later (Yang et al., 2001).

In this context, the objectives of this research topic were: (i) to illustrate how sequencing
technologies and associated bioinformatics tools can be utilized to trace aquatic viruses, and (ii)
to discuss the new opportunities they offer for understanding the emergence of viral diseases and
controlling their spread.

The two first articles of this topic show how sequencing a single gene of a virus may help
understand the ways it propagates between aquaculture settings. Sequence comparison of VP2 gene
from infectious pancreatic necrosis virus isolates showed the existence of two clades that differed by
a distinct signature motif in the hypervariable region, each motif being associated with a different
level of infection (Mutoloki et al.). In the second paper, Abbadi et al. looked at the evolution
of two viruses that cause high mortalities in rainbow trout farms, the infectious haematopoietic
necrosis virus (IHNV) and the viral haemorrhagic septicaemia virus (VHSV). They analyzed the
glycoprotein (G) gene sequences of many isolates collected over a period of nearly 30 years and
concluded that the two viruses have distinct evolutionary rates. Integration of these molecular data
with high-quality epidemiological information led to propose different patterns of virus spread
among trout farms.
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In a third article, Klafack et al. describe an improved method to genotype and trace the highly
pathogenic Cyprinid herpesvirus 3. They developed a qPCR test that enables to discriminate
between the Asian and European lineages, and found that this virus was able to switch between
the Asian and European genotypes after many in vitro passages.
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The following two articles discuss the ability of metagenomics
to uncover the environmental factors that influence virus spread
in aquatic environments and to identify novel pathogenic viruses.
Most of our knowledge on the epidemiology of viral diseases
in aquaculture so far is derived from studies carried out on
infected aquatic organisms. Metagenomics offers the possibility
to study the epidemiology of viral diseases outside their host
species by the direct analysis of environmental samples, which in
turn enables to follow the environmental factors that influence
the composition of viral communities (a recent example is
provided by Hwang et al. (2017). Understanding the factors (both
natural and anthropogenic) that influence the epidemiology of
viral diseases may ultimately lead to the design of rational
disease control strategies, especially in the aquaculture context
(Munang’andu). Likewise, metagenomics has greatly accelerated
the pace of virus discovery in the recent years, and also appears
valuable to design proactive diagnostic tools able to identify novel
viruses before they cause disease outbreaks (Munangandu et al.).

In the particular context of viral aquatic diseases, analysis of
outbreaks requires typing methods that offer a high level of strain
discrimination. As outlined in the sixth article, whole genome
sequencing (WGS) represents the “ultimate” typing methodology
in terms of discriminatory power (Bayliss et al.). WGS not
only enables to resolve micro-evolutionary distances, but it also
has the power to discover new and rare variations, including
polymorphisms that arise during an outbreak or that evolve in
vivo during an infection. It thus offers the possibility to track
the emergence and spread of a given variant, while it may also
provide predictive information concerning key phenotypic traits
(Feil, 2015).

Finally, in the last article of this topic, Naville and Volff raise
an interesting question that is often overlooked in the field of viral
(re)emergence: the potential role of fish endogenous retroviruses.
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