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Nurseries producing apple and rose rootstock plants, apple orchards as well as rose

production often experience replanting problems after several cultivations at the same

site when a chemical soil disinfectant is not applied. The etiology of apple and rose

replanting problems is most likely caused by soil-borne pathogen complex, defined as

“replant disease (RD)”. Symptoms typical of RD are reduced shoot and root growth, a

smaller leaf area, a significant decrease in plant biomass, yield and fruit quality and a

shorter life span. In our previous study, we showed that RD symptoms were reduced

when apple rootstock M106 were grown in RD soils treated either with the soil fumigant

Basamid or after biofumigation by incorporating Brassica juncea or Raphanus sativus

or by growing Tagetes under field conditions compared to untreated control soil. The

present study aimed at identifying potential bacterial and fungal taxa that were affected by

different soil treatments and linking bacterial and fungal responders to plant performance.

Miseq® Illumina® sequencing of 16S rRNA gene fragments (bacteria) and ITS regions

(fungi) amplified from total community DNA extracted from soil samples taken 4 weeks

after treatments were performed. Soil properties and culture history of the two RD

sites greatly influenced soil microbiomes. Several bacterial genera were identified that

significantly increased in treated soils such as Arthrobacter (R. sativus, both sites),

Curtobacterium (Basamid, both sites), Terrimonas (Basamid and R. sativus, site A) and

Ferruginibacter (B. juncea, site K and R. sativus, site A) that were also significantly and

positively correlated with growth of apple M106 plants. Only few fungal genera, such

as Podospora, Monographella and Mucor, were significantly promoted in soils treated

with B. juncea and R. sativus (both sites). The least pronounced changes were recorded

for bacterial as well as fungal communities in the RD soils planted with Tagetes. The
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detection of bacterial and fungal genera that were significantly increased in relative

abundance in response to the treatments and that were positively correlated with plant

growth suggests that management of the soil microbial community could contribute to

overcome the apple RD encountered at affected sites.

Keywords: amplicon sequencing, apple replant disease, biofumigation, soil microbiome

INTRODUCTION

The soil microbiome is assumed to play a crucial role for
plant growth and health in terms of acquiring water and
nutrients, acting antagonistically against soil-borne plant pests
and pathogens, as well as inducing plant defense responses
against pathogens (Berendsen et al., 2012). Negative effects
of the soil microbiome on plant growth and yield were also
revealed, especially at sites with monocultures and with lack of
sustainable management practices (Magarey, 1999; Seigies and
Pritts, 2006; Wu et al., 2015; Zhao et al., 2016). This is likely
due to a reduced microbial diversity because of the repeated
monoculturing (Howe et al., 2014).

Apple plants cultivated repeatedly at the same site have
often been reported to show reduced shoot and root growth.
It is assumed that pathogenic microorganisms increased in
abundance in response to plant root exudations of previous
cultures (Badri and Vivanco, 2009; Mazzola and Manici,
2012; Yim et al., 2013; Nicola et al., 2017). This so-called
apple replant disease (ARD) has severe consequences in terms
of economic losses in tree nurseries and apple production
worldwide.

A recent study employing transcriptomic analysis in roots of
apple rootstock M26 plants grown in ARD soils compared to
Gamma-sterilized soil discovered that the expression of plant
genes associated with plant defense, i.e., phytoalexin production
genes was increased while genes involved in the primary
metabolism were less expressed (Weiß et al., 2017) indicating
plant response to soil-borne pathogens. Possible ARD causing
organisms identified from cultivation dependent approaches
included actinomycetes (Otto et al., 1994), Pythium sp. (Hoestra,
1994; Emmett et al., 2014), Cylindrocarpon sp., Phytophthora sp.,
Rhizoctonia solani (Mazzola, 1998; Tewoldemedhin et al., 2011;
Kelderer et al., 2012) and nematodes, e.g., the soil endoparasitic
nematode Pratylenchus penetrans (Mai et al., 1994). Several
recent studies employed total community (TC-) DNA-based
approaches to identify these pathogens, but rather showed
microbial community shifts in ARD soils after soil treatments
that restored apple growth (Yim et al., 2013; Sun et al.,
2014; Franke-Whittle et al., 2015; Nicola et al., 2017). Because
the etiology of ARD is complex, conventional soil fumigants
with a broad spectrum of biocides such as chloropicrin, 1.2
dichloropropane, 1.3 dichloropropene, methyl bromide and
Basamid R© granules were shown to be the most effective
treatments against ARD (Mai and Abawi, 1978; Brown and
Koutoulis, 2008; Yim et al., 2013; Nicola et al., 2017). However,
those chemical substances were reported to be toxic, and their
application is no longer allowed in many countries (Ruzo, 2006;
Porter et al., 2010).

For environmentally friendly approaches, crop rotation or
treating replant disease (RD) soil using several Brassicaceae
species (biofumigation) or Tagetes (nematode repelling)
demonstrated promising effects against disease-causing
organisms in soils (Sarwar et al., 1998; Topp et al., 1998;
Mattner et al., 2008; Marahatta et al., 2012; Pino et al., 2016), and
subsequently reduced RD symptoms on plant growth (Seigies
and Pritts, 2006; Mazzola et al., 2015; Yim et al., 2016). Effects
of biofumigation originate from plant secondary metabolites
glucosinolates (GS) that are hydrolyzed mainly by plant
myrosinase enzymes (reviewed by Halkier and Gershenzon,
2006), subsequently releasing several compounds depending
on soil properties (Halkier and Gershenzon, 2006), such as
isothiocyanates (ITC), nitriles, thiocyanates, epithionitriles,
and oxazolidine-2-thiones (Brown et al., 1991; Kirkegaard and
Sarwar, 1998). Among GS-degraded products, volatile ITCs were
shown to be responsible for suppression of weeds (Sarwar et al.,
1998; Malik et al., 2008; Mattner et al., 2008), soil-borne plant
pests and pathogens in different crop systems (Borek et al., 1998;
Peterson et al., 1998; Matthiessen and Shackleton, 2005; Bones
and Rossiter, 2006; Mazzola et al., 2007; Mattner et al., 2008;
Aires et al., 2009; Agerbirk and Olsen, 2012; Neubauer et al.,
2014). On the other hand, Tagetes plants are renowned to exhibit
toxicity in soils due to their thiophene contents (Hooks et al.,
2010; Saha et al., 2012). Highly suppressed growth of several
soil-borne plant pathogenic fungi such as R. solani and Fusarium
solani mediated by these biocidal compounds was demonstrated
via in vitro evaluations (Saha et al., 2012).

In our previous field study, the effects of pre-treatments
of RD soils with the soil fumigant Basamid, biofumigation
with Brassica juncea and Raphanus sativus and growing Tagetes
plants at the two sites K and A on plant performance were
investigated. Findings revealed that effects of the different
treatments evaluated by field growth of apple rootstock M106
plants were site-dependent. At site K, shoot fresh mass (SFM)
of the M106 plants significantly increased by 155, 148, 165,
and 175% in treated soils with Basamid, B. juncea, R. sativus,
and Tagetes, respectively, relative to the corresponding RD soil.
At site A, a moderate effect was observed only for the RD
soil cropped with Tagetes, with 52% increment in SFM (Yim
et al., 2016). Changes in the bacterial and fungal community
composition based on DGGE fingerprint analysis revealed a
treatment- and site-dependent pattern (Yim et al., 2016), calling
for deeper molecular investigations and characterization of these
differences.

In the present study, a detailed analysis of the changes of soil
bacterial and fungal community composition at the two sites
was performed, focusing on diversity and relative abundances at
different taxonomic levels in response to the treatments bymeans
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of Miseq R© Illumina R© sequencing. This study identified soil
bacterial and fungal taxa affected by the different soil treatments
(Basamid, B. juncea, R. sativus, and Tagetes) at the two sites under
field conditions, and linked these microbial responders to ARD
suppression.

MATERIALS AND METHODS

The two RD sites K (53◦ 41′ 58.51′′ N, 9◦ 41′ 34.12′′ E) and
A (53◦ 42′ 18.81′′ N, 9◦ 48′ 16.74′′ E) that had been used
for producing rose and apple rootstocks, respectively, were
submitted to different treatments under field conditions during
the years 2012 and 2013 with permission by the owners. The
sites differ in soil chemical and physical properties as described
in Yim et al. (2016). Briefly, site K (sandy soil) has a higher
proportion in organic matter and sand than site A (slightly loamy
sand). Five treatments and three biological replicates (plots)
per treatment were randomized in blocks on an area of 1,000
m2 per site (45 m2 per replicate). Parcels replanted with apple
rootstocks M4 and M111 in May 2012 and 2013, respectively,
served as untreated RD soils. The rootstocks were harvested
each year in November. For treatment with Brassicaceae plants,
seeds from two species, B. juncea ‘Terra Plus’ (12 kg ha−1) and
R. sativus ‘Defender’ (30 kg ha−1) were sown onto RD soils
twice, in April/May and in June/July (2012 and 2013). The
plants at full flowering, about 8 weeks after sowing were cut at
the soil line, chopped and subsequently incorporated into the
soils using Humus WM Flail mulchers (Humus R©, Bermatingen,
Germany) and a common rotary cultivator (Yim et al., 2016).
For treatment with Tagetes patula ‘Nemamix,’ 10 kg ha−1 seeds
were sown once per year in 2012 and 2013, in April/May. In
both years, the plants grew until November before they were
plowed. Seeds of B. juncea, R. sativus, and Tagetes were supplied
by P. H. Petersen Saatzucht Lundsgaard GmbH, Germany. A
chemical soil fumigant treatment with Basamid R© granules (97%
Dazomet) was performed once in August 2013 at a dose of 400 kg
ha−1 (ProfiFlor GmbH, Stommeln, Germany) applied when the
second biofumigation was carried out (end of August 2013).

Four weeks after the Basamid and biofumigation treatments,
bulk soils were sampled the same day in September 2013 using
a 3.5 cm diameter core soil sampler at 0–20 cm depth. The
sampling schedule and procedures were the same as for the
treatments with Tagetes and untreated RD. At the sampling date,
the flowering Tagetes plants had not been incorporated into the
soil. The homogenized and sieved (mesh sizes ≤ 2 mm) soil
samples were submitted to TC-DNA extraction and purification
as described in Yim et al. (2016). In brief, 0.5 g of soil was used for
TC-DNA extraction after a harsh cell lysis.

Amplicon sequencing for bacteria and fungi was implemented
via Miseq R© Illumina R© (Illumina, San Diego, CA, USA)
sequencing. For the bacterial 16S rRNA gene fragments,
an initial PCR amplification step was performed using
a set of primer pairs 341F (CCTAYGGGRBGCASCAG)
and 806R (GGACTACHVGGGTWTCTAAT) to flank the
approximate 460 bp variable V3-V4 regions as described by
Nunes et al. (2016). Regarding the ITS regions for fungi,

primers gITS7 (GTGARTCATCGARTCTTTG) and ITS4
(TCCTCCGCTTATTGATATGC) were applied to obtain the
fragments of interest (Ihrmark et al., 2012). Purification and
size-selection of products of more than 100 bp from a second
amplification step using the same primers with attachment
of adaptors and barcode tags was performed with Agencourt
AMPure XP beads (Beckman Coulter, Brea, CA, USA) according
to the manufacturer’s instructions. The samples were then pooled
and adjusted to equimolar concentrations measured using a
Qubit Fluorometer (Life Technologies, Carlsbad, CA, USA),
concentrated using the DNA Clean and ConcentratorTM-5 kit
(Zymo Research, Irvine, CA, USA), and finally subjected to 2 ×

250 bp paired-end high-throughput sequencing on an Illumina R©

MiSeq R© platform.
Amplicon sequences were analyzed using qiime_pipe (https://

github.com/maasha/qiime_pipe) with default settings, which
performs sample demultiplexing, quality-based sequence
trimming, primer removal and paired-end reads assembly prior
to annotation workflow (Caporaso et al., 2010). Annotation
procedure for bacterial sequences is derived from previously
described work (Nunes et al., 2016). Chimera check was done
with UCHIME (Edgar et al., 2011) and Operational Taxonomic
Units (OTUs) were picked at 97% sequence identity level. OTU
representative sequences were selected by the highest abundance
within the cluster and assigned to taxonomy using the RDP
classifier, with a confidence threshold of 80%. Read contingency
tables were exported at the species level in order to define OTUs.
For fungi, if a sequence had the same bit score to more than
one species hypothesis (SH) in the UNITE version 7.0 database
(Koljalg et al., 2013) of Megablast (Camacho et al., 2009), then
it was assigned to the most abundant SH in the dataset. Selected
OTUs were based on the assigned sequences that were more
than 95% similarity to any SH or had greater than 100 bp
alignment length. Illumina sequencing data were deposited at
the NCBI sequence read archive under the accession number
PRJNA352771.

Data Analyses
For subsequent analyses, three biological replicates were used for
bacteria, and four replicates for fungi, except for the treatment
with Tagetes for which only three replicates could be employed.
The excluded replicates of the respective treatments were based
on high variability of the sequence reads (two to three time
differences). The effects of the different soil treatments on
bacterial and fungal community compositions were analyzed by
a Principal Coordinate Analysis (PCoA) applying Bray-Curtis
distance metrics and the analysis of similarity (ANOSIM) test
by Past3 (3.02) (Hammer et al., 2001). Species richness and
diversity index were evaluated using rarefied sequence data
applying Tukey test adapted based on Herberich et al. (2010) at
p < 0.05 with transformed data by sqrt(n/N ∗ 100 +1) (n, the
number of sequences for each OTU and N, the total number of
sequences from the sample) to reveal significant differences in
relative abundances of soil bacteria and fungi at phylum levels
(software R 3.2.2). Any bacterial and fungal genera that presented
significant differences in their relative abundances between the
soil treatments, and those which were greater than 0.5% relative
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abundance were tested for correlation with shoot and root fresh
mass of apple rootstock M106 plants grown in the field in 2014,
using the Pearson correlation coefficient (r) by Past3 (3.02).

RESULTS

Effects of Treatments on Soil Bacterial
Community Composition and Diversity
The numbers of bacterial sequences detected ranged from 18,576
to 27,738 and from 21,267 to 40,089 in soils at sites K and
A, respectively, with no significant differences between the
treatments. However, a tendency for higher sequence counts
was observed in untreated RD soils rather than in the other
treatments at both sites (Table 1). Subsequent analyses using
rarefied sequence data recorded more OTUs in soils treated with
B. juncea (sites K, 347 and A, 302) and R. sativus (sites K, 353
and A, 340) than in soils subjected to the other treatments.
Except that significantly higher species richness in R. sativus-
treated soil at site A was observed, bacterial compositions and
diversities were not significantly altered by the treatments in
soils at both sites (numbers of OTUs, Chao1 and Shannon
indices, Table 1) in comparison to untreated RD soils. The
bacterial diversities were significantly lower in soils at site A
than K, regardless of different soil treatments (Table S2; Figure
S1). Analyses of similarity (ANOSIM) indicated significantly
distinct bacterial community compositions between sites (R =

0.46, p < 1E-4, Table 2), irrespective of the treatment. Both
PCoA and ANOSIM tests revealed that the bacterial community
composition in soil of the Tagetes treatment at site A was less
affected compared to the other treatments (Figure 1; Table 2).
Overall, the soil treatments resulted in stronger alterations of the
bacterial community composition at site A than at site K (R-
values, Table 2; PCoA, Figure 1). In addition, for soil samples
from the R. sativus treatments at site A, the highest R-value (0.74)
was recorded (Table 2).

Among the analyzed samples, 12 bacterial phyla were
identified, and Firmicutes were most dominant in relative
abundance, followed by Proteobacteria and Actinobacteria in all
soil treatments and at both sites (Figure 2; Table S3). Firmicutes
shared proportions of about 29–39% in soils at site K, but
higher abundances of approximately 40–52% at site A (Figure 2).
Members of the bacterial phyla Actinobacteria and Bacteroidetes
were observed in significantly higher relative abundances in soils
treated with R. sativus compared with untreated RD soils at
both sites, K and A. Site-dependent effects of the treatments on
other bacterial phyla were detected. For instance, the relative
abundance of Proteobacteriawas significantly higher in R. sativus
and Tagetes than in untreated RD soils only at site A (Figure 2).
Another bacterial phylum, Planctomycetes, was significantly
reduced only in soils at site A when the RD soil was treated with
Basamid, B. juncea, R. sativus, and Tagetes. At site K, treatments
with Basamid and Tagetes did not significantly affect members of
any bacterial phylum (Figure 2).

At genus level, soils fumigated with Basamid exhibited
the following increased common responders in relative
abundance: Salinibacterium, Curtobacterium, Thiobacillus,

TABLE 1 | Bacterial community diversity based on operational taxonomic units

(OTUs) at 97% similarity in different soil treatments.

Site Treatment Sequences

per condition

Numbers of

OTU (97%)

Chao1 Shannon

K K_RD 27,738 ± 2,755 332 ± 16 ab 368 ± 18 ab 4.18 ± 0.12

K_Basamid 18,576 ± 3,728 311 ± 5 a 350 ± 7 a 4.30 ± 0.02

K_B. juncea 24,632 ± 3,770 347 ± 3 ab 395 ± 14 b 4.36 ± 0.02

K_R. sativus 26,946 ± 4,508 353 ± 1 b 389 ± 6 ab 4.29 ± 0.05

K_Tagetes 25,259 ± 3,909 327 ± 7 ab 362 ± 7 ab 4.13 ± 0.10

A A_RD 40,089 ± 7,422 284 ± 13 a 317 ± 18 a 3.69 ± 0.11

A_Basamid 32,016 ± 2,551 274 ± 20 a 308 ± 18 a 3.74 ± 0.17

A_B. juncea 30,793 ± 8,640 302 ± 31 ab 360 ± 15 ab 3.51 ± 0.65

A_R. sativus 21,267 ± 3,228 340 ± 6 b 383 ± 14 b 4.14 ± 0.05

K_Tagetes 29,665 ± 2,160 293 ± 3 a 349 ± 16 ab 3.84 ± 0.04

Data is presented as mean ± SEM. RD, replant disease soil. Letters indicate significant

differences within site, Tukey test p < 0.05 and n = 3. Chao1, species richness. Within

site, increased bacterial richness and diversity in treated RD soils compared to untreated

are highlighted in green.

TABLE 2 | Analysis of similarities of the bacterial community composition

detected in different soil treatments with respect to untreated replant disease soil

based on OTUs of bacterial 16S rRNA gene fragments.

Treatment Site K Site A

R-value p-value R-value p-value

Basamid 0.48 0.2015 0.56 0.0948

B. juncea 0.22 0.4032 0.48 0.1016

R. sativus 0.30 0.2949 0.74 0.1003

Tagetes −0.26 0.9056 0.07 0.5998

For sites K vs. A, R-value = 0.46 and p < 0.0001. R- (−1 to 1) and p-values were

obtained from ANOSIM-test. R-value close to “1” suggests strong dissimilarity between

the communities being compared, whereas the value close to “0” represents an even

distribution of the communities within and between treatments. The R-value below “0”

suggests that dissimilarities are greater within treatment than between treatments.

and Rhodanobacter with the strongest response (33- and
23-fold increase at sites K and A, respectively) recorded for
Rhodanobacter. Only the unclassified Bacteroidales-related
sequences significantly decreased in relative abundance in
Basamid-treated soils at both sites (Table 3).

For soil treated with B. juncea, no common responders were
discovered due to high standard deviations within the treatment
(both sites). At site K, members of Arthrobacter were the most
dominant in soil treated with B. juncea (5.89%) and their
relative abundances were about three times higher than those in
untreated RD soil (Table 3).

Members of the bacterial genus Arthrobacter were recorded in
significantly enhanced abundance in soils treated with R. sativus
(8.61 and 4.33% for sites K and A, respectively) compared
with untreated RD soils. Another bacterial genus Terrabacter
was a common responder in soils treated with R. sativus being
significantly enriched at both sites (Table 3).

For RD soils planted with Tagetes, because of site-dependent
effects, no common responders were observed for bacteria at the
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genus levels. A less pronounced effect on the relative abundance
of bacterial genera in Tagetes-treated soil compared with the
other treatments corresponds to the results of the PCoA and the
analysis of similarity (Tables 2, 3; Figure 1).

FIGURE 1 | Effect of different treatments on soil bacterial community

composition under field conditions revealed by principal coordinate analysis

(PCoA) using Bray-Curtis distance metric. Past3 and n = 3. Soil samples were

taken 4 weeks after different treatments in September 2013.

The bacterial genus Streptomyces was significantly reduced in
relative abundance about 4- to 5-fold after all treatments at site K
(Table 3). Irrespective of the soil treatment and the site, Pearson
correlation coefficient analysis revealed several bacterial genera
to be significantly and positively correlated with growth of apple
rootstock M106 plants (SFM or RFM), such as Arthrobacter,
Curtobacterium, Terrimonas, Ferruginibacter amongst others
(Table 4). These bacteria showed higher relative abundances in
treated RD soils at site K than at site A (Table 3).

Effects of Treatments on Soil Fungal
Community Composition and Diversity
The fungal ITS sequence reads ranged from 24,479 to 34,494
and from 27,123 to 36,234 in soils at sites K and A, respectively,
for the different treatments. By trend, higher numbers were
displayed in Basamid-treated soils (sites K and A, Table 5). After
rarefied sequence data, the OTU numbers and diversity indices
were significantly lower in Basamid-treated soil compared to
untreated RD soil at site K. At site A, soils treated with B. juncea
and R. sativus possessed significantly more species richness than
untreated RD soil. However, the fungal diversity indices were
not influenced by any of the treatments in relation to untreated
RD soil (Shannon indices, Table 5). Regardless of different soil
treatments, the fungal community compositions and diversity
were significantly higher in soils at site A than at site K (Table
S4; Figure S2).

As also observed for soil bacteria, differences in fungal
community composition between sites were demonstrated (R =

0.40 and p < 1E-04, Table 6; Figure 3). Effects of the different
soil treatments on fungal community composition were clearly

FIGURE 2 | Relative abundance of dominant bacterial phyla in soils at the two sites affected by the different treatments. Different letters within the phylum indicate

significant differences between soil treatments within site, Tukey test, p < 0.05 and n = 3.
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TABLE 4 | Pearson correlation coefficient (r) between bacterial relative abundance and growth of apple rootstock M106 plants in the field.

Phylum Genus Relative

abundance (%)

SFM RFM

r p-value r p-value

Actinobacteria Arthrobacter 3.31 ± 0.45 0.43 0.019 0.25 0.192

Curtobacterium 0.14 ± 0.03 0.46 0.010 0.56 0.001

Bacteroidetes Terrimonas 2.46 ± 0.23 0.66 0.000 0.63 0.000

Ferruginibacter 1.11 ± 0.10 0.47 0.009 0.43 0.017

Unclass_Flavobacteriaceae 0.49 ± 0.06 0.50 0.005 0.55 0.002

Flavitalea 0.54 ± 0.08 −0.40 0.028 −0.43 0.018

Betaproteobacteria Massilia 0.26 ± 0.04 0.35 0.062 0.45 0.012

Alphaproteobacteria Sphingomonas 0.09 ± 0.03 0.29 0.124 0.44 0.015

Relative abundance is presented as mean ± SEM. SFM, shoot fresh mass and RFM, root fresh mass. The Pearson correlation coefficient was evaluated by Past3 with n = 3.

TABLE 5 | Fungal community diversity based on operational taxonomic units

(OTUs) at 95% similarity in different soil treatments.

Site Treatment Sequences

per condition

Number of

OTUs

(95%)

Chao1 Shannon

K K_RD 32,718 ± 3,916 112 ± 2 a 130 ± 2 3.13 ± 0.09 a

K_Basamid 34,494 ± 1,908 86 ± 2 b 121 ± 18 2.36 ± 0.19 b

K_B. juncea 28,665 ± 3,258 105 ± 1ab 120 ± 3 2.72 ± 0.05 ab

K_R. sativus 28,592 ± 3,253 107 ± 3 a 135 ± 10 2.80 ± 0.08 a

K_Tagetes 24,479 ± 5,631 112 ± 10 a 123 ± 14 2.94 ± 0.09 a

A A_RD 27,123 ± 6,325 119 ± 3 a 126 ± 5 a 2.88 ± 0.18

A_Basamid 36,234 ± 3,054 117 ± 9 a 132 ± 12 a 2.80 ± 0.20

A_B. juncea 28,425 ± 3,014 151 ± 8 b 179 ± 15 b 3.21 ± 0.09

A_R. sativus 29,545 ± 4,991 151 ± 5 b 175 ± 3 b 3.06 ± 0.09

A_Tagetes 31,643 ± 980 128 ± 10 ab 142 ± 12 a 3.26 ± 0.10

Data is presented as mean ± SEM. RD, replant disease soil. Letters indicate significant

differences within site, Tukey test p < 0.05 and n = 4, except for the RD soil treated with

Tagetes, n = 3. Within site, increased and decreased bacterial richness and diversity in

treated RD soils compared to untreated are highlighted in green and red, respectively.

stronger compared to effects seen on the bacterial community
composition (Tables 2, 6; Figures 1, 3), especially at site K.
Significantly different soil fungal community compositions
between untreated RD soils and all kinds of treatments were
found, except for the soil from Tagetes treatment at site A
(Table 6).

The fungal phylum Ascomycota was most abundant in all soils
and at all sites (Figure 4; Table S5). Relatively high proportion
was observed for unclassified fungi, accounting for 11.03 and
19.43% in RD soils at sites K and A, respectively (Figure 4).
The fungal phylum Basidiomycota was significantly reduced in
relative abundance by about 50% after Basamid treatment at both
sites. Its members were found significantly increased (3.7-fold)
by the R. sativus treatment at site K, but not significantly at site
A. Here, high variations among the replicates were recorded and
no significant effects of the treatments were detected, except for
those mentioned for Basidiomycota (Figure 4).

TABLE 6 | Analysis of similarities of the fungal community composition detected

in different soil treatments compared with replant disease soil based on OTUs of

fungal ITS regions.

Treatment Site K Site A

R-value p-value R-value p-value

Basamid 0.59 0.030 0.65 0.025

B. juncea 1.00 0.031 0.31 0.028

R. sativus 1.00 0.028 0.64 0.029

Tagetes 0.74 0.030 0.13 0.310

For sites K vs. A, R-value = 0.40 and p < 0.0001. R- (−1 to 1) and p-values were

obtained from ANOSIM-test. R-value close to “1” suggests strong dissimilarity between

the communities being compared while an R-value close to “0” represents an even

distribution of the communities within and between treatments.

Due to the high standard deviations, only fungal sequences
affiliated to Leotiomycetes (Incertae sedis), were identified as
common responder to the Basamid treatment with significantly
higher relative abundance compared to untreated RD soils
(Table 7). Similar responses in RD soil biofumigated with
either B. juncea or R. sativus were obtained for the fungal
genera Podospora, Monographella, and Mucor, all of them
significantly increasing in relative abundance, and for Ypsilina,
the proportions of which significantly decreased at both sites.
Among them, the fungal genera Podospora (19.19%) and
Monographella (16.52%) had the highest relative abundances in
soil treatments with B. juncea at site K and R. sativus at site
A, respectively (Table 7). Regarding soils treated with Tagetes,
more pronounced effects were observed at site K than at site
A. Not only the analysis of similarity showed a significant
higher R-value (0.74), but also several fungal genera were highly
affected in their population compared to the untreated RD
soil, e.g., members of unclassified Pleosporales, Tetracladium and
unclassified Sordariomycetes (site K, Tables 6, 7).

Irrespective of soil treatments and sites, members of
unclassified Pleosporales, Cryptococcus, and Mucor were
negatively and significantly correlated with growth of apple
rootstock M106 plants (shoot and root). Correspondingly, the
relative abundance of unclassified Pleosporales was significantly
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reduced after treatments with B. juncea, R. sativus, and Tagetes
at site K (Tables 7, 8). The remarkably increased relative
abundance of members of unclassified Sordariomycetes in
B. juncea (11.64%), R. sativus (15.06%), and Tagetes (16.15%)

FIGURE 3 | Effect of different treatments on soil fungal community

composition under field conditions revealed by principal coordinate analysis

(PCoA) using Bray-Curtis distance metric. Past3 with n = 4, except for the

treatment with Tagetes, n = 3. Soil samples were taken 4 weeks after different

treatments in September 2013.

soils at site K were positively and significantly correlated with
the growth of M106 plants. Furthermore, a positive correlation
to growth of the apple M106 plants was demonstrated for the
fungal genera Podospora and unclassified Sordariales (Table 8).

DISCUSSION

Changes in bacterial and fungal community composition and
relative abundances based on Illumina sequencing of 16S rRNA
gene or ITS fragments amplified from TC-DNAs extracted
from soils after treatments with Basamid, B. juncea, R. sativus,
and Tagetes were investigated via comparison to corresponding
untreated RD soils at two sites in order to identify causes for the
differentially improved plant growth in treated soils.

The observed differences in soil bacterial and fungal
community compositions between the two RD sites were in line
with our previous findings (Yim et al., 2015, 2016). The two RD
sites differed in soil type, soil physical and chemical properties
and soil cultivation and management history (Yim et al., 2015,
2016). Different soil microbiomes with different capacities in RD
development of the two studied sites were in line with previous
observations of soil microbiomes being shaped by different plant
species or genotypes (St. Laurent et al., 2010; Uroz et al., 2016),
soil types and soil amendments like mineral nutrients (Bakker
et al., 2015).

Also the soil treatments differed in their efficacy in a site
dependent way (Figures 1, 3; Tables 3, 7). This is most likely
due to the fact that ITCs, the toxic compounds released from the
treatments with Basamid (methyl-ITC), B. juncea (allyl-ITC) and
R. sativus (4-methylthio-3-butenyl-ITC) differed in their profiles

FIGURE 4 | Relative abundance of dominant fungal phyla in soils at the two sites affected by the different treatments. Different letters within the phylum indicate

significant differences between soil treatments within site, Tukey test, p < 0.05 and n = 4, except for the soil treated with Tagetes, n = 3.
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TABLE 8 | Pearson correlation coefficient (r) between fungal relative abundance and growth of apple rootstock M106 plants in the field.

Phylum Genus Relative abundance (%) SFM RFM

r p-value r p-value

Ascomycota Unclass_Pleosporales 3.58 ± 0.43 −0.57 0.001 −0.37 0.044

Unclass_Sordariomycetes 6.57 ± 1.11 0.54 0.002 0.39 0.035

Unclass_Sordariales 1.98 ± 0.39 0.44 0.016 0.23 0.218

Podospora 2.76 ± 1.08 0.38 0.036 0.17 0.364

Basidiomycota Cryptococcus 6.54 ± 0.99 −0.36 0.049 −0.54 0.002

Zygomycota Mucor 1.26 ± 0.23 −0.22 0.239 −0.40 0.027

Relative abundance is presented as mean ± SEM. SFM, shoot fresh mass and RFM, root fresh mass. Past3 and n = 4, except for the treatment with Tagetes, n = 3.

and concentrations depending on the site (Yim et al., 2016).
Variations in toxicity of different ITC compounds against tested
pathogens were previously reported (Neubauer et al., 2014).

The analyzed samples were taken 4 weeks after different
treatments (B. juncea, R. sativus, and Basamid). Thus, changes in
relative abundance of bacteria and fungi in treated soils with B.
juncea and R. sativus can possibly be explained with the effects
of plant root exudation (Bertin et al., 2003; Berg and Smalla,
2009; Schreiter et al., 2014), toxicity of ITCs released from the
treatments (Neubauer et al., 2014; Hanschen et al., 2015), a
huge amount of plant biomass incorporation into treated soils
as well as nutrients released from plant biomass degradation
as previously reported (Bakker et al., 2015; Yim et al., 2016).
Flavonoids and other phenolic compounds were also reported to
be present in Brassicaceae tissues (Antonious et al., 2009; Cartea
et al., 2011) and were shown to influence the soil microbiome
(Weston and Mathesius, 2013). Analyses with samples taken at
different time points could resolve responders that were affected
by those different effects. Regarding the Basamid treatments,
altering soil bacterial and fungal relative abundances possibly
resulted from combinations of a direct toxic effect of methyl-
ITC released from the treatment, recolonization and niche
competition of taxa recovering from the treatments (Ridge and
Theodorou, 1972; Neumann et al., 1983; Hibbing et al., 2010).

Microbial taxa associated with apple RD symptoms were not
consistently detected in the recent TC-DNAs based studies in
apple RD soils (Sun et al., 2014; Franke-Whittle et al., 2015;
Yim et al., 2015; Nicola et al., 2017). For example, several
bacterial genera such as Gp5, Gp6, Gp9, Geobacter (Nicola
et al., 2017), Gemmatimonas, Devosia, Sphingomonas (Franke-
Whittle et al., 2015), Phenylobacterium and Lysobacter (Sun
et al., 2014; Franke-Whittle et al., 2015) and the fungal genera
Cryptococcus, Mortierella, and Tricharina (Nicola et al., 2017)
were not commonly identified to be linked with apple RD
incidence among studies in which their relative abundances
were negatively correlated with growth of apple plants. In the
present study, the bacterial genus Flavitalea and the fungal
genera unclassified Pleosporales, Cryptococcus, and Mucor could
be associated with RD incidence withM106 plants as indicated by
a negative correlation to the shoot or root growth (Tables 4, 8).
In contrast, the bacterial genera Arthrobacter, Curtobacterium,
Terrimonas, Ferruginibacter and the fungal genera unclassified
Sordariomycetes, unclassified Sordariales and Podospora revealed

a positive correlation to the shoot or root growth of M106
plants.

The positive and negative correlations of the fungal genera
Podospora and Cryptococcus, respectively, to plant growth in
the present study were in agreement with the observations
by Franke-Whittle et al. (2015) who analyzed microbial
communities at different apple replant disease sites. The
relative abundances of several bacterial genera, like Arthrobacter,
Terrimonas, and Ferruginibacter and fungal genera, for instance
Podospora that were positively and significantly correlated with
growth of the apple M106 plants (Tables 4, 8) were lower in RD
soils treated with Basamid, B. juncea, R. sativus, and Tagetes at site
A than at site K (Tables 3, 7). These differences might contribute
to explain the lower effectiveness of these treatments at site A
revealed by the growth of M106 plants. Thus, knowing RD site
specificities such as its local selected microbiomes influenced
by soil properties, soil quality, and pedoclimatic conditions is
an important point before choosing the right RD management
strategies. Such sequence approaches used in the present work are
important in identifying potential bioindicators in the RD soils
(Nunes et al., 2016; Schöler et al., 2017).

The effects of the Tagetes treatment on soil bacterial and
fungal community composition (Tables 2, 6; Figures 1, 3) and
relative abundances of different fungal and bacterial genera
(Tables 3, 7) were lower than those resulting from B. juncea
and R. sativus treatments. This might at least partially be due
to the fact that samples were taken when Tagetes plants were
still growing in 2013, thus only root exudates, but not plowed
plant biomass could contribute to the observed effects. Shifts in
bacterial and fungal relative abundances in the Tagetes-treated
soils would probably have been higher if the analyzed samples
had been taken 4 weeks after plant tissue incorporation. In 2012,
however, the total plant biomass from Tagetes was incorporated
into the soil. Therefore, several bacterial and fungal groups were
significantly altered in abundance by this treatment, although
site-dependently (Tables 3, 7). Tagetes are known as nematode-
repellent plants due to their sulfur-containing heterocyclic
compounds, thiophenes, produced by plant roots (Marotti et al.,
2010; Marahatta et al., 2012; Saha et al., 2012). In the present
study, soil-borne plant endoparasitic nematode Pratylenchus sp.
which has previously been reported to be associated with apple
RD soil (Mai et al., 1994) was strongly reduced in Tagetes-
treated soil compared with the untreated RD soils, especially

Frontiers in Microbiology | www.frontiersin.org 10 September 2017 | Volume 8 | Article 1604

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Yim et al. Replant Soil Treatments Affect Microbiome

at site A (Table S6). Besides thiophenes, terpenoids including
dihydrotagetone, piperitone and α-terpineol were predominantly
identified in leaves and flowers of Tagetes (Saha et al., 2012). The
thiophenes and terpenoids showed highly suppressive potential
for several soil-borne and foliar plant pathogenic fungi of several
crops such as finger millet (Pyricularia grisea), French bean
(R. solani, F. solani, and Sclerotium rolfsii), pea (Fusarium
oxysporum), and tomato (Alternaria solani) in an in vitro study
(Saha et al., 2012). Despite the less pronounced changes in soil
bacterial and fungal community composition in soils cropped
with Tagetes plants compared to other treatments (Tables 3, 7;
Figures 1, 3), interestingly, the growth of the indicator plants,
M106, showed comparable effects among all treatments at site
K (Table S1). Therefore, soil-borne pathogenic nematodes were
possibly one of the causal ARD agents in the analyzed soils that
were suppressed by the Tagetes treatment.

The stronger effect observed on fungal community
compositions in RD soils treated with B. juncea and R. sativus
compared to bacteria (Figures 1, 3; Tables 2, 6) confirmed the
observations made in several other studies when the soils were
submitted to products containing ITCs (Hollister et al., 2013;
Hu et al., 2015). Interestingly, at site K, a higher effect on soil
fungi and a lower effect on soil bacteria in RD soils treated with
B. juncea, R. sativus, and Tagetes (R-values, Tables 2, 6) was
found in line with the biomass of apple rootstock M106 plants
being significantly higher only at this site as well (Table S1; Yim
et al., 2016). This shows that soil at site K was more affected by
RD, pointing to a more important role of fungi in RD incidences,
as stated earlier by Mazzola (1998).

Bacterial Responders to the Different
Treatments of Replant Disease Soils
A pronounced and significant enrichment of the bacterial
phylum Actinobacteria was observed in RD soils treated with
R. sativus at sites K and A (Figure 2; Table S3). Many
members of this phylum are known as plant growth promoting
(PGP) bacteria being involved in soil-borne disease suppression
(Palaniyandi et al., 2013). A closer look at the genus levels of the
responders belonging to this phylum revealed that Arthrobacter
shared the highest proportion in the RD soils when they had
been treated with B. juncea (at site K) or R. sativus (at both
sites) (Table 3). Arthrobacter sp. was previously reported as
PGP bacterium, as degrader of phenolic compounds in soil
(Karigar et al., 2006; Unell et al., 2008) and releasing plant-
available iron (Valencia-Cantero et al., 2007). Siddikee et al.
(2010) identified traits of isolates affiliated to Arthrobacter
nicotianae such as nitrogen fixation, indole acetic acid (IAA)
production to promote root growth of plants, thiosulfate
oxidation, ammonia production and 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase activity strengthening plants to
tolerate salt stress conditions. The bacterial genus Arthrobacter
was also significantly higher in relative abundance in RD soils
treated with gamma irradiation and concomitantly, apple plant
growth was significantly enhanced in irradiated soils (Yim et al.,
2015). Hence, Arthrobacter species in biofumigated soils possibly
contributed to enhanced growth of M106 plants.

Furthermore, other members of Actinobacteria such as
Salinibacterium and Curtobacterium also responded to the
Basamid treatments at sites K and A (Table 3). These bacterial
groups were possibly involved in biodegradation of the Basamid
remnant in the soil. The Curtobacterium sp. strain 114-2 was
capable to degrade the toxic trichothecenes in culture medium
(Ueno et al., 1983). Moreover, Curtobacterium flaccumfaciens
strain ME1 was discovered to promote the plant growth and to
protect cucumber plants from leaf spot disease (Raupach and
Kloepper, 2000). In addition, this strain was reported to have an
effect comparable to the soil fumigant methyl bromide (Raupach
and Kloepper, 2000). Other plant growth promoting traits such
as solubilizing phosphate, producing IAA as well as catalase and
ACC deaminase activity were reported for the Curtobacterium
sp. strain S6 (Bulgari et al., 2014). Therefore, increased relative
abundance of Curtobacterium in Basamid treated soils might
point to species that promoted growth of M106 plants.

Members of the bacterial genus Ferruginibacter (phylum
Bacteroidetes) which were identified in significantly higher
abundance in B. juncea (site K) and R. sativus (site A) treated soils
compared with untreated RD soil (Table 3) were demonstrated
to be able to decompose cellulose (Lewin et al., 2016). Cellulose
is the major component of cell walls of plants (Kögel-Knabner,
2002) and oomycetes (Mélida et al., 2013). Therefore, it cannot
be excluded that these members (Ferruginibacter) play a role in
carbon mineralization and oomycete cell wall degradation in the
treated soil. The genera Pythium (Hoestra, 1994; Emmett et al.,
2014) and Phytophthora (Mazzola, 1998; Tewoldemedhin et al.,
2011; Kelderer et al., 2012) belonging to the oomycetes were
previously reported to be associated with apple RD incidence.
Thus, for instance Ferruginibacter which was detected in higher
relative abundance in soils treated with B. juncea (site K) and
R. sativus (site A) might have antagonistic activity against apple
plant pathogenic oomycetes in the present study.

The enrichment of the genus Rhodanobacter in Basamid soil at
sites K and Awas in line with its detection in higher abundance in
gamma-irradiated RD soil (Yim et al., 2015), and the apple plants
were significantly increased in their biomass in this treated soil.

The significant increase in Massilia relative abundance in
Basamid soil at site K and its positive correlation with plant
growth (Tables 3, 4) suggest that it might be part of a beneficial
soil bacterial group, as this genus contains species that are able
to produce and secrete chitinase (Cretoiu et al., 2013). Activating
chitin degraders in soils has been shown to be related with the
suppression of plant pathogens containing chitin structures like
fungal cell walls and the exoskeleton of invertebrates (Rinaudo,
2008; Hjort et al., 2009; Jacquiod et al., 2013). The bacterial genus
Massilia was also reported to show a positive correlation to the
shoot growth of apple plants grown in ARD soils in a recent
TC-DNA based study (Nicola et al., 2017).

Although members of the genus Pseudomonas were
significantly reduced in relative abundance in soils treated
with Basamid and Tagetes at site K, their abundances were not
negatively associated with the growth of apple M106 plants in
the present investigation (Table 3). Pseudomonas sp. is known as
a beneficial bacterium for plant growth since it enhances sulfate
uptake (Behera et al., 2014) and acts as antagonist against soil
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pathogenic fungi (Zaccardelli et al., 2013). At the same time, the
genus contains plant pathogens; therefore, an identification of
the species would be needed to enable statements on their effects.
A significantly decreased relative abundance of Streptomyces in
all treated soils at site K and an increase of relative abundances
of Arthrobacter in B. juncea (site K) and R. sativus (sites K, A)
soils observed in the present study was also reported by Mazzola
et al. (2015) when soils were treated with seed meal from Brassica
crops.

Fungal Responders to the Different
Treatments of Replant Disease Soils
In the present study, a huge amount of plant biomass from
B. juncea and R. sativus was incorporated into soils for
biofumigation, and thus enhanced fungal groups that are
potentially able to degrade plant celluloses were recorded. Among
identified responders, cellulose degraders were previously
reported for isolates belonging to the fungal genera Trichosporon
(Santos and Linardi, 2001; Štursová et al., 2012), Mucor
(Mahmood et al., 2006), and Podospora (Couturier et al., 2016).

The fungal genus Podospora contains Podospora anserina as
a coprophilous fungus which is efficient in degrading plant
biomass due to its lignocellolytic enzymes (Couturier et al.,
2016). Besides, the genus Podospora was also previously shown
to enhance root growth of pea plants (Xu et al., 2012). Moreover,
the positive correlation of the fungal genus Podospora to apple
growth was also recorded by Franke-Whittle et al. (2015). Thus,
the significantly increased relative abundance of Podospora in B.
juncea and R. sativus treated soils at both sites in the present
study (Table 7) might suggest that these taxa contributed to
antagonism relationship with pathogenic microorganisms in
apple RD soils.

A high relative abundance in soils treated with B. juncea or
R. sativus (at both sites) and planted with Tagetes at site K was also
recorded for the fungal genusMonographella (Table 7). Berg et al.
(2005) reported that isolates of the genus Monographella from
the rhizosphere of Brassica napus plants displayed antagonistic
activity against Verticillium dahliae Kleb.

The significantly enriched members of Penicillium in
Basamid-treated soil (site K) and Trichosporon in B. juncea- (site
K) and R. sativus- (sites K, A) treated soils were in agreement
with the study of Franke-Whittle et al. (2015) who assumed these
genera to be beneficial for growth of apple rootstock plantlets.

Members of Tetracladium were significantly reduced by
treatments with Basamid, B. juncea and R. sativus at site K
(Table 7), which is in contrast to the finding that this fungal
group was earlier shown to have a positive effect on growth of
apple plants (Franke-Whittle et al., 2015). On the other hand,
the relative abundance of members of Tetracladiumwas 2.5 times
higher after Tagetes treatment than in untreated RD soils at site K
(Table 7).

The unclassified fungal genus Pleosporales was recorded in
a relatively high proportion in untreated RD soils (both sites),
but significantly decreased in relative abundance after treatments
with B. juncea, R. sativus, and Tagetes at site K (Tables 7, 8).
They are belonging to the order Pleosporales which contains

several plant pathogens (Zhang et al., 2009). The genome
analysis confirmed that the fungal order Pleosporales contained
several enzymes that are associated with plant pathogenicity
(Ohm et al., 2012) such as glycoside hydrolases, lipases and
peptidases as well as small secreted protein to infect the plant
cells. In the present study, the detected relative abundance
of the unclassified Pleosporales was negatively correlated with
the growth of the apple M106 plants (Table 8). Thus, the
suppression of their relative abundance in B. juncea-, R. sativus-,
and Tagetes-treated soils (site K, Table 7) might have positive
effects on the plant growth due to possible reduction of specific
microbial pathogenic groups. No obvious correlation between
bacteria and fungi at the alpha and beta diversity levels could be
detected (data not shown). The relative abundance of the fungal
unclassified Pleosporales in the untreated RD soils was observed
to be negatively correlated to several bacterial groups that were
significantly enhanced in their relative abundances by the soil
treatments (Figure S3). Thus, the interaction between different
bacterial and fungal taxa should be studied in detail in further
analyses.

The pathogenic oomycetes associated with apple RD incidence
such as Pythium sp. (Hoestra, 1994; Emmett et al., 2014) and
Phytophthora sp. (Mazzola, 1998; Tewoldemedhin et al., 2011;
Kelderer et al., 2012) were not detected in the present study
due to the primer system used. Thus, primers specific for the
oomycetes (Riit et al., 2016), should be included for future
amplicon studies as well. For future studies, selected bacterial and
fungal genera, which were positively and negatively correlated
with the growth of the apple plants in the present work should be
further investigated and isolated for their potential application in
overcoming RD as promising microbial bioindicators in order to
better refine our treatment procedures against RD affected soils.

CONCLUSION

Bacterial or fungal responders to the soil treatments applied in
this study were treatment- and site-dependent.Most importantly,
pre-RD soil treatments improved apple growth as previously
published (Yim et al., 2016). The positive and significant effects of
the different RD soil treatments on growth of the M106 plants at
site Kwere associated with alterations of both bacterial and fungal
communities in the treated RD soils. Since more significant
changes involved increased abundances of the respective genera,
a certain number of beneficial bacterial and fungal genera is
possibly required to enhance the plant growth and to counteract
plant-pathogens. The enriched bacterial and fungal groups
detected should be further studied with regard to their potential
roles in overcoming RD. The negative correlation with growth
of the M106 plants as well as the high relative abundance of the
fungal order Pleosporales in the untreated RD soils was possibly
an indication of a potential fungal pathogenic group in the
analyzed soils. Overall, the present study revealed shifts in the
bacterial and even more pronounced in the fungal communities
in response to the treatments of RD soils, and the relative
abundances of numerous taxa that were positively correlated to
apple plant growth were identified.
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