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Editorial on the Research Topic

Vaccines, Immunotherapy and New Antifungal Therapy against Fungi: Updates in the New
Frontier

Systemic mycoses are caused by geographically delimitated thermally dimorphic fungi or
by classical yeast or molds. Among the thermally dimorphic fungi group, we highlight the
human diseases of paracoccidioidomycosis, coccidioidomycosis, blastomycosis, histoplasmosis,
and sporotrichosis, the last as cause of subcutaneous mycosis. Although these diseases due to
thermally dimorphic fungi are exacerbated by immune suppression, other invasive infections due to
yeasts and mold are generally opportunistic. Patients with different degrees of immunodeficiency
as a result of AIDS, diabetes, organ transplant, use of immunosuppressive drugs and etc, are at
increased risks for developing candidiasis or cryptococcosis (reviewed by Travassos and Taborda,
2017). Aspergillus fumigatus, Fusarium spp., and Penicillium spp. are, for example, increased
in patients undergoing hematopoietic stem cell transplantation for treatment of hematological
malignancy (Reviewed by Travassos and Taborda, 2017). This editorial explores several different
approaches for combating invasive mycoses and highlights exciting future avenues for study.

Fungi are a major cause of morbidity and mortality on the global stage, and while the
pathogenesis of some, such as Candida spp. and Aspergillus spp. have been deeply investigated,
others remain significantly understudied, such as Paracoccidioides spp. and Penicillium spp.
Although the exact number of patients affected by invasive mycoses is unknown, it is estimated that
there are over 1.5 million cases annually (Brown et al., 2012; Parente-Rocha et al., 2017; Travassos
and Taborda, 2017). The most important tools for control of invasive fungal diseases are systemic
antifungal drugs, and certain diseases require months to years of continuous administration.
Despite this, there are frequent relapses of some diseases and there are numerous reports of
increased drug resistance (Kneale et al., 2016; Parente-Rocha et al., 2017). The high costs of these
medications limit their availability to some patients, especially in the developing world. There
are four main types of antifungal drugs used for invasive infections: Amphotericin B, flucytosine,
azoles, and echinocandins (Aguilar-Zapata et al., 2015; Kneale et al., 2016).

There are new and emerging fungal diseases that challenge the medical community. For
example, Candida auris, first reported in 2009, is frequently multidrug-resistant (Sarma and
Upadhyay, 2017). The mechanisms that lead to antifungal resistance in fungi are highly complex
and may include mutation of drug targets, overexpression of the targeted protein, expression of
an efflux pump, degradation of the drugs, and pleiotropic drug responses (Parente-Rocha et al,,
2017; Scorzoni et al.). Besides multidrug-resistant isolates, the highly potent, broad-spectrum
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amphotericin B is relatively restricted in use due to its side
effects (Parente-Rocha et al., 2017). Due to issues such as drug
resistance, toxicities, costs, and prolonged treatment regiments,
there is an urgent need for the discovery of new drugs for
the treatment of invasive mycoses. Screening of libraries of
synthetic small molecules or natural products are exciting and
promising methods to identify new drugs (Parente-Rocha et al.,
2017). Nanotechnology is also being leveraged to improve the
efficacy of traditional antifungal drugs with a particular focus
on reducting toxicity, while improving biodistribution and drug
targeting (Souza and Amaral). One promising option is the use
of the natural polymer of alginate as drug delivery vehicle due to
its non-toxicity, biodegradability, high biocompatibility, low cost,
mucoadhesiveness, and non-immunogenic properties (de Castro
Spadari et al.).

The concept of drug repurposing has led the screening of
clinically available compounds for use as new antifungal drugs.
The HIV aspartic peptidase inhibitors (indinavir, saquinavir,
ritonavir, nelfinavir tipranavir, amprenavir, and lopinavir)
also display activity against Candida spp. and Cryptococcus
spp. (Cassone et al, 1999; Cenci et al, 2008). Aspartic-
type peptidases participate in essential metabolic events of
a fungal cell and help fungi during their interactions with
the host (reviewed by Palmeira et al.). Palmeira et al.
demonstrated the efficiency of aspartic peptidase inhibitors
on the virulence by Fonsecaea pedrosoi conidial cells (the
causative agent of a subcutaneous mycosis) conidial cells
by blocking crucial biological process. The anti-helmithic
compound mebendazole also has multiple antifungal effects on
Cryptococcus neoformans, a neurotropic fungus (Joffe et al.).
Notably, mebendazole achieves levels in the brain that have
antifungal activity against phagocytized C. neoformans and
the yeasts cells within cryptococcal biofilms as well as causes
marked morphological alterations in the yeast cell (Joffe
etal.).

Novel compounds have also been explored for their
efficacy against fungi. For example, metal-based drugs are
being studied due to their therapeutic potentials for diverse
pharmacological applications (reviewed by Granato et al.).
In this context investigators have analyzed the effect of
1,10-phenanthroline-5,6-dione (phendione) and its metal-based
derivatives on Phialophora verrucosa conical cells (an agent of
chromoblastomycosis, a subcutaneous mycosis) and in vitro tests
have shown that phendione and its Ag" and Cu?" complexes
represent a promising antifungal agent against P. verrucosa
(Granato et al.).

A synthetic compound previously explored for its cancer
chemotherapeutic activities, biphosphinic cyclopalladate C7a,
has been tested against several microorganism and parasites,
such as Trypanosoma cruzi, Paracoccidioides brasiliensis, P. lutzii,
C. neoformans, and C. albicans (reviewed by Muroz et al.). Here
the authors have demonstrated that C7a is effective in vitro
against different isolates of Candida, including azoles resistant
strains (Munoz et al.).

Genetic manipulation has also been explored as another
option for controlling mycoses. For example, the inteins,
invasive genetic elements that occur as intervening sequences in

conserved coding host genes, are being explored as a new drug
target against fungi as Candida ssp. (Fernandes et al.).

Antifungal drugs are the basis of systemic mycoses treatment
of patients and, an in-depth understanding of the molecular
mechanisms underlying their efficacy provides insights into
fungal pathogenesis (Ding et al.). Immunosuppression may
interfere with chemotherapy efficiency (Travassos and Taborda,
2017). Antifungal vaccines may boost the immune system and
enhance the protective effect of antifungal drugs, which allows
for a reduction in the time required for treatment and prevention
of relapse (Travassos and Taborda, 2017). There is no licensed
vaccine for the prevention or treatment of human mycoses.
Albeit, there are some groups around the world involved with
different strategies for vaccine development or immunotherapy
using monoclonal antibodies against systemic mycosis.

Protection against most mycoses involves the activation of
the cellular immune response through CD4™" T helper cells. T-
helper (Th) 1 or Th17 responses may be cytotoxic or involve the
secretion of inflammatory cytokines such as IL-12, IL-17A, IFN-
v> GM-CSE, and TNF-a, which active different cell populations
as neutrophils, macrophages, and dendritic cells (Parente-Rocha
et al.,, 2017). The progression of fungal infection is related to a
decrease in Thl-type response and an increase in the response
mediated by CD4" T-helper cells type 2 (Th2), producing
cytokines such as IL-4, IL-5, and IL-10. Although the Th2-
type response is associated with aggravation of fungal infections,
cytokines produced are essential for the control of exaggerated
inflammatory responses (Cutler et al., 2007).

The production of vaccines from proteins (peptides) or
polysaccharides is a standard approach to vaccination (Travassos
and Taborda, 2017). The use of peptides as vaccines has
many advantages: they are free of infectious material, can
be produced in large scale; include multiple determinants
or epitopes; can be modified by lipids, carbohydrates or
phosphate, acetyl and terminal amide groups to increase their
stability, immunogenicity and solubility; and may be covalently
or non-covalently linked to macromolecules for increased
immunogenicity (Purcell et al., 2007). Peptide delivery using
different formulations is a challenge for the creation of an
efficient vaccine. Dendritic cells are very important for both
innate and adaptive immune response and play a significant role
in the immune response to dimorphic fungi (Thind et al., 2015).
Dendritic cells are up to 1,000-fold more efficient in activating
T cells than traditional adjuvants. The use of dendritic cells
primed with peptide 10 (P10), derived from the P. brasiliensis
glycoprotein 43 (gp43), as prophylactic or therapeutic vaccine
in experimental model using infected mice with yeast cells from
P. brasiliensis reduces lung fungal burdens (Magalhdes et al,
2012). Using a similar approach, Silva et al. utilized dendritic
cells primed with P10 in combination with trimethoprim-
sulfamethoxazole administration to treat immunocompromised
mice infected with P. brasiliensis. The authors observed P10-
pulsed dendritic cells with or without antifungal drugs are
potently effective in combating invasive paracoccidiodomycosis.

During the infection, fungi induce the production of
a heterogeneous population of polyclonal antibodies and,
individually, these antibodies may increase or decrease
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protection against fungal infections, as well as may have no
effect at all. Since fungi can induce the production of protective
antibodies, several studies have shown that these molecules
can act as efficient vaccines in the fight against systemic
infections caused by fungi such as aspergillosis (Chaturvedi
et al, 2005), choroblastomycosis (Nimrichter et al., 2004),
candidiasis (Coleman et al., 2009), cryptococcosis (Taborda
et al., 2003), paracoccidioidomycosis (Buissa-Filho et al., 2008),
and histoplasmosis (Nosanchuk et al, 2012) among others.
The main advantage of administering humanized antibodies is
that they may have fewer side effects compared to chimeric or
non-human antibodies. As an example, a genetically engineered
mADbP6E7 antibody against a 70-kDa Sporothrix antigen
effectively decreased fungal burdens of S. schenckii in infected
mice (de Almeida et al.).

The expansion of knowledge in mycology obviously is not
phenomenon restricted to human or animal pathogens. For
instance, the fungi play an extremely important function of the
plantae kingdom. The identification of a new strain the can
cause wheat stripe rust (Zheng et al.) and the hypovirulence
of Sclerotium rolfsii caused by association of RNA mycoviurs
(Zhong et al.) underscore their impact and the efforts underway
to understand their biology.
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In sum, the articles in this Frontier’s topic broadly paint
the spectrum of investigations on new antifungal drugs, host-
pathogen interactions and provide a review of the state-of-
the-art in vaccinology, immunotherapy, and chemotherapy
against fungi. The information presented also underscores
areas ripe for future study and details several promising
improved therapeutics and therapeutic approaches against fungal
invaders.
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