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Gut microbiota is known to change with aging; however, the underlying mechanisms
have not been well elucidated. Immunoglobulin A (IgA) is the dominant class of
antibody secreted by the intestinal mucosa, and are thought to play a key role in
the regulation of the gut microbiota. T cells regulate the magnitude and nature of
microbiota-specific IgA responses. However, it is also known that T cells become
senescent in elderly people. Therefore, we speculated that the age-related changes
of IgA response against the gut microbiota might be one of the mechanisms causing
the age-associated changes of gut microbiota composition. To prove our hypothesis,
fecal samples from 40 healthy subjects (adult group: n = 20, an average of 35 years
old; elderly group: n = 20, an average of 76 years old) were collected, and the gut
microbiota composition and the response of IgA to gut microbiota were investigated.
The relative abundance of Bifidobacteriaceae was significantly lower, whereas those
of Clostridiaceae, Clostridiales;f__ and Enterobacteriaceae were significantly higher in
the elderly group than in the adult group. There was no significant difference in the
fecal IgA concentration between the adult and elderly groups. However, the taxon-
specific IgA response to some bacterial taxa was different between the adult and elderly
groups. To evaluate inter-group differences in the taxon-specific IgA response to each
bacterial taxon, the IgA-indices were calculated, and the IgA-indices of Clostridiaceae
and Enterobacteriaceae were found to be significantly lower in the elderly group than
the adult group. In addition, Clostridiales;f__ and Enterobacteriaceae were significantly
enriched in the IgA+ fraction in the adult group but not in the elderly group, whereas
Clostridiaceae was significantly enriched in the IgA− fraction in the elderly group but
not in the adult group. Some species assigned to Clostridiaceae or Enterobacteriaceae
are known to be pathogenic bacteria. Our results suggest the possible contribution of
decreased IgA response in the increased abundance of bacterial taxa with potential
pathogenicity in the intestinal environment of the elderly. Our findings contribute to the
understanding of the regulatory factor for the changes in the gut microbiota composition
with aging.
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INTRODUCTION

Human gut is inhabited by a trillion of microorganisms
which constitute the gut microbiota (Clemente et al.,
2012). Some diseases, such as inflammatory bowel disease,
autoimmune and allergic diseases, obesity and diabetes,
have been suggested as a result of dysbiosis induced by
the changes in the types and numbers of gut microbiota
(Clemente et al., 2012). The changes of gut microbiota are
affected by lifestyle, diet, and xenometabolites (Marchesi
et al., 2016). Furthermore, many reports have demonstrated
that the gut microbiota composition changes during the
aging process (Mitsuoka and Hayakawa, 1973; Mueller
et al., 2006; Mariat et al., 2009; Mitsuoka, 2014; Arboleya
et al., 2016; Odamaki et al., 2016). For instance, our
previous study revealed that the relative abundance of
Actinobacteria (Bifidobacteriaceae) substantially decreased
after weaning and continued to decrease with age, whereas
the relative abundance of Proteobacteria (Enterobacteriaceae)
increased in subjects over 70 years old (Odamaki et al.,
2016). However, the factors that regulate changes in the
gut microbiota composition during aging are not well
understood.

It is known that the gut mucosal immune response is
significantly compromised in the elderly, and this decline
with aging is associated with diminished antigen-specific
antibody titre in the intestinal environment (Mabbott et al.,
2015). Immunoglobulin A (IgA), which is the major class
of antibody secreted by the gut mucosa, is thought to be
one of the key factors for the maintenance of intestinal
homeostasis (Suzuki et al., 2004; Peterson et al., 2007).
IgA recognizes disease-driving inflammatory bacteria (e.g.,
Bacteroides fragilis and Clostridium perfringens) in humans
wherein IgA-targeted elimination of such bacteria could
potentially prevent disease development (Palm et al., 2014).
Moreover, polyreactive IgA was reported to possess a strong
impact on the generation of antigen-specific IgA and the
selection and maintenance of the gut microbiota (Fransen
et al., 2015). Okai et al. (2016) revealed that polyreactive
monoclonal IgA with a high binding affinity to bacterial
serine hydroxymethyltransferase identifies targeted microbes
such as Escherichia coli and suppresses the growth of the
microbes.

Previous reports showed that the age-associated
changes of gut microbiota composition are related to
changes of diet, gastrointestinal motility, mastication,
and immunosenescence (Quercia et al., 2014). In
particular, changes in systemic immune responses with
aging affect immune function of T cells that regulate
the magnitude and nature of microbiota-specific IgA
responses (Mabbott et al., 2015). However, the association
between the changes in gut microbiota composition
during aging process and intestinal IgA response to the
gut microbiota is not well understood. In this study, we
demonstrated the association between the changes of gut
microbiota composition with aging and taxon-specific IgA
response.

MATERIALS AND METHODS

Subjects
To evaluate the changes in the gut microbiota composition
that occur with aging, 40 healthy subjects, who were selected
from community-dwelling Japanese volunteers (one sample per
subject), were assigned to two groups: adult group (n = 20,
aged 33–39 years old with an average of 35 years old, male and
female = 1:1) and elderly group (n = 20, aged 71–84 years old
with an average of 76 years old, male and female= 1:1).

Ethics Statement
All subjects were enrolled in the study protocol approved by
the ethics committee of Kensyou-kai Incorporated Medical
Institution (Osaka, Japan, approval No. 20170210-5). Written
informed consent was obtained from all subjects. The consent
forms signed by each participant included their consent to allow
us to publish our findings.

Sampling and Storage of Samples
Fecal sampling started in December 2014 and continued till May
2015. Briefly, fresh fecal samples were collected and transferred
by the subjects into tubes and immediately enclosed in plastic
bags containing AnaeroPouch (Mitsubishi Gas Chemical, Tokyo,
Japan) to create an anaerobic environment. The fecal samples
collected from subjects were stored at −20◦C and transported to
the laboratory by logistics companies.

Sample Preparation
Sample preparation was performed as previously described (Palm
et al., 2014) with some modifications. Human feces were placed
in tubes containing 1.0 ϕ zirconia beads (ZB-10; TOMY, Tokyo,
Japan) and incubated in 1 ml phosphate buffered saline (PBS)
per 100 mg feces on ice for 1 h. Feces were homogenized by
bead beating and then centrifuged (50 × g, 15 min, 4◦C) to
remove large particles. Fecal bacteria in the supernatants were
placed in staining buffer, which is made of PBS containing 1%
(w/v) bovine serum albumin (BSA; Wako Tokyo, Japan). After
centrifugation (8000 × g, 5 min, 4◦C), the supernatant was
collected for measurement of IgA concentrations. The bacterial
pellet was washed twice with staining buffer and the pellet
was suspended in staining buffer containing 20% (v/v) normal
mouse serum (Abcam Japan, Tokyo, Japan), incubated for
20 min on ice, and then stained with staining buffer containing
9.1% (v/v) PE-conjugated Anti-Human IgA (Clone IS11-8E10;
Miltenyi Biotec, Bergisch Gladbach, Germany) for 30 min on
ice. Sample was then washed three times with staining buffer
and suspended in PBS containing 0.5% (w/v) BSA, 2 mM
ethylenediaminetetraacetic acid (EDTA), and 4.7% (v/v) anti-PE
magnetic activated cell sorting (MACS) beads (Miltenyi Biotec).
After incubation for 15 min on ice, the sample was washed with
PBS containing 0.5% (w/v) BSA and 2 mM EDTA (MACS buffer)
and resuspended in MACS buffer.

The suspension was divided into three samples and details
of the sample processing procedures are described in the
Supplementary Information. The first sample was centrifuged
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(10000 × g, 5 min, 4◦C) and used as a pre-sort fraction for
16S rRNA gene sequencing analysis. The second sample was
used for the analysis of IgA-binding ability as the ratio of IgA-
coated bacteria against the whole bacterial community by the
fluorescence activated flow cytometry (SH800; Sony, Tokyo,
Japan). The third sample was sorted by MACS (LS column;
Miltenyi Biotec) into IgA-uncoated and IgA-coated bacteria. The
IgA-uncoated bacteria were centrifuged (10000 × g, 5 min, 4◦C)
and the pellet was used as an IgA-uncoated fraction for 16S
rRNA gene sequencing analysis. The IgA-coated bacteria were
further purified via fluorescence activated cell sorter (SH800;
Sony, Tokyo, Japan). The fraction of IgA-coated bacteria was
pelleted (10000 × g, 5 min, 4◦C) and used as an IgA-coated
fraction for 16S rRNA gene sequencing analysis. All samples were
stored at−80◦C for future use.

Microbiota Analysis
DNA was extracted from the fecal samples by the bead-beating
method (Sugahara et al., 2015) and 16S rRNA gene sequencing
was performed as previously described with minor modification
(Odamaki et al., 2016). Briefly, the V3-V4 region of the bacterial
16S rRNA gene was amplified in triplicate by PCR using the
TaKaRa Ex Taq HS Kit (TaKaRa Bio, Shiga, Japan) with the
following program: preheating at 94◦C for 3 min; 30 cycles
of denaturation at 94◦C for 30 s, annealing at 50◦C for 30 s
and extension at 72◦C for 30 s; and a terminal extension at
72◦C for 5 min. A 1 µl sample of the combined PCR products
was amplified with the barcoded primers adapted for Illumina
MiSeq sequencing. The amplification was performed according
to the program as described above except that only eight cycles
were performed. The products were purified and quantified
by commercial kits according to the manufacturer’s protocol
(Odamaki et al., 2016). Equal amounts of the amplicons were
pooled and purified by the GeneRead Size Selection Kit (Qiagen,
Valencia, CA, United States) according to the manufacturer’s
protocol. The pooled libraries were sequenced by an Illumina
MiSeq instrument and the MiSeq v3 Reagent Kit (Illumina Inc,
San Diego, CA, United States).

After the acquisition of Illumina paired-end reads, the bowtie-
2 program (Langmead and Salzberg, 2012) (ver. 2-2.2.4) was used
to remove the reads mapped to PhiX 174 sequence and Genome
Reference Consortium human build 37 (GRCh37). Thereafter,
the 3′ region of each read with a PHRED quality score of less than
17 was trimmed. Trimmed reads less than 150 bp in length with
an average quality score of less than 25 or those lacking paired
reads were also removed. The trimmed paired-end reads were
combined by the fastq-join script in EA-Utils (Aronesty, 2013)
(ver. 1.1.2-537). Potential chimeric sequences were removed by
reference-based chimera checking in USEARCH (Edgar et al.,
2011) (ver. 5.2.32) and the gold database.1 The non-chimeric
sequences (average ± standard deviation: 46171 ± 15242) were
analyzed in the QIIME software package version 1.8.0 (Caporaso
et al., 2010; Kuczynski et al., 2012). For analysis of family level,
the sequences were assigned to operational taxonomic units
(OTUs) by open-reference OTU picking (Rideout et al., 2014)

1http://drive5.com/otupipe/gold.tz

with a 97% pairwise identity threshold and the Greengenes
reference database (McDonald et al., 2012).2 All bacterial taxa
were summarized at the family level.

IgA Quantification of Fecal Samples
The amount of IgA in the supernatant of fecal suspension
was quantified by ELISA kits (R&D systems, Minneapolis,
MN, United States) in accordance with the manufacturer’s
instructions.

Calculation of Relative Abundances
of Bacterial Taxa in IgA-Positive
and -Negative Fractions
The calculation of the relative abundances of bacterial taxa in
IgA fractions was performed in accordance to previous reports
(Palm et al., 2014; Kau et al., 2015; Okai et al., 2016; Planer et al.,
2016) with some modifications. It was noted that the previous
studies did not take into consideration of the differences of the
ratio of IgA-coated bacteria among individuals. To give a fair
comparison, the relative abundances of bacterial taxa in IgA-
positive (IgA+) and IgA-negative (IgA−) fractions, which have
taken into consideration of the IgA-binding ability as the ratio of
IgA-coated bacteria against the whole bacterial community, were
used in this study. Relative abundances of bacterial taxa in IgA+
or IgA− fractions were calculated based on the relative abundance
of bacterial taxa in IgA-coated or IgA-uncoated fractions and the
IgA-binding ability.

IgA+taxon abundance = IgA-coated fractiontaxon abundance ×

the IgA binding ability/100

IgA−taxon abundance = IgA-uncoated fractiontaxon abundance ×

(1− the IgA binding ability/100)

Calculation of IgA-Index
Immunoglobulin A-index was calculated based on the formula as
described in the previous reports (Kau et al., 2015; Planer et al.,
2016) with some modifications.

IgA-index =−[log(IgA+taxon abundance)−log(IgA−taxon abundance)]/

[log(IgA+taxon abundance)+ log(IgA−taxon abundance)]

The relative abundances of bacterial taxa in IgA+ or IgA−
fractions as described in the previous section were used. The
IgA-index indicates the differential representation of a given
taxon between the IgA+ and IgA− fractions. The value of
the IgA-index can range from a maximum of 1.0 (absent
in IgA−taxon abundance) to a minimum of −1.0 (absent in
IgA+taxon abundance).

Statistical Analyses
Mann–Whitney U test and Wilcoxon signed-rank test were
performed with SPSS version 22.0 statistical software (SPSS, Inc.,
Chicago, IL, United States). For all analyses, p-values of < 0.05
were considered statistically significant.

2ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
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Accession Numbers
DNA sequences of 16S rRNA gene metagenome data were
deposited at DDBJ under accession numbers DRA005602.

RESULTS

Differences in the Gut Microbiota
Composition between Adults and the
Elderly
The pre-sort fractions of the 40 healthy subjects were evaluated
for differences in the gut microbiota composition between adults
and the elderly. Taxon abundances with a median of more
than 0.1 % at family level are shown in Figure 1. The relative
abundance of Bifidobacteriaceae was significantly lower, whereas
the relative abundances of Clostridiaceae, Clostridiales;f__, and
Enterobacteriaceae were significantly higher in the elderly group
compared to the adult group (Figure 1). No significant between-
group difference was observed on other taxa.

Differences in the Amount of Fecal IgA
and the Ratio of IgA-Coated Bacteria to
Gut Microbial Community between
Adults and the Elderly
The IgA concentrations were not significantly different between
the two groups (Figure 2A). In addition, the IgA-binding ability,
which was measured by flow cytometric analysis as the ratio
of IgA-coated bacteria against the total bacteria, showed no
significant difference between the two groups (Figure 2B).

Differences in the Taxon Abundances of
IgA+ and IgA− Fractions between Adults
and the Elderly
The relative abundances of the bacterial taxa in IgA+ and
IgA− fractions against the whole microbial community were
compared between the two groups. Similar to the analysis of pre-
sort fractions, the relative abundance of Bifidobacteriaceae
in IgA− fractions was significantly lower, whereas the
relative abundances of Clostridiaceae, Clostridiales;f__, and
Enterobacteriaceae in IgA− fractions were significantly higher in
the elderly group compared with adult group (Supplementary
Figure S2). However, in contrast to IgA− fraction, the
relative abundances of Streptococcaceae in IgA+ fractions
was significantly higher in the elderly group compared with adult
group (Supplementary Figure S3). These results indicate the
possible changes with aging in the IgA response to some bacterial
taxa.

Differences in the Taxon-Specific IgA
Response to the Gut Microbiota between
Adults and the Elderly
The IgA-indices, which were calculated for the evaluation of
the inter-group differences of the taxon-specific IgA response
to each bacterial taxon between the adult and elderly groups,

of Clostridiaceae and Enterobacteriaceae in the adult group
were significantly higher than those in the elderly group
(Figure 3A). The taxon-specific IgA response was further
analyzed by comparing the relative abundances of each taxon
between IgA+ and IgA− fractions by a Wilcoxon signed-rank
test to determine whether the abundances were enriched in IgA+
or IgA− fractions, for the adult and elderly groups, respectively.
The relative abundances of Clostridiaceae, Clostridiales;f__, and
Enterobacteriaceae were significantly enriched in the fraction
of IgA+ in the adult group, but not in the elderly group
(Figure 3B). The abundance of Streptococcaceae was significantly
enriched in the fraction of IgA− in the adult group, but not
in the elderly group (Figure 3B). Meanwhile, the abundance of
Bacteroidaceae was significantly enriched in the fraction of IgA+
in the elderly group, but not in the adult group (Figure 3B).
There was no difference in the enrichment for other bacterial
taxa (Figure 3B). These results indicate the difference of taxon-
specific IgA response to some bacterial taxa between the adult and
elderly groups.

DISCUSSION

The present study showed that the abundances of some
bacterial groups in the gut microbiota were significantly different
between adult and elderly groups whereby a lower abundance
of Bifidobacteriaceae but a higher abundance of Clostridiaceae,
Clostridiales;f__, and Enterobacteriaceae were observed in the
elderly group than in the adult group. In agreement with the
present study, previous studies indicated that the Bifidobacteria in
human gut decreased with aging (Mitsuoka and Hayakawa, 1973;
Mitsuoka, 2014; Arboleya et al., 2016; Odamaki et al., 2016) while
Enterobacteriaceae and C. perfringens which is assigned to the
family Clostridiaceae increased in elderly people (Mitsuoka and
Hayakawa, 1973; Mariat et al., 2009; Mitsuoka, 2014; Odamaki
et al., 2016).

Bifidobacteria belonging to Bifidobacteriaceae are believed
to play a central role in maintaining a healthy intestinal
environment (Bottacini et al., 2014). On the other hand,
Enterobacteriaceae is thought to be the potential pathogenic
microbes. Members of Enterobacteriaceae act in concert with
the gut microbiota to induce colitis (Garrett et al., 2010)
and are often associated with colorectal cancer (Bonnet
et al., 2014). The relative abundance of Enterobacteriaceae is
elevated in non-alcoholic steatohepatitis (Zhu et al., 2013)
and an increased abundance of Enterobacteriaceae is used
for exacerbation index of microbial dysbiosis (Gevers et al.,
2014). In addition, some species in Clostridiaceae such as
Clostridium septicum, C. tetani, and C. perfringens are known
to be pathogenic (Samul et al., 2013). The characteristic of
Clostridiales;f__ remains unclear since no bacterial species
has been isolated from this family. The representative OTUs
assigned to Clostridiales;f__ were closed to Roseburia sp. or
Eubacterium ramulus (Supplementary Table S1). The genus
Roseburia is the commensal microbes in human gut producing
butyrate that affects colonic motility, immunity maintenance,
and anti-inflammatory properties (Tamanai-Shacoori et al.,
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FIGURE 1 | Abundances of bacterial taxa at family level. Gut microbiota composition in the adult and elderly groups are shown as boxes that denote the interquartile
range between the first and third quartiles and the line within denotes the median (n = 20). The vertical axis is indicated by a logarithmic scale. P-values compared
with the adult group were calculated using the Mann–Whitney U test. ∗P < 0.05; ∗∗P < 0.01.

FIGURE 2 | Fecal immunoglobulin A (IgA) concentrations and the ratio of IgA-coated bacteria in fecal samples. (A) The amounts of IgA in fecal samples are shown
as boxes that denote the interquartile range between the first and third quartiles and the line within denotes the median (n = 20). P-values were calculated using the
Mann–Whitney U test. N.S. indicates no significant difference. (B) The ratios of IgA-coated bacteria in fecal samples are shown as boxes that denote the interquartile
range between the first and third quartiles and the line within denotes the median (n = 20). P-values were calculated using the Mann–Whitney U test. N.S. indicates
no significant difference.

2017). Eubacterium ramulus is the commensal microbes in
human gut that is able to degrade flavonol quercetin and the
flavone luteolin (Braune et al., 2001). Although the fundamental
characteristics of Clostridiales;f__ remain unclear; bacterial
species assigned to this family are possibly non-pathogenic
microbes. Taken together, with the exception of Clostridiales;f__,
the gut microbiota compositional differences observed in this

study illustrated the decrease of beneficial microbes and increase
of the potential pathogenic microbes in abundance in human gut
with aging.

Consistent with previous study which showed that the IgA
concentration in intestinal environment was not significantly
different between adult and elderly groups (Arranz et al., 1992),
our result showed that there was no significant difference in the
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FIGURE 3 | Immunoglobulin A-seq-based analysis for difference in taxon-specific IgA response between adults and the elderly. (A) IgA-indices of bacterial taxa are
shown as boxes that denote the interquartile range between the first and third quartiles and the line within denotes the median (n = 20). P-values were calculated
using the Mann–Whitney U test. ∗P < 0.05. Calculation formula for IgA-index is shown. (B) Bubble plots for taxon abundance show enrichment in either IgA− or
IgA+ fractions. The size of the circle and the color of the line indicate the magnitude of enrichment (mean IgA-index value) in either fraction. The internal color
intensity indicates the statistical significance, as judged by a Wilcoxon signed-rank test. N.S. indicates no significant difference.

fecal IgA concentration between the adult and elderly groups.
These results indicate that the amount of IgA did not change
with aging. Consistent with previous study which showed that
the gut microbiota was highly coated by IgA (van der Waaij et al.,
1994, 1996), all bacterial taxa were detected in the IgA+ fractions.
Previous studies indicated that patients with inflammatory bowel
disease had an increased ratio of IgA-coated bacteria (van der
Waaij et al., 2004; Palm et al., 2014). However, in the present
study, the ratio of IgA-coated gut microbiota against the whole
bacterial community was not significantly different between the
adult and the elderly groups. These results suggest that the IgA-
binding ability in the healthy population did not change with
aging.

However, we found the potential differences in taxon-
specific IgA response. Several bacterial taxa (Bifidobacteriaceae,
Clostridiaceae, Clostridiales;f__, and Enterobacteriaceae)
displayed significant differences in the comparisons of both
the pre-sort and IgA− fractions but not the IgA+ fractions,
and Streptococcaceae displayed significant difference in the
comparison of IgA+ fraction but not both of the pre-sort
and IgA− fractions. These results suggest the possibility of
difference in IgA response to some bacterial taxa between the
adult and elderly groups. Hence, to evaluate the differences
in the taxon-specific IgA response between adults and the
elderly, we calculated the IgA-index and determined the
enrichment of bacterial taxa by the comparison between

the taxon abundances in IgA− and IgA+ fractions of each group.
The IgA-indices of Clostridiaceae and Enterobacteriaceae
were significantly lower in the elderly group compared
with the adult group. Furthermore, the enrichment of
Streptococcaceae, Clostridiaceae, Clostridiales;f__, Bacteroidaceae,
and Enterobacteriaceae was different between the two groups.
These results indicated that taxon-specific IgA response to
Clostridiaceae and Enterobacteriaceae decreased with aging.
However, there was no difference for the IgA index as well
as the enrichment of Bifidobacteriaceae between the two
groups.

Considered together, the findings in our present study
demonstrate an association between the decreased taxon-specific
IgA response and the increased abundance of Clostridiaceae
and Enterobacteriaceae, which are known to be the bacterial
groups with potential pathogenicity. Although there might
be other unknown mechanisms that affecting the changes in
gut microbiota composition with aging, our data suggest a
causative effect of the decreased taxon-specific IgA response
in the increased abundance of these bacteria in the elderly.
It is known that antigen-specific IgA and high-affinity IgA
are important for targeted elimination of undesirable microbes
(Fransen et al., 2015; Okai et al., 2016), however, such
antigen-specific IgA possess a lower affinity in the elderly
(Mabbott et al., 2015). The reduction of intestinal antigen-
specific IgA responses is known to be associated with aging
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(Fujihashi et al., 2000; Fujihashi and Kiyono, 2009). In
addition, it was reported that the taxon-specific IgA response
to certain bacterial taxa was responsible for regulating the
abundance of that bacterial taxa in mice (Mirpuri et al.,
2014).

Furthermore, it is known that T cells regulate the magnitude
and nature of microbiota-specific IgA responses, thereby
affecting the composition of gut microbiota (Honda, 2015).
For instance, T cells promote antigen-specific IgA response
via differentiation to T follicular helper cells (Honda, 2015).
Since T cells immunosenescence is occurred in elderly
people under a steady-state condition (Isobe et al., 2017),
the decreased IgA response against bacterial groups with
potential pathogenicity as demonstrated in our study may
be attributed to T cell immunosenescence that occurs with
aging. However, further analysis is needed to understand
the regulating mechanisms of IgA response in the intestinal
environment.

In addition, recent review predicted that IgA support a
symbiosis of beneficial microbes in the intestinal environment
(Kubinak and Round, 2016). Indeed, a monoclonal intestinal IgA
with high-affinity against colitogenic bacteria such as Escherichia
coli did not suppress the growth of beneficial bacteria such
as Lactobacillus casei (Okai et al., 2016). Consistent with the
previous report, our findings revealed that the taxon-specific
IgA response to Bifidobacteriaceae and Clostridiales;f__ did not
show significant differences between the adults and elderly
groups, indicating that IgA may not suppress the beneficial and
non-pathogenic microbes. However, further analysis is needed
to understand the mechanisms for the compositional changes
of beneficial and non-pathogenic microbes that occur with
aging.

CONCLUSION

We demonstrated the association of decreased IgA response
and the increased abundance of bacterial taxa with potential
pathogenicity in the elderly as compared with the adult groups.
This is the first report about the reduction of taxon-specific
IgA response with aging in a human study. The reduction of
taxon-specific IgA response may be one of the mechanisms
for the compositional changes of gut microbiota in the elderly.
We believe that our findings are valuable for understanding
the regulatory mechanisms of the gut microbiota compositional
change during the aging process.
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