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Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human
and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands.
They have been associated with dermatological diseases such as seborrheic dermatitis,
pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia
globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related
to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of
Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome
data and Constraints Based Reconstruction and Analysis. To this end, the genomes of
M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The
resulting Enzyme Commission numbers and predicted reactions were similar to the other
Malassezia strains despite the differences in their genome size. Proteomic profiling was
utilized to validate flux distributions. Flux differences were observed in the production
of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The
predictions obtained via these metabolic reconstructions also suggested defects in the
assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and
the atypical variant of M. furfur, but not in M. furfur. These predictions were validated
via physiological characterization, showing the predictive power of metabolic network
reconstructions to provide new clues about the metabolic versatility of Malassezia.

Keywords: Malassezia, genome, metabolic reconstruction, FBA, lipid metabolism

INTRODUCTION

Malassezia species are lipophilic and lipid-dependent yeasts that are frequently encountered in
the human and animal microbiota. Usually, they are isolated from regions rich in sebaceous
glands. They have been associated with dermatological diseases such as seborrheic dermatitis (SD),
pityriasis versicolor, atopic dermatitis, and folliculitis (Boekhout, 2010). The increasing number
of Malassezia isolations from systemic infections shows that members of this genus are emerging
opportunistic agents (Gaitanis et al., 2012; Arendrup et al., 2014).

The lipid dependency of the Malassezia species has been confirmed through the genome
sequences of 14 species within the genus (Xu et al., 2007; Gioti et al., 2013; Triana et al.,
2015; Wu et al., 2015). The genomes lack the cytosolic fatty acid synthase (FAS) gene, thus
explaining why they cannot synthesize the fatty acid palmitate de novo. On the other hand,
lipase, phospholipase, and sphingomyelinase genes that are involved in the release of fatty acids
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from the host are present, enabling lipid synthesis in Malassezia
species (Xu et al., 2007). Genes homologous to FAS genes have
also been identified, but they have been predicted to have different
functions (Xu et al., 2007; Triana et al., 2015).

The Malassezia genus shows different lipid-assimilation
phenotypes as well as differences in the number of lipids that
are required in the growth medium. Malassezia furfur usually
assimilates different kinds of Tween including Tween 20, 40, 60,
and 80. However, atypical strains have been identified, including
strains that can only assimilate Tween 80 (Gonzalez et al.,
2009), and strains that are reported to be lipid-independent
(Zinkeviciene et al., 2012). In the latter case, lipid-independent
growth was only tested in Sabouraud glucose agar medium, which
still contains lipids (Wu et al., 2015). Malassezia pachydermatis
was also believed to be lipid-independent (Juntachai et al., 2009).
However, recent findings show that this species is actually a more
versatile lipid-dependent yeast also lacking a FAS gene (Triana
et al., 2015; Wu et al., 2015). The Malassezia assimilation assay
is widely used to determine the lipid requirement of strains
(Boekhout, 2010). For instance, growth on Tween is indicative
of a role being played by external lipase(s) that release the fatty
acid tail from the non-ionic detergent. Analysis of the genomes
of Malassezia spp. revealed a collection of genes encoding lipases,
phospholipases, and sphingomyelinases (Xu et al., 2007; Gioti
et al., 2013; Triana et al., 2015; Wu et al., 2015) that are most
likely involved in the release of fatty acids from a variety of
lipid compounds, for example, such as those produced by the
sebaceous glands in the skin of the host. Uptake of these fatty
acids and their subsequent use in various lipid-biosynthesis
routes is required to sustain the growth of Malassezia species.

Genomic data and Constraints Based Reconstruction and
Analysis (COBRA)-based models (Murabito et al., 2009) can be
used to reconstruct the cellular metabolism of an organism in
a mathematical model. Such networks can be used to predict a
cell’s behavior under different conditions or disorders (Orth et al.,
2014). Flux balance analysis (FBA) models are constraint-based
approaches suitable for studying the range of possible phenotypes
of a metabolic system (Murabito et al., 2009).

The aim of this work was to investigate the genomic
and metabolic differences between reference strains of four
Malassezia species and an atypical M. furfur strain. To this end,
we used metabolic modeling, using genomics and proteomics
data. The results show flux differences in the production of
steroid in M. furfur and the metabolism of butanoate in
M. pachydermatis. In addition, defects in the assimilation of
palmitic acid in Malassezia globosa, Malassezia sympodialis,
M. pachydermatis, and the atypical variant of M. furfur (4DS),
were suggested, but not forM. furfur CBS 1878. These predictions
were validated via culturing on defined media.

MATERIALS AND METHODS

Strains and Growth Conditions
The reference Malassezia strains M. globosa CBS 7986,
M. sympodialis CBS 7222, M. pachydermatis CBS 1879, and
M. furfur CBS 1878 purchased from Fungal Biodiversity Center

(Westerdijk Institute, Utrecht, Netherlands), as well as a
previously reported isolate of M. furfur with atypical assimilation
of Tween 80 (4DS) (from now on referred to as atypical M. furfur)
(Gonzalez et al., 2009) were used in this study and recovered
in modified Dixon agar (mDixon): 36 g L−1 mycosel agar (BD,
United States), 20 g L−1 Ox-bile (Sigma–Aldrich, United States),
36 g L−1 malt extract (Oxoid, UK), 2 mL L−1 glycerol (Sigma–
Aldrich, United States), 2 mL L−1 oleic acid (Sigma–Aldrich,
United States), and 10 mL L−1 Tween 40 (Sigma–Aldrich,
United States) for 4–5 days at 33◦C (Boekhout, 2010). The
genomes of M. globosa (Xu et al., 2007), M. pachydermatis
(Triana et al., 2015), and M. sympodialis (Gioti et al., 2013)
have been sequenced and are available in GenBank under the
accession numbers GCA_000181695.1, GCA_001278385.1, and
GCA_000349305.2. For the phylogenetic analysis the Malassezia
genomes reported by Wu et al. (2015) and the Ustilago maydis
genome (Kämper et al., 2006) were used, these are available in
GenBank under BioProject ID: PRJNA286710 and accession
number GCA_000328475.2, respectively.

DNA Extraction
The M. furfur strains that were sequenced in this study were
recovered in modified mDixon for 4–5 days at 33◦C (Boekhout,
2010). Genomic DNA was extracted as described (Gonzalez et al.,
2009).

Sequencing and Genome Assembly
DNA from the M. furfur strains was sequenced at the Beijing
Genomics Institute (Shenzhen) using the Illumina HiSeq 2000
platform. Two runs of 100-bp paired-end reads and 200-bp
insert-size libraries were undertaken following standard Illumina
protocols. The quality of the reads was analyzed using FastQC
software (Andrews, 2010) and trimmed and filtered based on
quality using Flexbar (Dodt et al., 2012). De novo assembly
was performed using the CLC Assembly Cell software (CLC
bio, 2014) using default parameters. The resulting contigs were
scaffolded using SSPACE_Basic script (Boetzer et al., 2011),
discarding scaffolds <1,000 bp. Gaps in the scaffolds were filled
with the GapFiller script (Boetzer and Pirovano, 2012). Assembly
statistics such as N50, N75, L50, L75, and GC content, were
computed with the QUAST software (Gurevich et al., 2013). The
average genome coverage was calculate by mapping the reads to
the assembly with Bowtie (Langmead et al., 2009) using default
parameters and calculating the coverage per base using BEDTools
(Quinlan and Hall, 2010). This whole-genome shotgun project
has been deposited at DDBJ/EMBL/GenBank under the accession
numbers MATP00000000 and LMYL00000000. The version
described herein are LMYL01000000 and MATP01000000.

Assembly Comparisons
To determine the genome similarity among the species and to
identify the presence of repetitions in the genomic and protein
level, we did the following. The assemblies of the M. furfur
strains were aligned with each other and with the genomes of
M. globosa (Xu et al., 2007), M. sympodialis (Gioti et al., 2013),
and M. pachydermatis (Triana et al., 2015) using Nucmer (a
maximum gap between two adjacent matches in a cluster of 90 bp
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and a minimum length of a maximal exact match of 20 bp) and
Promer (a maximum gap between two adjacent matches in a
cluster of 30 amino acids and a minimum length of a maximal
exact match of six amino acids), which evaluates the six-frame
translation of the nucleotide sequence. Mummer (Delcher et al.,
2002) alignments were plotted and the genome coverage per
nucleotide was calculated with the BEDTools suite Coverage tool
(Quinlan and Hall, 2010). The percentage of matches in each
pairwise comparison was computed using custom python scripts.

Annotation
The assemblies of the M. furfur strains were annotated using the
MAKER 2 pipeline (Cantarel et al., 2007). To this end, a set of
109,264 previously reported Ustilaginomycotina proteins from
NCBI protein database was used. In addition, genes predicted
by CEGMA (Parra et al., 2007) and GeneMark (Borodovsky and
Lomsadze, 2011), 1,413 expressed sequence tags (ESTs) from
Malassezia spp., and results from the ab initio gene predictors
SNAP (Korf, 2004) and Augustus (Stanke et al., 2004) were used
as genetic evidence for the annotation. MAKER was run two
consecutive times. The first run included proteins, ESTs, and
predicted genes to identify genes within the scaffolds. The first
output obtained from MAKER was converted into a model for
SNAP and a training set for Augustus. Subsequently, the ab initio
results were provided as an input model for the second MAKER
run. The statistics of the resulting annotation were calculated
with genome tools (Gremme et al., 2013).

Functional annotation of the predicted genes was performed
using Blast2GO (Conesa and Götz, 2008), which included
BlastX (Altschul et al., 1990) and an InterProScan annotation
(Quevillon et al., 2005). To determine the number of duplicated
proteins in the M. furfur genomes, CD-Hit (Li and Godzik,
2006) was run with an identity threshold of 90%. Non-coding
repeated sequences within the genomes were analyzed using
RepeatMasker1 by running them against the RepBase library.

To assess whether genes involved in the formation of free
fatty acid precursors are absent in the M. furfur genomes, as is
the case for M. globosa, M. sympodialis, and M. pachydermatis,
2,382 fungal and bacterial genes encoding FAS and 954 polyketide
synthase (PKS) genes were compared with the predicted genes
and proteins of the genomes using blastp, blastn, tblastn
from the blast suite version 2.2.29 (Altschul et al., 1990)
(parameters by default) and phmmer and hmmsearch from the
HMMER software, version 3.1b22. Further validation of missing
InterProScan domain was manually done by comparing the
missing domain sequence from the Malassezia species presenting
the domain with the predicted protein of the other species.

Phylogenetic Analysis
To estimate the phylogeny of the available Malassezia species
(Xu et al., 2007; Gioti et al., 2013; Triana et al., 2015; Wu et al.,
2015), genes were predicted on each genome assembly using
Augustus 3.0.2 (Stanke et al., 2004) with the parameters that were
previously optimized for M. furfur CBS 1878. U. maydis was used

1http://repeatmasker.org
2http://hmmer.org

as an outgroup. Highly conserved genes were identified using
BUSCO 2.0 (Simão et al., 2015) using the gene set “fungi odb9.”
These sequences of each species were concatenated, aligned using
MAFFT version 7.309 (Katoh and Standley, 2013), and the well-
aligned regions were extracted using Gblocks 0.91b (Castresana,
2000). This resulted in 62,988 amino acid positions. FastTree 2.1.9
(Price et al., 2010) was used to reconstruct the species tree.

Metabolic Network Reconstruction
The predicted proteins were compared to the KEGG database
(Kanehisa and Goto, 2000) using the KAAS server (Moriya
et al., 2007) and Blast2GO (Conesa and Götz, 2008) to
obtain corresponding Enzyme Commission (EC) numbers. These
numbers were used to retrieve the associated reactions from
KEGG and to map the corresponding metabolic pathways.
The directionality of each reaction was determined using the
literature, the MetaCyc database (Caspi et al., 2014), and
the Gibbs free energy obtained with the group contribution
method (Jankowski et al., 2008). The reaction nomenclature was
converted to the Metanetx identifiers in order to have a more
cohesive nomenclature in the network (Ganter et al., 2013).
Furthermore, the metabolic core was determined as the reactions
shared among the five strains.

Compartmentalization and Curation
The predicted enzymes were analyzed with the subCELlular
LOcalization predictor (CELLO; Yu et al., 2004), a peptide
localization predictor that uses support vector machines based
on n-peptide compositions. The significant compartment was
selected and added to the reactions of the enzyme. Transport
reactions were added to the network according to the genome
annotation and the literature review. The metabolites with
production and consumption problems were identified and
missing data were imputed using an iterative approach with
the GapFind and GapFill algorithms (Boetzer and Pirovano,
2012) implemented in the General Algebraic Modeling System
(GAMS) (Bruce, 2013) using the minimal media defined for
iMM904 Saccharomyces cerevisiae (Zomorrodi and Maranas,
2010) supplemented with oleic acid and glucose as the sole carbon
source.

In addition to a manual curation based on the literature
and visualization in Cytoscape (Shannon et al., 2003), an in-
house exchange-reaction database and the complete metabolic
reactions’ repository for Metanetx (Ganter et al., 2013) were
used to detect unconnected metabolites, and to calculate the
topological statistics of the network.

Flux Balance Analysis
A stoichiometric matrix (S) was obtained from the metabolic
network using in-house Perl scripts to obtain a system of linear
equations, S × v = 0, where v is the flux vector. System
constraints included the lower and upper bounds of reaction
fluxes. The system allowed 0.000–1,000 mmol gDW−1 h−1 for
irreversible reactions and -1,000 to 1,000 mmol gDW−1 h−1

for reversible reactions. The system was solved to identify the
theoretical limits for different fluxes in the metabolic system
using GAMS (GAMS Development Corp., Washington, DC,
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United States) software. The linear programming presented here
was developed with solver CPLEX 12.6.0.0 with an optimization
tolerance of 10−6. A modified biomass production reaction
(Supplementary Table S1) of iMM904 S. cerevisiae as an
objective function (Zomorrodi and Maranas, 2010) were fixed
as parameters for the optimization process. Furthermore the
same media used in the GapFill process, the minimal media
defined for iMM904 S. cerevisiae (Zomorrodi and Maranas,
2010) supplemented with oleic acid and glucose (uptake rate of
10 mmol gDW−1 h−1) in anaerobic conditions (oxygen uptake
rate of 2 mmol gDW−1h−1) was used for the simulation. This
optimization problem aimed to solve the maximization of the
flux through the reaction of biomass used as objective functions.
The resulting flux distributions were filtered with a cutoff of
±0.05 mmol gDW−1 h−1 to allow a better visualization of the
reactions that can carry fluxes and plotted as a heatmap in R (R
Core Team, 2013).

Proteomic Profiling
Protein extraction was carried out as described (Kim et al., 2010).
Strains were grown at 180 rpm and 33◦C on DB (20 g L−1

Ox-bile, Sigma–Aldrich, United States), 36 g L−1 malt extract
(Oxoid, UK), 6 g L−1 peptone (Oxoid, UK), 2 mL L−1 glycerol
(Sigma–Aldrich, United States), 2 mL L−1 oleic acid (Sigma–
Aldrich, United States), 10 mL L−1 Tween 40 (Sigma–Aldrich,
United States), and 500 mg L−1 chloramphenicol (Sigma–
Aldrich, United States). Aliquots of 5 mL were taken in the
early exponential and early stationary phase and centrifuged
at 26,000 g for 10 min. The resulting pellet was washed
three times with PBS, after which it was resuspended in
extraction buffer [1:10 cell to extraction buffer v/v ratio; 125 mM
ammonium bicarbonate (Sigma–Aldrich, United States), 20 mM
ε-aminocaproic acid (Sigma–Aldrich, United States), 5 mM
ethylenediaminetetraacetic acid (Sigma–Aldrich, United States),
and 1 mM phenylmethylsulfonyl fluoride (Thermo Fisher
Scientific, United States)]. Cells were disrupted by vortexing for
10 min with 4-mm silica beads and centrifuged at 26,000 g and
4◦C for 10 min. Proteins in the supernatant were precipitated
with 20% TCA (Sigma–Aldrich, United States) (Wood, 1991).
The amount of protein was quantified using a Nanodrop
(Thermo Fisher Scientific, United States) and visualized by SDS-
PAGE electrophoresis. The protein extraction was carried out five
times per sample.

The extracted proteins were sent to the proteomic center of
the University of California at Davis3. Protein profiling for each
sample was carried out using the mass spectrometer Michrom
HPLC Paradigm type, the Q-mass spectrometer ionization
Proxeon Exactive nano-spray, and the Easy-LC II HPLC.

The identification and annotation of the proteins was
performed using Scaffold (Proteome Software Inc., Portland,
OR, United States) and proteins were compared against the
Uniprot Ustilaginomycotina proteins and the Malassezia spp.
predicted proteins. The mass spectrometry proteomics data have
been deposited in the ProteomeXchange Consortium via the
PRIDE (Vizcaíno et al., 2016) partner repository with the dataset

3http://proteomics.ucdavis.edu/

identifier PXD004523. The resulting proteins were clustered with
CD-Hit to compare the proteins among the samples. These
clusters were analyzed statistically with R using the normalized
total spectra count (R Core Team, 2013). To validate the network,
proteins related to the reactions in the genomic model were
selected (excluding those metabolic and transport reactions
added with GapFill that did not have an associated enzyme) and
compared to the abundance of the proteins in each extract using
at least two replicates with 95% identity.

Physiological Characterization of Lipid
Assimilation
To determine the growth on different Tween varieties and
with fatty acids, the strains were first grown on mDixon at
33◦C for 7 days. The fungal cells were suspended in 3 ml
of water with 0.1% Tween 80 used to inoculate 27 mL of
minimal medium (MM) [containing per liter: 10 mL K-buffer
pH 7.0 (200 g L−1 K2HPO4; Sigma–Aldrich, United States),
145 g L−1 KH2PO4 (Sigma–Aldrich, United States), 20 mL M-N
(30 g L−1 MgSO4.7H2O; Sigma–Aldrich, United States), 15 g L−1

NaCl (Sigma–Aldrich, United States), 1 mL 1% CaCl2.2H2O
(Sigma–Aldrich, United States) (w/v), 10 mL 20% glucose
(Sigma–Aldrich, United States) (w/v), 10 mL 0.01% FeSO4
(Sigma–Aldrich, United States) (w/v), 5 mL spore elements
(100 mg L−1 ZnSO4.7H2O; Sigma–Aldrich, United States),
100 mg L−1 CuSO4.5H2O (Sigma–Aldrich, United States),
100 mg L−1 H3BO3 (Sigma–Aldrich, United States), 100 mg L−1

MnSO4.H2O (Sigma–Aldrich, United States), l00 mg L−1

Na2MoO4.2H2O (Sigma–Aldrich, United States), and 2.5 mL
20% NH4NO3 (Sigma–Aldrich, United States) (w/v)] containing
4 mM Tween [20, 40, 60 or 80 (Sigma–Aldrich, United States)],
or 4 mM oleic acid (Carlo Erba), or palmitic acid (Merck)
supplemented with 1% Brij-58 (Sigma–Aldrich, United States),
an emulsifier that is not metabolized. It did not support the
growth of the FAS mutant of the yeast S. cerevisiae (Schweizer and
Bolling, 1970) that was grown for 3 days at 33◦C. Subsequently,
0.3 mL was used to inoculate 29.7 mL of fresh MM containing
either 4 mM Tween 20, 40, 60, 80, oleic acid, and/or palmitic
acid in 1% Brij-58, with mDixon broth as the positive control.
Growth was followed during 8 days in the medium containing
Tween 40, palmitic acid, oleic acid, or mixtures of palmitic
and oleic acid by determining the colony-forming unit (CFU)
by plating on mDixon plates with subsequent incubation at
33◦C. In the medium containing Tweens and oleic acid, the
optical density (OD) at 600 nm was measured and plating
aliquots of the liquid cultures on mDixon plates at 33◦C
was used to determine the viability of the cells after 8 days
of growth. The fatty acids used for culturing were analyzed
for composition via a gas chromatography–flame ionization
detector; separation was reached using an RTX-Wax column
(30 m× 0.25 mm× 0.5 µm) of RESTEK R©. FAMEs were identified
by comparing their retention times with those identified with
a Supelco R© 37 Component FAME Mix standard. Quantification
was intended as a relative concentration. Palmitic acid (Merck)
contained 98% palmitic acid and 2% elaidic acid, an unsaturated
acid. The oleic acid (Carlo Erba) contained 78% oleic acid and, in
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addition, we detected polyunsaturated fatty acids (10% of linoleic
acid), unsaturated fatty acids (3% palmitoleic acid and 2% elaidic
acid), and saturated fatty acids (6% of palmitic acid and 1%
heptadecanoic acid).

RESULTS

Genome Assembly and Pairwise
Comparisons
The draft genomes of M. furfur CBS 1878 and the atypical
M. furfur 4DS were assembled from a shotgun Illumina HiSeq
2000-Paired data set using the CLC-assembler (CLC bio, 2014).
The assemblies yielded 2,084 scaffolds (N50 = 23 kb) and 3,577
scaffolds (N50 = 42 kb), respectively, corresponding to nuclear
genomes of 14.19 and 10.38 Mb. The summary of the genome
assembly statistics calculated by QUAST (Gurevich et al., 2013) is
shown in Table 1.

A pairwise Nucmer comparison at the nucleotide level
showed that M. furfur and the atypical M. furfur had more
repetitions and/or duplications in their genomes than M. globosa,
M. pachydermatis, andM. sympodialis did (Supplementary Figure
S1 and Table 2), with 30.8 and 7% of the genomes of M. furfur
and of the atypical M. furfur strains, respectively, representing
multiple matches or repetitions. In contrast, less than 1% of the
genomes of M. globosa, M. pachydermatis, and M. sympodialis
corresponded to multiple matches.

The Nucmer alignment showed significant sequence
divergence between the four species. The biggest difference was
observed for M. globosa, which only showed 0.8% identity using
exact matches of at least 20 bp when compared to M. furfur
or the atypical M. furfur genomes. This was <1.2% when the
M. globosa genome was compared to M. pachydermatis and

TABLE 1 | Assembly statistics calculated by QUAST (Gurevich et al., 2013) and
BEDtools (Quinlan and Hall, 2010).

Malassezia Atypical

Assembly furfur Malassezia furfur

Number of contigs (≥0 bp) 6,968 17,882

Number of contigs (≥1,000 bp) 1,249 877

Total length (≥0 bp) 15,780,944 14,951,138

Total length (≥1,000 bp) 13,644,665 8,614,553

# Scaffolds 2,084 3,577

Largest scaffold 110,895 562,614

Total length 14,194,927 10,380,899

GC (%) 63.95 63.01

N50 23,366 42,453

N75 10,269 2,449

L50 171 50

L75 400 295

Number of Ns in the assembly (per 100 kb) 41.75 127.69

Average coverage 605× 861×

The genome assembly was performed using the CLC-assembler (CLC bio, 2014)
and scaffolding was carried out using Sspace (Boetzer et al., 2011) and Gapfiller
(Boetzer and Pirovano, 2012).

M. sympodialis. As expected, the most similar strains were
M. furfur and the atypical M. furfur strains with a similarity
>80% (Table 2). A higher degree of similarity was observed
when evaluating the six translation frames using Promer
(Supplementary Figure S2 and Table 3). The biggest differences
were found when M. furfur and M. sympodialis were compared,
with 70.7% zero matches. The second highest difference was
between M. globosa and M. furfur, with approximately 48% of
zero matches. As expected, the highest similarity was observed
in the case of the M. furfur strains with only 3.4% of zero
matches.

To establish the taxonomic position of the two reported
M. furfur sequences in this study with the already published
Malassezia genomes, we built a phylogenetic tree using highly
conserved genes (Figure 1). This phylogeny showed that atypical
M. furfur clustered with M. furfur CBS 7982 and our sequence
of M. furfur CBS 1878 clustered with the previously reported
sequence of this strain.

Assembly Annotation
A total of 10,203 and 12,131 protein-encoding genes were
predicted for M. furfur and the atypical M. furfur strain using
multiple lines of evidence (ab initio predictors, ESTs from
M. globosa, and protein alignments). Functional annotation
showed that both M. furfur strains contained twice the amount
of proteins when compared to the other Malassezia species. Yet,
the number of EC numbers and reactions were similar, as can be
seen in Figure 2. The average genome length, exon length, and
the number of exons per gene for the five genomes analyzed are
presented in Figure 2.

The genomes of M. furfur and the atypical M. furfur
contained 7,570 and 10,434 protein clusters, respectively, as
predicted with CD-Hit (Li and Godzik, 2006). The total
number of non-coding repetitions found using RepeatMasker
was approximately 1.61 and 1.32% for M. furfur and the
atypical M. furfur strain, respectively. Most repetitions were
found to be low-complexity repeats and long terminal repeat
elements.

To search for genes related to lipid biosynthesis, a total of
2,382 FASs (i.e., 179 fungal and 2,203 bacterial) were compared
with the predicted proteins of the M. furfur strains using blastp,
blastn, and tblastn (Altschul et al., 1990) and phmmer and
hmmsearch (see text footnote 2). No FAS genes were identified
in the two genomes, but several PKS genes (three in M. furfur
and one in atypical M. furfur) were found (Figure 3). The
PKSs from the five species shared most of the domains, with
the exception of M. globosa, which lacked the S-adenosyl-L-
methionine-dependent methyltransferase domain, and M. furfur,
which lacked the ketoreductase domain, acyl carrier protein-like
domain, NAD-binding domain, and the thioester reductase-like
domain in its three predicted PKSs. Out of 954 fungal homologs,
the PKS of the basidiomycete Paxillus involutus was the most
similar to that of the atypical M. furfur, with an identity of 31%.
The most similar PKSs to those of Malassezia were found in
basidiomycetes. The closest homolog of the PKS of M. furfur
was from Hydnomerulius pinastri, with an identity of 29.8%,
while an Auricularia delicata homolog was most similar to the
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TABLE 2 | Percentage of the genome with zero (0), one (1), or multiple (>1) matches in the Nucmer genome alignment (Boetzer and Pirovano, 2012) with a maximum
gap between two adjacent matches in a cluster of 90 bp and a minimum length of a maximal exact match of 20 bp.

Atypical M. furfur M. furfur M. globosa M. pachydermatis M. sympodialis

Nucmer 0 1 >1 0 1 >1 0 1 >1 0 1 >1 0 1 >1

Atypical M. furfur 0.1% 92.9% 7.0% 3.9% 43.2% 52.8% 98.1% 1.9% 0.0% 96.6% 3.3% 0.0% 94.6% 5.4% 0.0%

M. furfur 12.6% 75.1% 12.3% 0.0% 69.1% 30.8% 96.4% 3.6% 0.1% 95.1% 4.9% 0.0% 93.2% 6.7% 0.0%

M. globosa 99.2% 0.8% 0.0% 99.2% 0.6% 0.2% 0.0% 99.7% 0.3% 98.8% 1.2% 0.0% 98.7% 1.3% 0.0%

M. pachydermatis 97.5% 2.5% 0.0% 97.5% 1.6% 1.0% 98.7% 1.3% 0.0% 0.0% 99.8% 0.2% 96.6% 3.4% 0.0%

M. sympodialis 95.6% 4.4% 0.0% 94.8% 3.1% 2.1% 98.4% 1.5% 0.0% 96.4% 3.6% 0.0% 0.2% 98.9% 0.9%

TABLE 3 | Percentage of the genome with zero (0), or one or more (1) matches in the Promer genome alignment (Delcher et al., 2002) with a maximum gap between two
adjacent matches in a cluster of 30 amino acids and a minimum length of a maximal exact match of six amino acids.

Atypical M. furfur M. furfur M. globosa M. pachydermatis M. sympodialis

Promer 0 1 0 1 0 1 0 1 0 1

Atypical M. furfur 0.10% 99.90% 3.40% 96.60% 49.60% 50.40% 44.50% 55.50% 44.50% 55.50%

M. furfur 11.80% 88.20% 0.00% 100.00% 76.70% 23.30% 73.10% 26.90% 70.70% 29.30%

M. globosa 49.50% 50.50% 48.60% 51.40% 0.00% 100.00% 38.50% 61.50% 39.60% 60.40%

M. pachydermatis 40.30% 59.70% 39.20% 60.80% 33.60% 66.40% 0.00% 100.00% 28.40% 71.60%

M. sympodialis 37.50% 62.50% 35.70% 64.30% 31.80% 68.20% 26.00% 74.00% 0.20% 99.80%

PKS of M. pachydermatis and M. sympodialis, showing 29.9 and
31% similarity, respectively. In the case of M. globosa, the most
similar PKS was that of Coniophora puteana, with an identity of
26.8%.

The distribution of the genes in the genomes of the five
Malassezia strains was similar when analyzing 13 categories of
metabolic genes (Figure 4). The metabolic core (Supplementary
Figure S3) represented 628 reactions that were shared between
the strains. These were mainly distributed in the carbohydrate
and amino acid metabolism, and lipid metabolism. When
examining the lipid metabolism in more detail, arachidonic
acid biosynthesis was only present in the atypical M. furfur.
Differences in the fungal steroid biosynthesis were also
found. Around 10 reactions involved in this pathway were
present in the M. furfur strains, which was higher than
those in the other species with less than six reactions.
Similarly, 36 reactions associated with fatty acid degradation
were detected in atypical M. furfur, a higher number than
that found in the other species studied (23–31 reactions)
(Figure 4).

Network Construction and Curation
The database search and the group contribution method used
to calculate the Gibbs free energy predicted that 15–26% of
the reactions of the five Malassezia strains were irreversible.
Compartmentalization analyses showed a similar distribution
of reactions among the species. However, differences were
observed in the number of reactions when the M. furfur strains
were compared to the other species. This corresponded to
cytoplasmic and mitochondrial reactions (Figure 5). After the
gap-filling approach to reduce the network pathologies, around
250 reactions were added to M. globosa and M. sympodialis,
300 to M. pachydermatis, 600 to M. furfur, and 660 to the

atypical M. furfur strain. The final networks ended up with
2,162 metabolites in M. globosa, 2,303 in M. sympodialis,
1,838 in M. pachydermatis, 3,103 in M. furfur, and 3,642 in
the atypical M. furfur strain. The final metabolic networks
(Supplementary Data Sheet 2) were visualized in Cytoscape
using the compartment as a discrete mapping category to color
the nodes. A topological analysis was performed (Figure 6).
The clustering coefficients were around 0.14 and 0.18 and the
diameter of the networks ranged between 10 and 15 nodes.

Flux Balance Analysis
FBA was carried out and the resulting predicted biomass fluxes
that were used as objective functions are shown in Table 4.
The highest biomass production was found in the atypical
M. furfur strain at 2.84 mmol gDW−1 h−1 and the lowest was
in M. sympodialis at 0.089 mmol gDW−1 h−1. The number
of reactions that that carried flux varied among the species,
ranging from 36% in the atypical M. furfur strain to 42% in the
M. sympodialis strain.

The flux distribution of each network is represented in
Figure 7 for visualization as a heatmap, the resulting clusters
were found based in the flux carried by each reaction,
with M. globosa and M. sympodialis having the most similar
flux distribution. The main differences between M. furfur
and the other strains were reactions involved in valine,
leucine, and isoleucine degradation, and pyrimidine and purine
metabolism. Differences in the lipid-metabolism reactions were
also found. M. furfur displayed high fluxes in reactions related
to fatty acid degradation and elongation, which involved the
conversion of hydroxyacyl-CoA to trans-2-enoyl-CoA. These
were higher in comparison to those observed in the atypical
M. furfur strain. Several reactions associated with fungal
steroid biosynthesis were found in the atypical M. furfur
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FIGURE 1 | Phylogenetic analysis of the Malassezia genus reconstructed from highly conserved genes identified with BUSCO 2.0 (Simão et al., 2015). (1) Xu et al.,
2007, (2) Gioti et al., 2013, (3) Triana et al., 2015, (4) Wu et al., 2015, (5) Kämper et al., 2006.

and M. furfur isolates. Despite the atypical M. furfur isolate
having a larger number of these reactions, they had higher
fluxes in the M. furfur strain. In the atypical M. furfur
strain, higher fluxes were found in reactions involved in the
degradation of maltose, fructose, and starch. M. globosa and
M. sympodialis showed similar metabolic behavior. However,
some differences in M. sympodialis corresponding to changes
in the pyruvate and gluconeogenesis pathways, as well as the
pathways involved in the degradation of long-chain fatty acids
into acyl-CoA, and in the conversion of hydroxyacyl-CoA to
trans-2-enoyl-CoA were found. Finally, in M. pachydermatis,
there were differences in the core metabolism of pyruvate and
butanoate, and in the biosynthesis of phenylalanine, tyrosine, and
tryptophan.

As lipid assimilation differs among Malassezia species,
and lipid metabolism may be related to the pathogenesis

of these yeasts, differences in lipid assimilation among the
species was further evaluated in the model. In reactions
involve in fatty acid biosynthesis such as MNXR2003
(ATP + hexadecanoic acid + CoA ⇔ AMP + palmitoyl-
CoA + diphosphate), involved in the conversion of
hexadecanoic acid to palmitoyl-CoA, higher fluxes were
found in M. furfur, even though all the strains’ genomes
contain the genes that codify the enzyme that catalyzes these
reactions.

Proteomic Validation
An average number of 8,864 ± 2,400 M. furfur peptides
were found during the exponential phase (T1), corresponding
to an average of 1,865 ± 154 proteins. The lowest number
of peptides (828 ± 456) was obtained with M. globosa
in the stationary phase (T2), corresponding to an average
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FIGURE 2 | Annotation data for each species: for the M. furfur strains, the predicted proteins were obtained from MAKER (Cantarel et al., 2007). For all the strains,
the ECs were obtained from KAAS (KEGG Automatic Annotation Server) (Moriya et al., 2007) and Blast2GO (Conesa and Götz, 2008), the reactions were retrieved
from the KEGG database, and the annotation statistics were calculated with genome tools (Gremme et al., 2013).

of 116 ± 60 proteins. Consensus proteins were defined as
proteins present in at least two replicates with a quantitative
identity of ≥95%. The number of these proteins differed
among the strains. M. furfur in the stationary phase had the
highest number (1,539 consensus proteins), while M. globosa
presented the lowest number in the exponential phase (201
consensus proteins). The number of reactions was higher
in atypical M. furfur in the exponential phase, with 841
reactions, as compared to the other species (Table 5). The
principal component analysis (PCA) showed that the proteome
profiles behaved differently among the species, with the samples
from atypical M. furfur and M. globosa having the most
similar profiles. In addition, the clustering and PCA analyses
also showed that the replicates behaved similarly within
each species in both the stationary and exponential phases
(Figure 8).

Protein validation of the models was conducted and expressed
as the percentage of proteins predicted by the model that were
detected by proteomic profiling (expressed proteins) as well as
the percentage of expressed enzymes that were found to be
catalyzing an reaction carrying flux in the model (Figure 9).
Based on the validation and taking into account the percentage
of the total reactions that can be experimentally validated (83%
in M. furfur, 80% in M. globosa, 73% in M. sympodialis, 79%
in M. pachydermatis, and 78% in Atypical M. furfur). The
most successful model was that of M. pachydermatis, where
∼40 and 30% of the predicted proteins were expressed in
the exponential and stationary phase, respectively. The less
accurate models were those of M. globosa and of the atypical
M. furfur, with ∼10% of the predicted proteins being found.
Similarly, when evaluating the number of predicted enzymes that
were expressed, M. pachydermatis showed the best prediction
model with ∼90% of its expressed enzymes predicted by

the flux distribution in both the exponential and stationary
phases. M. globosa, on the contrary, only showed ∼50% of its
expressed enzymes, as predicted by the model under both growth
phases.

Physiological Characterization and
Requirement for Lipid Compounds for
Growth
We performed a physiological characterization of these species.
We used MM instead of rich media such as Sabouraud or potato
dextrose agar, since these media contain small amounts of lipids
that can sustain the growth of M. pachydermatis (Wu et al.,
2015). Culturing was performed in liquid MM in the presence
of oleic acid, palmitic acid, or Tween. Strains were first grown in
mDixon containing a variety of lipid sources and Tween 80. To
prevent subsequent growth in MM due to the presence of residual
lipids either from mDixon or associated with cells, we performed
a two-phase growth in MM. First, cells were diluted into MM
containing oleic acid, palmitic acid, or one of the Tween sources.
After 3 days, these cells were diluted again in fresh MM with
oleic acid, palmitic acid, or Tween. The results are described in
Table 6 and in Supplementary Figures S4 and S5.M. furfur indeed
can assimilate palmitic acid or oleic acid as well as all Tween
variants (Table 6 and Supplementary Figures S4, S5), including
Tween 40, which represents the C16:0 fatty acid donor in this
respect.

The atypical M. furfur strain, however, was only able to
assimilate Tween 80, Tween 20, and oleic acid. We observed
that M. pachydermatis, M. globosa, and M. sympodialis were
able to grow in the first step in MM, however, these
strains were not able to grow in the second step in this
defined medium supplemented with oleic acid, palmitic acid,
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FIGURE 3 | Domains obtained with InterProScan (Quevillon et al., 2005) of the five polyketide synthases (PKSs) of Malassezia species compared with Paxillus
involutus and Pseudozyma flocculosa.

or any of the Tween sources (Table 6 and Supplementary
Figures S4, S5). However, growth of these latter strains
was sustained in the mDixon medium. Interestingly, whereas
M. furfur was able to maintain growth in MM with palmitic
acid, the atypical M. furfur, M. pachydermatis, M. globosa,
and M. sympodialis growth (as determined by the CFU)
declined rapidly in the second growth step (Supplementary
Figure S5).

We determined whether M. pachydermatis and atypical
M. furfur could sustain growth in MM with a mixture of palmitic
acid and oleic acid (Supplementary Figure S6). Interestingly, we
observed that both strains were then indeed able to maintain
growth or survive in this mixture of saturated and unsaturated
fatty acids.

DISCUSSION

The lipid-dependent and lipophilic life style of Malassezia spp.
seems to involve selection pressure to adapt to skin environments
rich in lipid sources in human and animal hosts. Many factors
can disturb the normal status of these yeast species and lead
to disease. Approaches to understanding how this disturbance
occurs provide clues to managing the negative impacts on
the host. Omics studies are necessary to fully comprehend
these mechanisms (Jo et al., 2016). In this study, the genomes
of the previously reported M. furfur CBS 1878 (Wu et al.,
2015) and an isolate of M. furfur with atypical assimilation of
Tween 80 were sequenced. Furthermore, the metabolic networks
of five Malassezia strains were reconstructed via genome
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FIGURE 4 | Metabolism distribution predicted from each species and an expanded distribution for the lipid metabolism.

FIGURE 5 | Distribution of the reactions after compartmentalization with the subCELlular LOcalization predictor (CELLO) (Yu et al., 2004) and the percentage of
reversible and irreversible reactions determined from the Gibbs free energy of the reactions calculated with the group contribution approach and from the literature.
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FIGURE 6 | Compartmentalized metabolic network of Malassezia globosa (A), Malassezia sympodialis (B), Malassezia pachydermatis (C), Malassezia furfur (D), and
atypical Malassezia furfur (E) visualized in Cytoscape (Shannon et al., 2003).

annotation, reaction directionality, compartmentalization, and
manual curation. This allowed us to elucidate differences
in the genomes, in the metabolism of fungal steroids, and
other pathways among the four Malassezia species that were
studied. Moreover, we carried out an FBA on the metabolic
reconstructions to measure the potential of each strain to
produce biomass. We observed differences in the flux distribution
among the species, with a variation in the fluxes of reactions
related to lipid metabolism. Furthermore, proteomic profiling
was used to validate the results. The validation showed that
most of the proteins expressed in the proteomic profiling
were predicted. However, not all the model’s predictions
were corroborated by this approach. Future high-throughput
proteomic, metabolomic, and modeling approaches are needed
to validate the models.

The genome assemblies of M. furfur and the atypical M. furfur
resulted in a genome size of 14.19 and 10.3 Mb, respectively,
approximately double the size of the genomes of previously
sequenced species [M. globosa (Xu et al., 2007), M. sympodialis

TABLE 4 | Predicted biomass flux with the flux balance analysis.

Strain Biomass (mmol gDW−1 h−1)

M. furfur 1.280

Atypical M. furfur 2.840

M. pachydermatis 0.742

M. globosa 1.087

M. sympodialis 0.090

(Gioti et al., 2013), and M. pachydermatis (Triana et al., 2015)].
Differences in the genome size of M. furfur CBS 1878 (14.19 Mb)
in comparison to that of the same strain reported by Wu et al.
(2015) (13.5 Mb) could be due to the assembly and scaffolding
methods used in each study. The total length of the resulting
contigs longer than 1,000 bp in our assembly is around 13.6 Mb
(Table 1); a similar size to the previously reported size of 13.5 Mb.
Phylogenetic analysis conducted in this study established that our
M. furfur strains are part of the Malassezia cluster A that has
been previously described. This cluster consists of several strains
of this species that were suggested to be a species complex (Wu
et al., 2015). Particularly, atypical M. furfur (10.3 Mb) clustered
with M. furfur 7982 (7.7 Mb), thus showing them to be distantly
related to other strains, and suggesting that they are implicated
in divergence events (Wu et al., 2015). More analysis is required
to define the relation of the atypical strain and how it may be
implicated in those events.

Additionally, the assembled genomes showed a greater
number of scaffolds, indicating a possible fragmentation of
the genome (de Wit et al., 2012). The fragmentation was
also evidenced by the reduction in the average gene size. The
fragmentation present in the genome sequence assembly may
cause a bias when comparing it to the other genomes and
may further generate false-positive protein annotations (Klassen
and Currie, 2012; Faino et al., 2015). However, the CD-Hit
and EC results provided support for our protein dataset. The
CD-Hit analysis showed that the number of protein clusters
was close to the number of proteins that, although higher when
compared to those of the other species, did not collapse after
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FIGURE 7 | Flux distribution resulting from the flux balance analysis (FBA) of each metabolic network reaction filtered for visualization with a cutoff of
±0.05 mmol gDW-1 h-1.
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TABLE 5 | Proteomic profiling results of five strains of Malassezia during the exponential (T1) and stationary (T2) phase.

Peptides Proteins Consensus

Sample 1∗ 2 3 4 Mean ± SD 1 2 3 4 Mean ± SD proteins Enzymes Reactions

M. furfur (T1) 12,017 8,990 6,236 8,214 8,864 ± 2,400 2,094 1,761 1,784 1,821 1,865 ± 154 1,284 430 770

M. furfur (T2) 9,690 9,075 9,857 5,354 8,494 ± 2,120 2,098 1,929 2,015 1,521 1,890 ± 255 1,539 517 830

Atypical M. furfur (T1) 1,893 3,188 6,240 7,099 4,605 ± 2,466 864 730 1,146 1,103 960 ± 197 985 301 841

Atypical M. furfur (T2) 5,055 3,971 2,349 5,286 4,165 ± 1,339 930 757 582 949 804 ± 171 805 250 789

M. pachydermatis (T1) 7,185 9,093 7,707 8,509 8,123 ± 845 1,130 1,314 1,165 1,265 1,218 ± 85 1,118 362 716

M. pachydermatis (T2) 858 5,213 6,156 5,245 4,368 ± 2,380 333 844 1,130 997 826 ± 348 763 256 568

M. sympodialis (T1) 2,465 3,359 4,440 5,625 3,972 ± 1,366 952 1,107 1,163 1,292 1,128 ± 140 1,023 337 578

M. sympodialis (T2) 2,108 2,475 4,864 2,182 2,907 ± 1,314 816 918 1,234 816 946 ± 197 774 268 535

M. globosa (T1) 3,737 2,414 2,200 2,586 2,734 ± 686 252 247 241 224 241 ± 12 201 101 248

M. globosa (T2) 264 953 736 1,360 828 ± 456 71 140 63 190 116 ± 60 216 100 244

A total of four replicates were examined for each strain. ∗Replicate.

FIGURE 8 | Principal component analysis (PCA) of the expressed protein cluster for the five strains at T1 (exponential phase) and T2 (stationary phase) with four
replicates.

FIGURE 9 | Protein validation as the percentage of enzymes predicted by the model that were expressed and the percentage of enzymes expressed that were
predicted.

clustering. Also, the finding of new EC numbers in the genomes,
as well as EC numbers previously reported in other Malassezia
genomes, provided support for our annotation. Additionally,
the metabolic reconstruction approach allowed us to reduce
the fragmentation bias by determining the possible reactions
of each protein according to the domains of each gene. The
genome assembly could further be improved by resequencing
these two genomes with a technique that generates longer reads
such as PacBio (English et al., 2012). Different mechanisms
might explain the observed genome size differences. The options
might include the presence of non-coding repetitions, possible

protein duplications in the genomes, and/or the presence of
new proteins. The first explanation could refer to mobile genetic
elements such as transposons and retrotransposons as well as
low-complex repetitions, as has been reported in other haploid
fungi (Galagan, 2005). However, the analyses showed that less
than 2% of the genomes presented these kinds of repetitions. To
assess whether protein duplications or an increase in the number
of unique proteins may explain the increase in the genome size
of both M. furfur strains studied, we annotated the assemblies.
The number of predicted proteins was higher in the genomes
of M. furfur and the atypical M. furfur than in the genomes of
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TABLE 6 | Physiological characterization of Malassezia spp. by culturing in liquid
minimal medium (MM) containing either Tw20 (Tween 20), Tw40 (Tween 40), Tw60
(Tween 60), Tw80 (Tween 80), OA (oleic acid), PA (palmitic acid), or DB (Dixon
broth) during the first and second growth step.

Strain Tw20 Tw40 Tw60 Tw80 OA PA DB

First growth step

M. furfur ++ ++ +/− ++ +/− ++ ++

Atypical M. furfur ++ + + ++ +/− − ++

M. pachydermatis +/− + ++ + +/− + ++

M. sympodialis +/− +/− +/− +/− +/− + ++

M. globosa +/− +/− +/− +/− +/− + ++

Second growth step

M. furfur ++ ++ ++ ++ + ++ ++

Atypical M. furfur + − − ++ + − ++

M. pachydermatis − − − − − − ++

M. sympodialis − − − − − − ++

M. globosa − − − − − − ++

Growth was determined by measuring the absorbance of the culture at 600 nm
after 168 h. −, no growth; +/−, weakly; +, good; ++, very good.

M. globosa, M. sympodialis, and M. pachydermatis. Differences in
the number of predicted proteins could not solely be explained
by protein duplications, as mentioned above. The number of
protein clusters detected by CD-Hit correlates with the number of
total proteins. Among the number of predicted proteins found in
M. furfur and in the atypical M. furfur strain (10,203 and 12,121,
respectively) 7,570 and 10,434 protein clusters, respectively, were
detected. Thus, although there are indeed protein duplications,
most of the predicted proteins represent unique proteins in the
genomes of M. furfur and the atypical M. furfur strains. This
is further supported in the case of enzymes by the fact that the
unique EC numbers and reactions in both M. furfur strains were
higher than those in the other species studied. This diversification
in the number of predicted proteins may provide evidence for
the metabolic versatility found in M. furfur. The increase in
unique proteins and the genetic diversification present in the
M. furfur strains may be due to mating of the yeast, since bipolar
mating systems have been previously proposed in Malassezia spp.
(Wu et al., 2015), and sexual reproduction has been proposed
to promote genetic variation in other pathogenic fungi (Ene and
Bennett, 2014; Heitman et al., 2014). These special characteristics
can be an advantage in terms of being able to easily adapt to
different body sites, even under adverse conditions, such as blood
in the case of a fungemia, which this species has been associated
with as well (Barber et al., 1993). However, the analysis of
metagenomic datasets from different sites on healthy human skin
showed that M. furfur is less frequently detected than M. globosa,
M. restricta, and M. sympodialis (Wu et al., 2015). This pattern
is suggestive of the metabolic profile of this species leading to a
strong and intimate relation with the host due to its complex lipid
requirements.

As expected, the FAS was not found in the genomes of either
M. furfur or the atypical M. furfur strains. The PKSs were
found to be conserved among the Malassezia species, with the
exception of M. globosa, which lacked one domain (Xu et al.,
2007), and the M. furfur isolate, which lacked several domains

in its three predicted PKSs. Mycobacterium tuberculosis PKSs
have been associated with the biosynthesis of unique lipids or
glycolipid conjugates (Quadri, 2014), and in Streptomyces griseus,
with the synthesis of phenolic lipids (Funabashi et al., 2008).
Further studies are needed to determine the importance of these
unique PKSs in Malassezia and their role in the lipid dependency
of this genus. They are clearly different from other fungi with
an identity of less than 32% with the phylogenetically related
basidiomycete P. involutus (even with this was the most similar
enzyme).

Even though there were differences in the number of predicted
reactions among the species, the proportion in each pathway
was similar. Carbohydrate and amino acid metabolism, which
are part of the core metabolism of an organism, were the most
abundant, as is the case for other fungi such as Aspergillus oryzae
(Vongsangnak et al., 2008) and Mortierella alpine (Ye et al.,
2015). With respect to fungal steroid biosynthesis, we found
that the atypical M. furfur strain had the highest number of
reactions, followed by M. furfur. These reactions were almost
negligible in the other three species studied. Differences in the
fungal steroid biosynthesis between M. furfur and the other
three Malassezia species studied may be explained by (i) the
production of steroid-like fungal hormones in M. furfur for
sexual reproduction, as happens in ascomycetes (Gooday, 1974);
(ii) fungal steroids perhaps being a constitutive component of
M. furfur, as is the case of the fruiting body of the basidiomycete
Sarcodon joedes (Liu et al., 2013); and most likely, (iii) steroids in
M. furfur perhaps acting as secondary metabolites, as previously
reported in the basidiomycete Polyporus ellisii (Wang et al., 2012).
Finally, the differences in arachidonic acid lipid metabolism
found in the atypical M. furfur strain may be related to the
presence of precursors of eicosanoids that may act as an
alternative lipid compound in this strain (Bajpai et al., 1991).
In addition, arachidonic acid may act as a mediator of skin
inflammation—a previously reported role of M. furfur (Plotkin
et al., 1998).

The topological features of the networks were used to assess
their robustness. The node degree distribution (Supplementary
Figures S7, S8) fits a power law regression and we showed that the
five networks had free-scale topologies and non-random behavior
(Barabási and Oltvai, 2004). The higher clustering and diameter
of M. sympodialis and of the M. furfur strain (M. furfur CBS 1878)
networks imply a more complex network. Yet, the clustering and
diameter of these two networks were lower than for other yeast
metabolic networks such as those of S. cerevisiae (Zomorrodi and
Maranas, 2010). This may be due to the reduction in the number
of connections among metabolites in each compartment when
these are compartmentalized and subdivided as a representation
of organelles.

The biomass fluxes found in our study were similar
to those reported in other yeasts such as S. cerevisiae
(0.7388 mmol gDW−1 h−1) (Pitkänen et al., 2014), but because
of the lack of biomass data for Malassezia species further
experimental validation of the growth rate in each species is
necessary. The FBA allowed us to observe that even though
the atypical M. furfur had a higher number of reactions for
the steroid biosynthesis pathways, these had higher fluxes in
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the given condition in M. furfur strain CBS 1878. In addition,
we found that M. furfur strain CBS 1878 displayed high
fluxes in reactions related to the degradation and elongation
of fatty acids such as the conversion of hydroxyacyl-CoA
to trans-2-enoyl-CoA (Autio et al., 2008) than the atypical
M. furfur strain did, and this may explain the differences in
lipid assimilation observed between these two strains. Strikingly,
the FBA analysis suggested an important difference in the use
of palmitate. M. furfur had a high flux in the CoA activation
of palmitate, whereas the other species lacked this activity.
FASs are required in most organisms to synthesize fatty acids
such as the end product palmitate (C16:0) in the cytosol and
all Malassezia spp. lack a FAS complex and are not able to
produce palmitate (Triana et al., 2015; Wu et al., 2015). This
phenotype can be complemented with external lipids and Tween,
which can act as donors for fatty acids, and after uptake,
are directly used and/or elongated into long-chain- or very
long-chain fatty acids, desaturated, or degraded via β-oxidation
in the peroxisome. We observed that M. furfur is able to
grow in MM supplemented with Tween 40 or with palmitate,
indicating that palmitate is indeed used, and this is in accordance
with the FBA predictions. The physiological analysis of the
atypical M. furfur strain indicates that it cannot use palmitate
since the second growth step in liquid medium supplemented
with Tween 40 or with palmitate was not sustained. Similar
results were obtained for M. pachydermatis, M. globosa, and
M. sympodialis (Supplementary Figures S4, S5), which is in
agreement with the FBA predictions. These findings could
suggest that the transport and activation of palmitic acid in
palmitic acid CoA is happening in M. furfur, however, could
be hampered in other strains. More studies such flux variability
analysis are required to clarify this. However, previous in silico
analysis of the fatty acid metabolism of M. globosa using
integrated microbial genomes confirmed the presence of the
complete β-oxidation pathway for the degradation of saturated
fatty acids (James et al., 2013). These differences could be
related to differences in the fluxes in reactions related to
this pathway in M. furfur. The observation that these latter
four strains did grow in the first step in MM indicates that
residual lipids from mDixon and/or associated with cells are
sufficient to support the first step. These lipids are depleted
in the second growth step in MM, which allows for a real
analysis of lipid dependency. The observation that the atypical
M. furfur cannot grow in MM with Tween 20, 40, and 60,
the donors of C12:0, C16:0, and C18:0 fatty acids, respectively,
suggests that these saturated fatty acids cannot be further
elongated and/or desaturated. All strains except M. furfur and
the atypical variant were not able to grow in MM supplemented
with a single Tween or with fatty acid species, whereas they
did grow in mDixon. This observation might be explained
if we assume that the strains require a mixture of saturated
and unsaturated fatty acids, as was similarly observed with
fasl, olel (FAS and fatty acid desaturase minus) mutants of
S. cerevisiae (Henry, 1973). Further analysis showed that the
atypical M. furfur and M. pachydermatis indeed was capable to
grow or survive in MM with a mixture of palmitic acid and oleic
acid.

Other studies suggested that M. globosa and M. restricta
are not capable of synthesizing unsaturated fatty acids due to
the lack of a 1 9-desaturase (EC 1.14.19.2) gene (Xu et al.,
2007; Boekhout, 2010), which is involved in the desaturation of
palmitic acid and stearic acid to palmitoleic acid and oleic acid,
respectively. However, Gioti et al. (2013) found this desaturase
gene in the genome of M. sympodialis. We also found the same
gene in M. furfur, atypical M. furfur, and M. pachydermatis,
suggesting the ability of these species to produce unsaturated
fatty acids such as oleic acid, thus providing these species
with an advantage in terms of their metabolic versatility to
rapidly adapt to regions in which the availability of such fatty
acid sources is limited. This ability is missing in M. globosa
and M. restricta, which do require these unsaturated fatty
acids as additional sources from their host to support their
growth. These particular differences highlight the differences
in the pathogenic role of these species in the development of
certain dermatological diseases in which different species have
epidemiological relevance, as is the case for M. globosa and
dandruff/SD (Boekhout, 2010). In this regard, more research is
required to determine how these different Malassezia spp. use
external fatty acids.

The lipid-metabolism reactions among the other species
were also divergent. Higher activity in the reactions involved
in the degradation of long-chain fatty acids was present in
M. sympodialis but not in M. globosa or M. pachydermatis. These
differences may be associated with the phenotypic differences of
each species, reflected by the differential lipid assimilation or the
differential use of Tweens. We should, however, explore more
deeply the physiology and regulation of β-oxidation in this yeast
(Yarrow, 1998; Boekhout, 2010).

The higher number of reactions related to the butanoate
metabolism found in M. pachydermatis may be related to the
lipid-assimilation versatility of this species. This metabolism is
closely related to the synthesis of type II and type III polyketides
(which may be precursors of unique lipids) as well as to the fatty
acid metabolism (Rawlings, 1998; Charrier et al., 2006). Thus,
the higher activity of reactions involved in the metabolism of
butanoate inM. pachydermatismay be reflected in the production
of lipids that may not be produced by the other Malassezia
species and that may be corroborated by lipid profiling of the
yeasts.

The proteomic profiling allowed us to validate, on average,
30% of the predicted proteins of the model, implying that the
other enzymes that are supposed to be expressed according
to the FBA are not present or that their concentrations are
substantially low. An average of 70% of the proteins expressed in
all the samples were in fact predicted. Given that this technique
is still not widely used to validate these kinds of models, the
cutoff points and expected percentages are not well known.
Furthermore, issues such as the identification of large-scale
protein datasets, small protein concentration detection, and the
extraction of low soluble proteins such as membrane proteins
may affect the profiling (Marcotte, 2007; Yates, 2013).

Together, the metabolic reconstruction and modeling
showed versatility within the genus of Malassezia. Flux
differences were suggested in the production of steroids in
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M. furfur and in butanoate metabolism in M. pachydermatis.
The assimilation defects of palmitic acid were suggested in
M. globosa, M. sympodialis, M. pachydermatis, and in the
atypical variant of M. furfur. The capability of M. furfur to
assimilate palmitic acid was confirmed via culturing on defined
media.
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