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In a recent study of denitrification dynamics in hyporheic zone sediments, we observed

a significant time lag (up to several days) in enzymatic response to the changes in

substrate concentration. To explore an underlying mechanism and understand the

interactive dynamics between enzymes and nutrients, we developed a trait-based

model that associates a community’s traits with functional enzymes, instead of typically

used species guilds (or functional guilds). This enzyme-based formulation allows to

collectively describe biogeochemical functions of microbial communities without directly

parameterizing the dynamics of species guilds, therefore being scalable to complex

communities. As a key component of modeling, we accounted for microbial regulation

occurring through transcriptional and translational processes, the dynamics of which was

parameterized based on the temporal profiles of enzyme concentrations measured using

a new signature peptide-based method. The simulation results using the resulting model

showed several days of a time lag in enzymatic responses as observed in experiments.

Further, the model showed that the delayed enzymatic reactions could be primarily

controlled by transcriptional responses and that the dynamics of transcripts and enzymes

are closely correlated. The developed model can serve as a useful tool for predicting

biogeochemical processes in natural environments, either independently or through

integration with hydrologic flow simulators.

Keywords: nitrogen cycle, denitrification, hyporheic zone, environmental microbial community, trait-based

modeling, the cybernetic approach, functional enzyme-based modeling

INTRODUCTION

Microbes in terrestrial and aquatic ecosystems are primary drivers of biogeochemical processes,
including carbon and nitrogen cycling (Gougoulias et al., 2014). Predicting ecosystem functions
and dynamics in a varying environment therefore requires a mechanistic understanding of
how microorganisms interact with each other to catalyze biogeochemical functions. Microbial
communities are complex adaptive systems; their dynamics and emergent properties are difficult
to understand and predict (Konopka et al., 2015). A long time lag in the microbial responses to
changes in local environment is an example of complex community dynamics commonly observed
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in the field and experimental studies, but the underlying
reasons are poorly understood (Wood et al., 1995; Shade
et al., 2012). Metabolic time lags in microbes can affect
the fate and transport of microbial substrates, particularly
when the timescales of both metabolic lag and transport are
comparable (Nilsen et al., 2012). Currently, there are no fully
mechanistic approaches for incorporating metabolic lags into
reactive transport models. Existing models account for metabolic
lags by using temporal convolution integrals (Nilsen et al., 2012)
or by introducing exposure time as an additional dimension
(or coordinate; Wood et al., 1995). These models, however,
do not address the fundamental mechanisms that lead to
such delayed metabolic responses; thus, limiting their use for
prediction.

In a recent experimental study (Li et al., 2017), we reported
the complex dynamics of microbial communities that drive
denitrification in hyporheic zone sediments from the Hanford
Reach of the Columbia River inWashington state. The hyporheic
zone is a biologically active domain where (nitrogen-limited,
but carbon-abundant) surface water and (carbon-poor, but
nitrogen-enriched) groundwater mix (Stegen et al., 2016).
Denitrification in hyporheic zone sediments is mediated by
microbial communities through multiple stages of reduction
reactions from NO−

3 to N2, with each step catalyzed by
distinct enzymes. Our experimental data showed a significant
time lag in in the synthesis of enzymes that catalyze NO−

3
reduction to NO−

2 . Microbial communities continued to express
catalyzing enzymes even after NO−

3 was depleted. Enzyme
concentrations did start to decrease only several days after NO−

3
reduction was completed and were maintained at base levels
thereafter.

Understanding the processes governing delayed enzyme
synthesis and catalysis and its translation into quantitative
modeling are essential for predicting biogeochemical dynamics,
particularly in dynamic environments such as the hyporheic zone
where chemical conditions can change rapidly in response to
hydrologic exchange. For these purposes, we developed a new
concept of modeling that accounts for the regulated synthesis of
enzymes through transcriptional and translational processes. The
developed model collectively describes biogeochemical dynamics
in terms of functional enzymes synthesized in a community,
without directly considering the dynamics of individual species
or their guilds that synthesize those enzymes. Using this model,
we explored how the dynamic interplay between regulatory
molecules such as transcripts, enzymes, and internal resource
molecules affects biogeochemical functions. The resulting model
not only provided an excellent fit to data (both nutrient and
enzyme dynamics), but also suggested a complex regulatory
machinery inmicrobes as a plausible mechanism for the observed
time lags in enzyme responses. The model also provided novel
insights into the biological roles of transcripts as a control point
of dynamic metabolic regulation.

The microbial community model developed in this article
provides several new conceptual components for microbial
community modeling, which we summarize in the following
section as an essential pre-requisite for understanding the idea
of the proposed model framework and the implications of the
simulation results.

BACKGROUND

Functional Enzyme-Based Formulation
Modeling environmental microbial communities is challenging,

primarily due to immense complexity in their compositional

diversity (Song et al., 2014). A common idea to alleviate
this structural complexity is trait-based modeling, which maps

organism-based information into a functional space (Allison,
2012; Boon et al., 2014). The trait-basedmodeling often considers

grouping organisms that share certain metabolic functional

similarities (i.e., traits) into a fewer number of species guilds or
functional guilds (Taffs et al., 2009; Jin and Roden, 2011; Bouskill
et al., 2012). This guild-based grouping can be less effective,

however, in the case where microorganisms can performmultiple

functions (functional versatility) that are partially overlapping
with one another (functional degeneracy) in a dynamically

changing environment (Whitacre and Bender, 2010; Song et al.,
2015). As a consequence, the number of functional guilds (and
accordingly, the number of parameters) can become significantly
large.

As an alternative, the complexity of microbial communities
can be reduced by associating a community’s metabolic traits
with functional enzymes. This enzyme-based approach views
a microbial community as a collective assembly of metabolic
capabilities as opposed to a complex network of individual
organisms or their groups (e.g., functional guilds), therefore
requiring no a priori knowledge of the functional roles of
individual organisms.

Figure 1 illustrates how the enzyme- and guild-based
formulations can be different, particularly with respect to
model structure and parameterization. Figure 1A shows two
cases where a microbial community is composed of (1) single-
function organisms only (top) or (2) a combination of single-
and multi-function organisms (bottom). These functions denote
the microbes’ capability of expressing enzymes that catalyze
specific biogeochemical reactions such as those in denitrification.
Therefore, single-function organisms (specialists) express one
functional enzyme, while multi-function organisms (generalists)
express multiple enzymes. The functional guild-based approach
groups organisms based on the type and number of metabolic
functions each guild catalyzes. For the community composed
of specialists only, this approach can successfully reduce nine
species into three guilds that express the same enzymes. In this
case, the enzyme-based formulation is not much different from
the species guild-based approach. If the community contains
member organisms expressing multiple functional enzymes, the
guild-based reduction results in the expanded number of guilds,
implying the increase in the number of model parameters.
In contrast, the enzyme-based approach reduces the model
complexity by focusing on the functional enzymes independent
of associated guilds. As a result, the functional enzyme-based
approach only requires the identification of the dynamics of
three enzyme classes regardless of the metabolic characteristics
of organisms. Due to its focus on enzyme pool, the enzyme-based
model carries no information on whether a given function is
occurring within one or multiple organisms.

Figure 1B provides a schematic of the functional enzyme-
based approach for denitrification, which is composed of four
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FIGURE 1 | A schematic representation of trait-based microbial community

modeling strategies: (A) functional guild- vs. functional enzyme-based

formulations, (B) enzyme-based modeling of denitrification. In (A),

communities are considered as being composed of specialists (that can

express one functional enzyme) only, or being mixed with specialists and

functionally versatile organisms (that can express multiple enzymes). In (B), the

latter case is illustrated using denitrification, which is composed of four steps

of reduction catalyzed by distinct sets of genes and enzymes: NapA and NarG

for NO−

3 reduction to NO−

2 , NirS and NirK for NO−

2 to NO, Nor for NO to N2O,

and NosZ1 and NosZ2 for N2O to N2.

catalytic steps that reduce NO−

3 to N2. The functionally versatile
organisms (generalists) can contribute to more than one catalytic
step as implied by the multiple arrows. Since the enzyme
functions are directly modeled, the enzyme-based formulation
does not have to track which organisms are involved in each
step; thereby reducing the number of parameters to describe
the community dynamics in comparison to the guild-based
formulation.

The Cybernetic Description of Metabolic
Regulation
The enzyme-based formulation describes an entire microbial
community as a single unit that responds to the environment
by regulating its metabolism through expression of genes
and enzymes. As a key advantage, this approach facilitates
the application of existing dynamic modeling platforms that
have been developed to predict metabolic behaviors of single
organisms (Song et al., 2014; Vasilakou et al., 2016). In this
regard, the cybernetic approach developed by Ramkrishna and
co-workers (Ramkrishna, 1983; Ramkrishna and Song, 2012;
Young, 2015) provides an ideal platform for the enzyme-based
microbial community modeling due to its rational description

of metabolic regulation through the control of enzyme syntheses
and activities.

The cybernetic model postulates organisms as teleonomic
systems that regulate metabolism toward achieving a certain
metabolic objective (e.g., maximization of nutrient uptake rate
or growth rate). This postulate removes the need to account
for detailed mechanistic information on regulation, which is
generally unknown for environmental organisms. The term
“cybernetics” denotes a goal-seeking aspect of metabolism
(Wiener, 1961; Mayr, 1988). The predictive power of cybernetic
approach has been successfully demonstrated over the past few
decades through a variety of challenging case studies of modeling
metabolic switches in varying environments (Dhurjati et al.,
1985; Kompala et al., 1986; Turner et al., 1988; Alexander and
Ramkrishna, 1991; Baloo and Ramkrishna, 1991; Straight and
Ramkrishna, 1991; Varner, 2000; Kim et al., 2008; Young et al.,
2008; Song et al., 2009, 2013b; Song and Ramkrishna, 2010, 2011;
Franz et al., 2011), dynamic response to genetic perturbations
(Young et al., 2008; Song and Ramkrishna, 2012), and nonlinear
behavior such as multiple metabolic states (Namjoshi et al., 2003;
Kim et al., 2012; Song and Ramkrishna, 2013).

Accounting for the Dynamic Interplay
among Regulatory Molecules
In a previous study, we applied the cybernetic approach
to model the dynamics of denitrification process driven by
single organisms (Song and Liu, 2015). The focus of this
previous work was to simulate sequential utilization of multiple
electron acceptors associated with denitrification and did not
include enzyme measurements for model parameterization and
validation. Due to the relatively simple description of the
regulatory process, this form of cybernetic model is inappropriate
for predicting a long enzymatic lag we observed in a denitrifying
microbial community. Therefore, in this work, we significantly
extended the previous model by elaborating cellular regulation
program by accounting for the dynamic interplay among
transcripts, enzymes, and internal resources. Following the
central dogma of molecular biology (Crick, 1970), we modeled
the regulation process in microbes based on transcription
and translation: (1) the synthesis of transcripts from DNA
and other internal resource molecules (such as ATP, NADH,
DNA polymerases, RNA polymerases, ribosomes, etc.), and
(2) the subsequent synthesis of enzymes from transcripts and
internal resources. Note that the coupling between transcripts
and enzymes is not occurring in a linear fashion due to the
involvement of internal resources in both transcription and
translation. We have termed this approach the Regulation-
Structured Cybernetic Model (RSCM). Figure 2 illustrates the
control structure of the RSCM for two competing reactions
catalyzed by distinct enzymes.

The idea of elaborating the cybernetic regulation model at
the transcriptional and translational levels was also considered
previously in the literature (Varner, 2000), the regulation
structure of which is, however, much more complex than the
RSCM due to the direct consideration of the control of inductive
synthesis of both transcripts and enzymes. In contrast, the RSCM
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FIGURE 2 | A schematic representation of the control structure in the RSCM. The variable ui controls the synthesis of resource (ρi ) based on the contribution of

individual reactions to the postulated metabolic objective (i.e., return-on-investment pi , e.g., pi = ri ); the synthesis of transcript (τi ) is subsequently determined by ρi ;

the synthesis of ei is determined by both τi and ρi ; the enzyme ei , in turn, catalyzes reaction (ri ).

indirectly realizes those controls only at the resource generation
stage (see Figure 2 and model equations in the next section). As
another key distinction, the RSCM accounts for the dynamics of
internal resources and their dynamic interplay with transcripts
and enzymes, which was neglected in the previous work.

METHODS

Experimental Data
We structured and parameterized the denitrificationmodel based
on the experimental data collected by the Pacific Northwest
National Laboratory (PNNL)’s subsurface biogeochemistry
research group. As all experimental details on data collection
and enzyme assay are published elsewhere (Li et al., 2017),
we here provide only a brief summary. Batch denitrification
experiments under anaerobic conditions were performed
using the Columbia River hyporheic zone sediments collected
from the Hanford Reach. These sediment samples were mixed
with synthetic groundwater. Experimental data measured
for model parameterization include the concentrations of
gas phase nitrous oxide (N2O), dissolved nitrate (NO−

3 ),
nitrite (NO−

2 ), acetate, dissolved inorganic carbon (DIC), and
functional enzymes. Concentrations of functional enzymes were
quantified using the PNNL-developed signature peptide-based
method. The targeted quantification of functional enzymes
include dissimilatory NO−

3 reductases (NapA and NarG) and
dissimilatory N2O reductase (NosZ), which represent the first
and last steps in denitrification. Other enzymes associated
with intermediate steps (such as NirS/NirK and Nor) were
not measured. Nutrient concentrations were determined by
analyzing three replicates. The enzyme (NarG, NapA, NosZ1,
and NosZ2) concentrations were obtained as the average of
their two signature peptide concentrations: each signature

peptide was determined from two replicates. Dissimilatory
nitrate reduction to ammonium (DNRA) is another potential
reaction pathway for the anaerobic reduction of nitrate, but
the experimental data by Li et al. (2017) provide several
evidences indicating that denitrification is a major reaction
pathway active in their experiments. First of all, the ammonia
assay detected no formation of ammonium, which is the end
product of DNRA. From the same samples, however, the
formation of N2O (an intermediate during denitrification) was
detected. While it is known that N2O could also be released as
a byproduct of DNRA (Stevens et al., 1998; Kraft et al., 2011),
this could also be an evidence with no ammonium detected.
Finally, Li et al. measured NosZ1 and NosZ1 enzymes that
catalyze the reduction of N2O to N2, the final reduction step in
denitrification. The temporal profiles of NosZ1/NosZ2 enzyme
concentrations were qualitatively similar to those of NarG/NapA
enzymes, indicating their coupling as the first and last steps of
denitrification.

Denitrification Reaction Network and
Stoichiometry
Based on the experimental data by Li et al. (2017) described
above, we developed a biogeochemical model with a focus on
denitrification. Denitrification is an anaerobic process in which
NO−

3 is reduced to N2 gas. The reduction occurs in four steps, as
written below for one electron equivalent (e− eq) (Rittmann and
McCarty, 2001):

1/4CH2O+ 1/2NO−

3 → 1/2NO−

2 + 1/4CO2 + 1/4H2O

1/4CH2O+ NO−

2 + 4H+ → 1/4CO2 + NO+ 3/4H2O
1/4CH2O+ NO → 1/4CO2 + 1/2N2O+ 1/4H2O
1/4CH2O+ 1/2N2O → 1/4CO2 + 1/2N2 + 1/4H2O

(1)
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We normalized the above reactions with respect to one mole of
dissolved organic carbon (CH2O), so that the coefficients will
represent the stoichiometric relationships between reactants and
products for a unit mole of consumed organic carbon, as follows:

CH2O+ 2NO−

3 → 2NO−

2 + CO2 +H2O

CH2O+ 4NO−

2 + 4H+ → CO2 + 4NO+ 3H2O
CH2O+ 4NO → CO2 + 2N2O+H2O
CH2O+ 2N2O → CO2 + 2N2 +H2O

(2)

Accurate parameterization of some of the intermediate reactions
was difficult because (1) the concentration of N2O was very low
(i.e., of the order of 10−6–10−3 mM), indicating its consumption
is faster than generation, and (2) no NO measurement was
available. Therefore, we simplified the denitrification process into
two step reactions by assuming relatively fast dynamics of NO
and N2O, i.e.,

CH2O + 2NO−

3 → 2NO−

2 + CO2 +H2O (3)

CH2O + 4/3NO−

2 + 4/3H+
→ 2/3N2 + CO2 + 5/3H2O

(4)

We also consider the synthesis of biomass (C5H7O2N) as follows:

CH2O+ 1/5NH+

4 → 1/5C5H7O2N + 3/5H2O+ 1/5H+ (5)

Microbes obtain energy through anaerobic respiration pathways,
reactions (3) or (4) or both, depending on which electron
acceptors (NO−

3 or NO−

2 ) are available in the environment. To
account for this coupling, we combined equations (3) and (4)
with (5) as follows:

CH2O+ 2f1NO−

3 +
1

5
(1− f1)NH+

4 → 2f1NO−

2 + f1CO2

+
1

5
(1− f1)C5H7O2N (6)

CH2O+
4

3
f2NO−

2 +
1

5
(1− f2)NH+

4 →
2

3
f2N2 + f2CO2

+
1

5
(1− f2)C5H7O2N (7)

where f1 and f2 denote the fractions of energy production
associated with NO−

3 and NO−

2 . Note that reactions and share
the same electron donor (CH2O), but involve different electron
acceptors (i.e., NO−

3 and NO−

2 ), thus representing alternative
pathways for the production of biomass (C5H7O2N). In the
above reactions, we excluded H+ and H2O to focus on carbon
and nitrogen balances. For simplicity, hereafter we use DOC
(dissolved organic carbon),DIC (dissolved inorganic carbon) and
BM (biomass) to denote CH2O, CO2 and C5H7O2N.

Mass Balances of Nutrients and Biomass
In a homogeneous batch reactor, mass balances of substrates and
biomass can be written based on stoichiometric equations (6) and

(7) as follows:

d

dt

















xDOC
xNO−

3

xNO−

2

xN2

xDIC
xBM

















=

















−1 −1
−2f1 0
2f1 −4f2/3
0 3f2/2
f1 f2

(1− f1)/5 (1− f2)/5

















[

r1
r2

]

(8)

In the above equation, x denotes concentrations of reactants and
products, and r1 and r2 are reaction rates associated with NO−

3
and NO−

2 , respectively. We modify the mass balances of BM and
DOC to account for biomass degradation and the impact on the
formation of organic carbon as follows:

dxBM

dt
=

1− f1

5
r1 +

1− f2

5
r2 − kdegxBM (9)

dxDOC

dt
= −r1 − r2 + 5kdegxBM (10)

where kdeg denotes the rate of biomass degradation. The
coefficient factor “5” on the right hand side of Equation (10)
denotes the carbon-based stoichiometric relationship between
BM (i.e., C5H7O2N) degradation and the resulting increase of
DOC (i.e., CH2O).

Description of Metabolic Regulation
It is often that simple Monod-type kinetic equations do not
properly describe biogeochemical reactions (Tang and Riley,
2013), which might be ascribed to the lack of description for
the regulated metabolic behaviors of microbial communities.
Regulation is a hallmark of microbial metabolism, which
therefore should be a key component of biogeochemical
modeling. Microbes regulate metabolism through the control of
enzyme syntheses (and their activities). To account for those
regulatory processes, we modeled the DOC uptake rate through
the reaction i (ri) as being regulated by the enzyme concentration
(ei), i.e.,

ri = eir
kin
i , i = 1, 2 (11)

where rkini denotes the kinetic form of (unregulated) reaction
rate. The synthesis of enzyme requires the energy and material
resources (i.e., internal resources) such as ATP, NADH, DNA
polymerases, RNA polymerases, ribosomes, and so on. Due
to their limited availability, microbes allocate resources among
different enzymes to selectively activate certain reactions. The
cybernetic model provides a rule for this resource allocation
based on “the return-on-investment” concept, i.e., how much
microbes will gain profit (such as nutrient uptake rates or growth
rates) by investing internal resources for the synthesis of certain
enzymes.

The RSCM applies the same rule for the resource allocation,
but in a more structured way. That is, the model accounts
for the resource balance in combination with the two steps of
enzymes synthesis: transcription (i.e., the information flow from
genes into transcripts) and translation (i.e., from transcripts to
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enzymes). With a focus on the dynamics of transcripts and
enzymes, we treated the genes as part of the resource pool
to minimize the number of parameters. The resulting model
contains mass balance equations for the three major components
associated with regulation: the resource pool (denoted by R),
transcripts (T), and enzymes (E). The equations are given as
follows:

dρi

dt
= αR,i + uirR,i − βR,iρi (12)

dτi

dt
= rT,i − βT,iτi (13)

dei

dt
= rE,i − βE,iei (14)

where ρi and τi denote the concentrations of the resource pool
and transcripts associated with the reaction i; rR,i, rT,i, and rE,i
represent the kinetics of synthesis of resource pools, transcripts
and enzymes, respectively; αR,i is the constitutive synthesis rate
of resource pool i; βR,i, βT,i, and βE,i denote the parameters of
degradation rates of resource pool Ri, transcript Ti, and enzyme
Ei, respectively. The three terms on the right hand side of
Equation (12), respectively, denote the constitutive synthesis rate,
inductive synthesis rate, and the degradation rate of resource
pool associated with the reaction i, where the variable ui denotes
the control of inductive synthesis of resource. Similarly, the
two terms on the right hand side of Equations (13) and (14)
denote the synthesis and degradation rates of transcripts and
enzymes. Note that the resource allocation is determined by
the cybernetic variable ui in Equation (12), which subsequently
dictates the syntheses of transcripts and enzymes as in Equations
(13) and (14).

The control variable ui in Equation is determined by the
cybernetic control law termed the matching law (Young and
Ramkrishna, 2007) as follows:

ui =
pi

∑

j
pj

(15)

where pi is the return-on-investment (or profit), which reflects
the expected metabolic benefit derived from the allocation of
internal resources for the syntheses of transcripts and enzymes
and for the subsequent catalysis of specific biogeochemical
reactions (see Figure 2). In other words, the variable pi denotes
the contribution that the reaction i makes to the postulated
metabolic objective function of the microbial community. The
typical choice of this objective includes maximization of carbon
uptake rate and growth rate; we set pi to ri (i.e., carbon uptake
rate) in this work. The functional form of ui in Equation (15)
was heuristically determined in earlier cyberneticmodels, but was
later theoretically derived from an optimal control theory (Young
and Ramkrishna, 2007).

The typical cybernetic modeling formulation adds the post-
translational control of enzyme activities as well, which was
not accounted for in the current form of RSCM due to its
relatively low impact on the prediction as discussed in our
previous denitrification modeling analysis (Song and Liu, 2015).

However, the enzyme activity control is an important regulatory
mechanism in general (Oliveira and Sauer, 2012) and may need
to be incorporated into the model in certain circumstances, e.g.,
in the case that the system exhibits fast nonlinear regulatory
dynamics over a short time period, because it enables the
prompt control of metabolic shifts through allosteric hindrance
of enzyme activities.

Kinetics
We used Monod-type equations to describe the unregulated
kinetic rates (i.e., rkini ) of NO−

3 and NO−

2 in Equation (11), i.e.,

rkin1 = k1
xDOC

Kd,1 + xDOC

xNO−

3

Ka,1 + xNO−

3

rkin2 = k2
xDOC

Kd,2 + xDOC

xNO−

2

Ka,2 + xNO−

2

(16)

A similar form of kinetic equations was considered for describing
the synthesis rates of resources, transcripts, and enzymes, i.e.,

rR,i =











kR,1
xDOC

Kd,1+xDOC

x
NO−3

Ka,1+x
NO−3

, i = 1

kR,2
xDOC

Kd,2+xDOC

x
NO−2

Ka,2+x
NO−2

, i = 2

rT,i = kT,i
ρi

KT,i + ρi

rE,i = kE,i
τi

KT
E,i + τi

ρi

KR
E,i + ρi

(17)

where the k’S and K’s denote reaction rate and half-saturation
constants associated with specific reactions as implied by their
subscripts. It is important to note that (1) any alternative forms
of kinetic models can be used in the cybernetic modeling
formulation, and (2) even in the case where simple Monod-
type kinetics were used for rkini (as above), the actual kinetics in
Equation (11) show much more complex dynamics due to the
regulatory processes represented in Equations (12–15).

Parameter Identification
We determined key parameters of the denitrification model
through the data fit such that the sum of the squared
errors between simulations and measured data is minimized.
Experimental data used for this purpose included temporal
profiles of substrates (NO−

3 , NO
−

2 , DOC, and DIC) and enzymes
(NarG, NapA, NosZ1, and NosZ2). Specifically, the catalysis
of the reduction from NO−

3 to NO−

2 in Equation (6) was
parameterized in association with the dynamics of NarG/NapA
enzyme concentrations. The reaction from NO−

2 to N2 is
originally composed of three reduction steps catalyzed by
NirS/NirK, Nor, and NosZ1/NosZ2, respectively (Figure 1B),
but as mentioned earlier, we associated it only with the
dynamics of NosZ1/NosZ2 enzymes that catalyze the last step
of reduction, due to the lack of other enzyme measurements.
The fitted parameters include the rate constants of carbon uptake
(k1, k2), the rate constants of the syntheses of internal resources
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(kR,1, kR,2), transcripts (kT,1, kT,2), and enzymes (kE,1, kE,2), the
biomass degradation rate (kdeg), and the fraction of energy

production associated with NO−

3 reduction to NO−

2 (f1). Due
to the limited availability of experimental data, the parameters
associated with the dynamics of internal resources and transcripts
(kR,1, kR,2, kT,1, and kT,2) were indirectly identified by fitting the
profiles of nutrients and enzymes. Other parameters were fixed
based on the literature values (i.e., half saturation constants) or
determined by manual adjustment (f2, α ’s, and β ’s). For fitted
parameters, we used the bootstrapping technique to quantify
the uncertainty in the estimates based on 95% confidence
intervals. Bootstrapping was performed by estimating the best-
fit parameter values for 500 experimental data sets, where
each data set was created by randomly sampling a uniform
distribution of the measured values at each time point. The
sampled values varied within±standard deviation from themean
experimental value. The resulting parameter sets containing
values below the 2.5th and above the 97.5th quantile for at least
one parameter were removed. The lowest and highest values of
each parameter in the remaining parameter sets were taken as
the lower and upper 95% confidence limits, respectively. The
resulting parameter values (with lower and upper bounds) are
summarized in Table 1. The initial concentrations of all variables
including nutrients, internal resources, transcripts, and enzymes
are shown in Table 2.

TABLE 1 | Model parameter values used for the simulation of the two-step

denitrification process.

Parameter i = 1
(

NO−

3 → NO−

2

)

i = 2
(

NO−

2 → N2

)

Source for

parameter value

fi [-] 0.56 [0.33, 0.69] 0.99 Data fit

ki [
*] 6.23 [5.25, 11.0] 5.71 [4.96, 6.08] Data fit

Kd,i [mM] 0.25 0.25 Yan et al., 2016**

Ka,i [mM] 0.001 0.004 Rittmann and

McCarty, 2001

kdeg [
*] 0.11 [0.05, 0.30] Data fit

αR,i [1/d] 0.2 0.2 Song and Liu,

2015**

βR,i [1/d] 0.8 0.8 Assumed

βR,i = βE,i

βT,i [1/d] 0.8 0.8 Assumed

βT,i = βE,i

βE,i [1/d] 0.8 0.8 Song and Liu,

2015**

kR,i [1/d] 2.84 [2.83, 18.1] 1.03 [0.68, 2.59] Data fit

kT,i [1/d] 0.13 [0.06, 0.20] 0.25 [0.08, 0.31] Data fit

kE,i [1/d] 1.84 [1.27, 2.69] 1.56 [1.45, 3.43] Data fit

KT,i [-] 0.25 0.25 Assumed

KT,i = Kd,i

KE,i [pmol/g soil] 0.25 0.25 Assumed

KE,i = Kd,i

The values in brackets denote the lower and upper limits of 95% confidence intervals for

fitted parameters.
*Units: ki [=] mM·(g soil/pmol enzyme)/d; kdeg [=] [mmol/mmol BM/d].
**Fixed with comparable values used in the corresponding literature.

RESULTS

Fitting Results and Prediction of Time Lags
in Enzyme Response
The batch denitrification experiment by Li et al. (2017) with
only one initial condition (Table 2) did not provide sufficient
data for the accurate determination of all parameters in the
RSCM. Thus, we fixed some of the parameters that might
not be directly determinable from simple batch data, including
half-saturation constants and the parameters associated with
constitutive synthesis and degradation of regulatory molecules.
This strategy led us to reproducibly determine the remaining
parameters through optimal data fit (see Table 1 and Figure 3).

The resulting model successfully fitted the overall dynamics of
nutrients (Figure 3A) and enzymes (Figure 3B). The model also
captured the non-intuitive trend of DOC profile, i.e., the gradual
increase of DOC after day 6 (when no further denitrification was
actively taking place), by attributing it to biomass degradation
(see Equation 10). The model also predicted N2 production
on the assumption that all NO−

2 is converted into N2 through
the stoichiometric relation given in Equation (7). Figure 3B
shows that enzyme responses to the change of NO−

3 and NO−

2
were significantly delayed. Data on the top panel of Figure 3B
shows that the NO−

3 reduction rate reached its maximal value
around day 4, while the maximal concentrations of catalyzing
enzymes (i.e., NarG and NapA) occurred about 4 days later.
The RSCM simulated the maximal reduction rate and enzyme
concentrations to occur slightly earlier, but its prediction of the
time delay in enzyme expression was aligned with experimental
observation. The delayed enzymatic response was also inferred
for NO−

2 reduction from the observation that the maximal
concentrations of NosZ1 and NosZ2 enzymes appeared about
1 day after the depletion of NO−

2 . However, it was difficult to
accurately estimate the time delay in this case because of (1) the
uncertainty about the exact time when the NO−

2 reduction rate
reached its maximum (due to the non-monotonic profile shape),
and (2) the absence of the measurement of enzymes other than
NosZ1 and NosZ2, which catalyze the last step of denitrification.
Continued synthesis of enzymes even after substrate depletion is

TABLE 2 | Initial condition used for the simulation of denitrification dynamics:

DOC = dissolved organic carbon, DIC = dissolved inorganic carbon, and BM =

biomass; ρ , τ and e denote the concentrations of internal resource, transcript

and enzyme, respectively; the subscripts 1 and 2 denote the association with

NO−

3 and NO−

2 reduction pathways, respectively.

Nutrient Concentration Regulatory molecules Concentration

DOC[mM] 61.1* Internal resource [–] ρ1 0.001

NO−

3 [mM] 18.3* ρ2 0.001

NO−

2 [mM] 0* Transcript [–] τ1 0.001

N2[mM] 0 τ2 0.001

DIC[mM] 1 Enzyme [pmol/g soil] e1 0.001

BM[mM] 1.5 e2 0.001

* Initial concentrations of DOC, NO−

3 , and NO
−

2 measured by Li et al. (2017). All other initial

concentrations denote assumed values.
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FIGURE 3 | Model fits and predictions of the dynamic changes in (A)

substrates and (B) enzymes associated with NO−

3 reduction to NO−

2 (top) and

the subsequent NO−

2 reduction to N2 (bottom). Symbols in (A,B) represent the

average concentrations of nutrients (DOC, DIC, NO−

3 , and NO−

2 ) and enzymes

(NarG, NapA, NosZ1, and NosZ2) obtained from three and two biological

replicates, respectively. Error bars denote the standard deviations of each

measurement.

an interesting phenomenon, which we may describe as dynamic
momentum inmetabolic control. In addition to delayed enzymatic
responses, the data showed that enzyme concentrations (for both
NO−

3 and NO−

2 reduction reactions) were maintained from day
10 up to day 20. The RSCM predicted this persistence of enzyme
levels as the result of dynamic balance between constitutive
enzyme synthesis and degradation rates, as in Equations (12–14).

Dynamic Control of Denitrification
Reactions
Figure 4 shows the effects of control realized by the cybernetic
variables on the NO−

3 and NO−

2 reduction rates and the biomass
yield. On the top panel, the value of u1 is initially high, and
gradually decreases. This means that the initial allocation of
the resource pool is directed primarily toward promoting NO−

3

FIGURE 4 | Model predictions of the dynamic changes in cybernetic variables

(top), reaction rates (middle), and biomass yield (bottom). In the bottom

panel, Y1 and Y2 denote the stoichiometric biomass yields associated with

NO−

3 and NO−

2 reductions, respectively.

reduction; its portion decreases as the amount of NO−

2 increases
as implied by the increasing value of u2. The middle panel shows
the rates of NO−

3 and NO−

2 reduction as their concentrations
change with time. The RSCM predicted these two competitive
reactions can take place simultaneously until NO−

3 is depleted.
This is an interesting finding from a modeling point of view
because the conventional cybernetic control that considers the
control of the inductive enzyme synthesis directly in the enzyme
balance equation usually predicts competitive reactions (such as
consecutive NO−

3 and NO−

2 reduction reactions) to occur in a
sequential manner as observed in our previous denitrification
model. Prediction of the simultaneous occurrence of competitive
reactions by the conventional cybernetic model often requires the
consideration of additional reactions, which is not necessary for
the RSCM that indirectly accounts for the control of inductive
enzyme synthesis through the allocation of internal resources. On
the bottom panel, we showed the prediction for dynamic changes
in the community’s biomass “yield” during denitrification. The
biomass yield at each time instant was calculated as the ratio
between the biomass production rate and the DOC (or carbon)

uptake rate, i.e.,
2

∑

i=1
Yiri/

2
∑

i=1
ri . That is, the biomass yield is a

dimensionless quantity representing the amount of produced
biomass [mM] per the unit amount of consumed DOC [mM].
The biomass synthesis initially is high due to the higher
contribution of NO−

3 reduction (because f1 < f2; see section
Methods); gradually decreases for the first 3 days; maintains an
almost constant level until day 5.7 where the relative ratio of
NO−

3 and NO−

2 reductions does not change much (as shown by
the flattened profiles of u1 and u2. The NO

−

2 reduction continues
until day 6.8 while the biomass yield becomes very small after day
5.7, which is because the high value of f2 is close to 1 (i.e., 0.99) in
Equation (7).
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Transcripts Playing a Role as a Dynamic
Control Point
In Figure 5, we provided (a) the dynamic profiles of resources,
transcripts, and enzymes, and (b) time lags quantified based
on the differences between the peak times of each variable
(as marked by upside-down triangles in Figure 5A). For the
reduction of NO−

3 to NO−

2 , the figure shows that a long lag
in enzyme response is fundamentally caused by the interplay
of enzymes with transcripts and internal resources, which do
not quickly decay even after the substrates are depleted. The
same interpretation also applies to the conversion of NO−

2 to
N2, but the level of time delay is less pronounced, particularly
when considering the fact that the NO−

2 reduction was associated
with the dynamics of NosZ1/NosZ2 enzymes that catalyze the
last step of reduction (see section Methods). This result—i.e.,
the prediction of a longer time delay in enzymatic response for
the NO−

3 reduction (i.e., 3.4 day) in comparison to the NO−

2
reduction (0.9 day)—agrees with experimental observation, as
shown in Figure 3.

For the reduction of NO−

3 to NO−

2 , the model predicted a long
delay between the resource generation and the transcriptional

FIGURE 5 | Model predictions of (A) the dynamic changes in resources,

transcripts and enzymes and (B) time delays from resource generation to

transcriptional and enzymatic responses. In (A), the upside-down triangles

denote the time where each variable reaches its maximal value.

response (i.e., about 3 days), while predicting a relatively short
delay between transcriptional and enzymatic responses (0.5 day)
(top panel of Figure 5B). This indicates that the transcriptional
response might be a key control point in NO−

3 reduction.
However, this was not the case for the NO−

2 reduction where time
delays between three processes were comparable (i.e., 0.5 and
0.4 days, respectively) (bottom panel of Figure 5B). Interestingly,
time delays between transcriptional and enzymatic responses
were predicted to be similar for NO−

3 (0.5 day) and NO−

2
reduction (0.4 day).

This result also reveals the complex interplay between
resources, transcripts, and enzymes in denitrification. The
dynamic profiles of enzymes (bottom panel of Figure 5A) bear a
qualitative resemblance to the profiles of reaction rates shown on
themiddle panel of Figure 4. That is, profiles in both figures show
that initially NO−

3 reduction is dominant but is subsequently
exceeded by NO−

2 reduction when NO−

3 is depleted. The initial
trend was also the same for resource abundance profiles (top
panel of Figure 5A). In contrast, the transcript abundance
profiles (middle panel of Figure 5A) are fundamentally different;
the abundance of transcripts associated with NO−

3 reduction is
relatively low throughout the entire simulation, despite being
at similar abundance to NO−

2 reduction transcripts initially.
Prediction of these distinct features of transcripts is an outcome
of data fit in order to match the overall denitrification dynamics
where NO−

3 reduction is more dominant than NO−

2 reduction,
while the corresponding enzyme concentrations that catalyze
them are comparable. This implies that transcripts might play
a role of controlling the overall dynamics of regulation at the
interface between resources and enzymes.

Highly Correlated Dynamics of Transcripts
and Enzymes
We also analyzed how the abundances of resources, transcripts
and enzymes were dynamically inter-related. To remove the
effect of time delay, we appropriately adjusted the time
scales of the profiles of these three variables to draw
phase diagrams between all possible pairs of three variables.
Figures 6A,B provide the relationships between resources and
transcripts, and between resources and enzymes, respectively;
we found the reasonably close relationships between those
pairs for NO−

2 reduction, while there was no such correlation
for NO−

3 reduction, i.e., transcript and enzyme levels did
not proportionally change to the abundance of resources.
In Figure 6C, we consistently observed, however, the close
relationships between transcripts and enzymes for both NO−

3
and NO−

2 reduction; surprisingly, their relationships were almost
linear along both increasing and decreasing phases.

DISCUSSION

Key Features of the RSCM
We provided a new conceptual platform (termed RSCM)
for modeling complex microbial communities. There are
several unique features of the RSCM as highlighted in the
following. First, the RSCM is built upon the functional
enzyme-based approach, which enables the consistent model
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FIGURE 6 | Phase diagrams of resources, transcripts and enzymes: the dynamic relationships (A) between the concentrations of resources and transcripts, (B)

between the concentrations of resources and enzymes, and (C) between the concentrations of transcripts and enzymes. The time scales of all data are adjusted to

remove the effect of time delay based on the quantification in Figure 5B.

formulation of complex microbial communities. This enzyme-
based parameterization is particularly useful in circumstances
where metabolic functions of individual organisms are difficult
to uniquely characterize (and therefore difficult to group).
Second, the RSCM elaborates regulatory control by accounting
for transcription and translation, the products of which can
be quantified. Considering the difficulty in obtaining reliable
estimates of guild-specific biomass for the function guild-based
approach, the ability to directly quantify transcripts and enzyme
concentrations is likely an advantage of the enzyme-based
approach. As another key distinction, the RSCM describes the
dynamic microbial regulation based on the cybernetic approach.
In the current practices of biogeochemical modeling, metabolic
regulation is often accounted for based on empirical inhibition
kinetics, which not only increases the number of parameters to
identify, but also may lead to less accurate predictions (Tang
and Riley, 2013). In contrast, the cybernetic model can provide
reliable predictions over a wider range of conditions with a
fewer number of parameters as demonstrated in the past case
studies ofmetabolicmodeling (Ramkrishna and Song, 2012; Song
et al., 2013a). Data requirement for parameter identification is
accordingly lesser for the cybernetic model due to the absence
of inhibition-associated parameters, which was necessary for
empirical formulation. Based on the principle of Occam’s razor
(Gauch, 2003), the simplest model is preferred over over-
parameterized models, if performance is the same. Accounting
for metabolic control based on the cybernetic approach holds a
significant advantage inmodeling environmental biogeochemical
processes, not only that experimental data required for parameter
identification is usually insufficient, but also that a priori
knowledge is unavailable for inhibition control in a complex
system.

Insights into Metabolic Lags and the Role
of Transcripts
The RSCM showed that enzymatic time lags observed in
denitrification experiments can be caused by the complex

interplay among internal resource molecules, transcripts and
proteins. The delayed enzymatic response could be ascribed
to microbes’ regulatory machinery that controls energetically-
expensive enzyme synthesis to ensure its survival in frequently
varying environment (Ramkrishna et al., 1987). This postulate
is rational because immediate and frequent shifts in enzyme
settings in response to environmental variation can lead to the
rapid depletion of energy required for microbial growth and
maintenance due to the cost for protein synthesis (Wessely et al.,
2011; Noor et al., 2016).

The RSCM also provided insights in regard to the potential

role of transcripts in regulatory dynamics of denitrifying

microbial communities. First, it suggests that the overall

time delay in denitrification may be primarily controlled by

the transcriptional response. Model predictions showed that
transcriptional response can be slower than or comparable
to enzymatic responses depending on the type of reactions.
This implies that accurate simulation of denitrification requires
an appropriate consideration of transcriptional dynamics in
modeling. Second, the abundances of transcripts may not
necessarily reflect the level of reaction activities. The simulation
showed that the transcripts associated with NO−

3 reduction were
less abundant than those associated with NO−

2 reduction even
though the former reaction was dominant until the depletion
of NO−

3 . This suggests that within a given reaction, changes in
transcript abundances (e.g., through time) may indicate changes
in the rate of that reaction, but that such a comparison cannot
be made across reactions. In this regard, it would be beneficial
to consider collecting additional complementary data (e.g.,
gene abundances, metabolomic profiles, etc.) and/or performing
advanced tracer experiments using isotopically labeled substrates.
Third, the model suggests that transcripts could be used as a
proxy for enzymes due to their highly inter-correlated dynamics.
This finding is of practical importance considering the relatively
higher cost and technical difficulties in directly measuring
enzyme concentrations from environmental samples. While we
were able to use quantitative enzyme data thanks to the advanced
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analytical method recently developed by Li et al. (2017), this
method is costly and labor intensive in relative to transcript
quantification.

Concluding Remarks and Future
Considerations
Using the RSCM framework, we explored how the dynamic
interplay between internal resources, transcripts, and enzymes
can be considered as a potential mechanism responsible for
the non-intuitive biogeochemical dynamics observed in our
denitrification experiments. The good agreement we obtained
between data and the model indicated that the proposed
mechanism is plausible, while we could not provide a direct
experimental proof. Further experimental studies would be
required for a more conclusive understanding, particularly on
the role of transcripts as a control point of regulatory dynamics.
One could consider other biological or physical processes that
may potentially cause our observed phenomena. For example, the
slow process of transcription and translation could be ascribed
to nutrient transport across the cell membrane mediated by
the membrane-localized proteins (permeases) (Stephanopoulos
et al., 1998). As another example, enzyme adsorption to minerals
could be a potential process explaining their persistent activities
in the sediments (Zimmerman and Ahn, 2010). Despite these
caveats, the predictions of RSCM provide fresh insights and
novel hypotheses that cannot be derived by simple structured
biogeochemical models. Thus, the simulation results provide
a reasonable basis for a deeper understanding of the role
of microbes in regulating biogeochemical functions. In future

applications, the RSCMwill be further tested under various other
environmental conditions where the importance of accounting
for cellular regulation becomes more pronounced, including the
transition from oxic to anoxic conditions. We expect the RSCM
to serve not only as an independent simulator of denitrification
dynamics, but also as a key biogeochemical modeling component
of multi-scale reactive-transport models. As will be reported in
a near future, the RSCM is currently incorporated into multi-
scale simulation software, PFLOTRAN (Lichtner et al., 2015)
to investigate hydro-biogeochemical processes and to predict
the long-term impact of dam operation on thermo-hydro-
biogeochemical dynamics.
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