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Bacterial consumption of dissolved organic matter (DOM) drives much of the movement
of carbon through the oceanic food web and the global carbon cycle. Understanding
complex interactions between bacteria and marine DOM remains an important
challenge. We tested the hypothesis that bacterial growth and community succession
would respond differently to DOM additions due to seasonal changes in phytoplankton
abundance in the environment. Four mesocosm experiments were conducted that
spanned the spring transitional period (August–December 2013) in surface waters of the
Western Antarctic Peninsula (WAP). Each mesocosm consisted of nearshore surface
seawater (50 L) incubated in the laboratory for 10 days. The addition of DOM, in the
form of cell-free exudates extracted from Thalassiosira weissflogii diatom cultures led to
changes in bacterial abundance, production, and community composition. The timing
of each mesocosm experiment (i.e., late winter vs. late spring) influenced the magnitude
and direction of bacterial changes. For example, the same DOM treatment applied
at different times during the season resulted in different levels of bacterial production
and different bacterial community composition. There was a mid-season shift from
Collwelliaceae to Polaribacter having the greatest relative abundance after incubation.
This shift corresponded to a modest but significant increase in the initial relative
abundance of Polaribacter in the nearshore seawater used to set up experiments. This
finding supports a new hypothesis that starting community composition, through priority
effects, influenced the trajectory of community succession in response to DOM addition.
As strong inter-annual variability and long-term climate change may shift the timing
of WAP phytoplankton blooms, and the corresponding production of DOM exudates,
this study suggests a mechanism by which different seasonal successional patterns in
bacterial communities could occur.

Keywords: 16S rRNA, amplicon sequencing, community assembly, bacterial succession, mesocosms,
Collwelliaceae, Polaribacter, phytoplankton exudates
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INTRODUCTION

Marine dissolved organic matter (DOM) represents a large
reservoir of carbon that drives a considerable fraction of the
oceanic food web (Hedges, 1992). Phytoplankton production is
the dominant source of marine organic material, with up to 50%
of algal production entering the DOM pool through a variety
of mechanisms (Lampert, 1978; Fogg, 1983; Gobler et al., 1997).
The resulting DOM pool is a complex mixture of thousands of
organic compounds with varying degrees of lability. The labile
DOM pool turns over rapidly, within hours to days, supporting
the growth of heterotrophic bacteria. The semi-labile pool turns
over more slowly, months to years, while the refractory pool
turns over very slowly and accounts for the largest fraction of
marine DOM (Carlson and Hansell, 2015). Despite ramifications
for organic matter and nutrient cycling, the interplay between
diverse bacterial assemblages and complex DOM pools is poorly
understood.

Shifts in bacterial community composition are associated with
phytoplankton blooms (Pinhassi et al., 2004; Teeling et al., 2012;
Klindworth et al., 2014; Sperling et al., 2017), perhaps due to
changes in DOM availability and phytoplankton composition
of the blooms. Previous studies provide conflicting reports of
generalist assemblages that can utilize a wide variety of substrates
(Mou et al., 2007; Newton et al., 2010; Chronopoulou et al.,
2015), as well as communities of specialists that are adapted to
take advantage of only certain classes of DOM compounds and
respond quickly to disturbance (Cottrell and Kirchman, 2000;
Allison and Martiny, 2008; Nelson and Carlson, 2012; Sarmento
and Gasol, 2012; Klindworth et al., 2014; Sharma et al., 2014).
Nonetheless, some general trends based on broad taxonomic
groups have emerged. For example, certain groups of bacteria
(e.g., Flavobacteria and Rhodobacteraceae) tend to increase in
abundance during phytoplankton blooms, while other groups
such as Candidatus Pelagibacter appear better adapted to non-
bloom conditions (Williams et al., 2013; Buchan et al., 2014;
Voget et al., 2015).

The Western Antarctic Peninsula (WAP) system undergoes
an extreme seasonal transition every spring, from almost
total darkness to almost continuous sunlight, resulting in a
synchronized cascade of environmental changes that culminates
in intense phytoplankton blooms, supporting a highly productive
food web (Venables et al., 2013). Bacterioplankton activity
closely follows the annual phytoplankton cycle supporting the
hypothesis that bacterial growth is largely driven by DOM
availability (Kirchman et al., 2009; Ducklow et al., 2012; Kim and
Ducklow, 2016). Luria et al. (2016) measured seasonal succession
in the composition of free-living bacterial communities in
nearshore waters of the WAP during a phytoplankton bloom.
However, the relationship between phytoplankton-derived DOM
and bacterial community succession has not been directly tested
in the WAP. Furthermore, the WAP is subject to strong
inter-annual variability in sea ice and upper water column
dynamics, leading to variability in the timing and magnitude of
phytoplankton blooms. Dramatic warming of the WAP region
over the last 50 years has reduced sea ice extent and led to earlier
sea ice retreat in the spring (Vaughan and Doake, 1996; Meredith

and King, 2005; Stammerjohn et al., 2008; Thomas et al., 2009;
Saba et al., 2014). It is not known how changes in the timing of
sea ice retreat, and subsequently of phytoplankton blooms, may
alter bacteria-DOM interactions and carbon cycling.

We conducted a series of DOM-addition mesocosm
experiments that spanned the WAP spring transitional period to
examine how pre-bloom bacterial communities react to changes
in DOM concentration. Because many previous DOM-addition
experiments have relied upon relatively simple compounds (e.g.,
glucose or amino acids), that may serve as poor analogs for
the organic carbon utilized by marine bacteria (Straza et al.,
2010; Ducklow et al., 2011), we used diatom exudates, a more
complex substrate. Our goals were to assess how diatom exudates
alter the bacterial community and how these alterations change
depending on the timing of the experiment in relation to the
progression of the season from winter to late spring. We assumed
that DOM additions would stimulate bacterial production and
change bacterial community composition and hypothesized that
the magnitude of these DOM-driven changes would decrease
as the season progressed in relation to phytoplankton biomass
based on chlorophyll a (chl a) in the nearshore seawater. This
hypothesis is based on previous studies in Antarctica indicating
that bacterial communities become less limited by DOM as
phytoplankton blooms develop (Ducklow, 2003). Therefore,
bacterial communities are likely to be less responsive to DOM
additions as phytoplankton blooms develop.

MATERIALS AND METHODS

Environmental Monitoring of Source
Water
Mesocosms were set up at Palmer Station, Antarctica, using
seawater from the station’s intake, located at a depth of
6 m, 16 m from the shore of the station. This source water
was monitored during the experimental period (August–
December 2013) to determine any changes in environmental
parameters that might influence bacterial community responses
in mesocosm experiments. Samples for dissolved nutrients
(phosphate, silicate, nitrite, and nitrate) and particulate
organic carbon and nitrogen (POC and PN) were processed
according to Palmer LTER standard protocols1. Briefly,
nutrient samples were filtered through combusted 0.7-µm
glass fiber filters (Whatman, GE Healthcare Life Sciences,
Piscataway, NJ, United States) and frozen at −80◦C until
analysis on a SEAL AutoAnalyzer 3 (data available at doi:
10.6073/pasta/e893d71c5586769731875d49fde21b1d; Ducklow
et al., 2016). Samples for DOC were filtered through combusted
glass fiber filters and stored frozen until analyzed by high-
temperature catalytic oxidation in a Shimadzu TOC-V, following
previously described methods (Carlson et al., 2010). POC and
PN samples were collected on combusted 0.7-µm glass fiber
filters from 1 to 3 L seawater and were frozen at −80◦C until
analysis via combustion using a Perkin Elmer 2400 Series II
CHNS/O Analyzer. Seawater intake chl a data are routinely

1http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets

Frontiers in Microbiology | www.frontiersin.org 2 November 2017 | Volume 8 | Article 2117

http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02117 November 1, 2017 Time: 17:52 # 3

Luria et al. Antarctic DOM Mesocosm Experiments

collected through the LTER project (data available at doi:
10.6073/pasta/c2df461937789b5e53019dadcd29fc57; Schofield
and Vernet, 2016). Bacterial production and abundance were
determined as described below.

DOM Preparation
Dissolved organic matter was collected from large-scale
Thalassiosira weissflogii cultures (500 L total) (CCMP1051,
National Center for Marine Algae and Microbiota, East
Boothbay, ME, United States), a well-characterized marine
diatom, grown in f/2 medium (Guillard, 1975). The cultures were
grown and harvested in Rhode Island, and the resulting DOM
exudates were transported to Antarctica as dried residues. To
grow the cultures, seawater for the f/2 medium was drawn from
Narragansett Bay and was first passed through 1-µm filters prior
to chlorination at 25 ppm for 4 days, followed by passage through
successive granulated carbon and 1-µm filters and a 150 W UV
sterilizer at a rate of 80 L min−1 with a final pasteurization at
85◦C just prior to use. After cooling, seawater was amended
with 0.02% v/v each of f/2 “Solution A” and “Solution B” (Fritz
Aquatics, Mesquite, TX, United States) and 0.003 g L−1 sodium
metasilicate (Na2SiO3). Axenic T. weissflogii cultures (100 L each)
were grown in custom, acid-washed polycarbonate containers
under 34-watt T8 cool white fluorescent lamps (Philips, Andover,
MA, United States). Air enriched with 1800–2000 ppm CO2 and
passed through 0.2 µm PTFE filter capsules (Sigma–Aldrich, St.
Louis, MO, United States) was bubbled through the containers.
The cultures were harvested at 7 days when they had developed
dense growth but were still in the exponential growth phase.
To create an f/2 “control,” the same volume of f/2 media was
treated identically, but was not inoculated with T. weissflogii.
This control was to account for any DOM in the f/2-amended
seawater itself.

Cells and particulate matter were removed from T. weissflogii
cultures via peristaltic pump-driven serial filtration through
combusted GF/F filters (Whatman, GE Healthcare Life Sciences,
Piscataway, NJ, United States) and acid-washed 0.2 µm
polyethersulfone membrane filter capsules (Whatman, GE
Healthcare Life Sciences, Piscataway, NJ, United States) using
acid-washed platinum-cured silicon tubing (Masteflex, Cole
Parmer, Vernon Hills, IL, United States). The filtrate was
collected in clean acid-washed polycarbonate containers,
acidified by adding sufficient hydrochloric acid to lower
the pH to ∼2–3. Solid phase extraction of hydrophilic
DOM was performed by pumping the filtrate through C18
columns (Supelco, Discovery C-18; 10 g) at a rate of 50 ml
min−1. The columns were prepared by washing with 100 ml
methanol followed by 200 ml of ultra high purity water.
DOM was recovered by flushing the columns with 100 ml
of methanol. The DOM solution was gently warmed to 35◦C
and was concentrated by vacuum evaporation followed by
flushing with nitrogen gas as needed, leaving a dried residue
suitable for transport. Prior to mesocosm experiments, the
dried DOM was re-dissolved in a 0.2 µm-filtered 10 mM
sodium hydroxide solution and added to DOM treated
mesocosms to a final concentration of 20 ± 4 µmol L−1

added DOC, based on difference between DOM+ and

controls in August–October experiments (Supplementary
Table 1).

Mesocosm Experiments
Mesocosm experiments were conducted in August, September,
October, and December 2013 at Palmer Station by filling
acid-washed 50 L polycarbonate carboys with seawater from
the station’s intake. The filled carboys were divided into two
treatments: (1) control (no additions, n = 3) and (2) +DOM
(carboys that received diatom exudates; n = 3). An additional
f/2 control treatment (uninoculated growth media, n = 3)
was included in the October experiment only. The DOC
concentration in the f/2 control was not any different than
controls without any added DOC. As such, the f/2 control served
as an additional no DOC addition control. The mesocosms were
incubated for 10 days at 0◦C, except in the August experiment
when mesocosms were incubated at 3◦C. All experiments were
conducted under a low-level of continuous light, 1× 1014 quanta
cm−2 s−1, as measured inside the carboys with a hand-held
radiometer (Biospherical Instruments, Inc.).

Chlorophyll a (chl a) and phaeopigment, dissolved inorganic
nutrients (phosphate, silicate, nitrite, and nitrate), and bacterial
production (3H-leucine incorporation rates) were assessed
every 48 h for 10 days as previously described (Luria
et al., 2016). Bacterial abundance samples were also collected
every 48 h and were analyzed by flow cytometry with
SYBR R© Green I nucleic acid staining (Invitrogen, Carlsbad,
CA, United States) on a Guava easyCyte flow cytometer
(EMD Millipore, Billerica, MA, United States). Samples for
bacterial community composition were collected on days 0, 6,
and 10 by filtering ∼2 L water through successive 3.0 µm
polycarbonate and 0.22 µm polyethersulfone (EMD Millipore,
Billerica, MA, United States) filters. Filters were flash-frozen
with liquid N2 and stored at −80◦C until further processing.
Samples for POC and PN were collected on days 0 and 10
and DOC on days 0, 6, and 10 and analyzed as described
above. POC/PN from day 10 in December were lost due to an
instrument malfunction. All sampling took place at incubation
temperatures.

16S rRNA Gene Amplicon Sequence
Library Generation
Sequence libraries were generated as in Eren et al. (2013), with
modifications as described in Luria et al. (2016). Briefly, DNA
was extracted from cells captured on the 0.22 µm pore size filters
from mesocosm experiments [i.e., “free-living” bacterioplankton
or any bacteria attached to micro-particles (Busch et al.,
2017)] using a DNeasy Plant Mini Kit (Qiagen, Valencia, CA,
United States) with an additional bead-beating step. For each
DNA sample, the V6 hypervariable region of the 16S rRNA gene
was amplified by polymerase chain reaction with custom fusion
primers that contained Illumina adaptors and inline barcodes
(forward primer) or dedicated indices (reverse primer) (Eren
et al., 2013). Size-selected PCR products were quantified and
pooled in equimolar amounts prior to sequencing on one lane
of an Illumina HiSeq 1000 cycle paired-end run.
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Low-quality sequences were filtered from the resulting data
by discarding reads without 100% consensus between forward
and reverse paired-end sequencing reads (Eren et al., 2013),
resulting in more than 16 million sequences across 81 mesocosm
samples. OTUs were clustered using Qiime (v 1.9.1; Caporaso
et al., 2010) with open reference OTU picking with the default
UCLUST method (Edgar, 2010), a minimum cluster size of 2,
and a 97% similarity threshold and were assigned Greengenes
taxonomy (version 13_8; McDonald et al., 2012). After removing
OTUs classified as chloroplasts, rarefied libraries were produced
by randomly down-sampling to the smallest library size of 64271
sequences spread among 14751 OTUs. All of our sequence data
are MIMARKS-compliant (Supplementary Data Sheet 1) (Yilmaz
et al., 2011) and have been deposited in the NCBI Sequence Read
Archive under accession number SRP091049 and Bioproject
PRJNA344476.

Data Analysis
To separate the effects of incubation day in an experiment
(i.e., days into incubation period), DOM+ treatment or control,
and any differences between experiments on univariate bacterial
(i.e., cell abundance or production) parameters, we performed
ANOVA on nested linear models using the lm and anova
functions in R (Chambers, 1992; Venables and Ripley, 2002; R
Development Core Team, 2008). Two linear models are nested
if one (the restricted model) is obtained from the other (the full
model) by removing a term from the full model. An ANOVA
performed on such nested models provides the equivalent of
the F test for goodness of fit and indicates whether individual
terms improve the model. This provided a statistical test of our
hypothesis as the season progressed.

The number of OTUs observed in each library, Shannon’s
diversity, and Pielou’s evenness, were calculated using the
BiodiversityR package in R (Kindt and Coe, 2005). Differences in
overall bacterial community composition between samples were
visualized with non-metric multidimensional scaling (NMDS)
based on Bray–Curtis similarity using the metaMDS function
in the vegan R package (Oksanen et al., 2015). Co-occurrence
network analyses based on Pearson’s correlations were used to
examine relationships among OTUs and external variables (i.e.,
experimental treatments and bacterial production). Networks
were generated using the Cytoscape CoNet plugin version
1.1.1.beta and were visualized in Cytoscape version 3.4.0
(Shannon et al., 2003; Faust et al., 2012). The R code used for
all data analysis and figure production can be accessed at https:
//github.com/cmluria/DOM.

RESULTS

Our experiments spanned the winter-to-late spring period
(August–December 2013), which was characterized by relatively
constant environmental conditions (Supplementary Figure 1)
compared to the onset of an intense phytoplankton bloom
in summer, January 2014 (Luria et al., 2016). During the
winter-to-late spring period, there was a slight uptick in
leucine incorporation rates (hereafter bacterial production) in

FIGURE 1 | Bacterial abundance and leucine incorporation rate (production)
in near shore surface water that was used in the dissolved organic matter
(DOM) addition mesocosm experiments, August – December 2013
(average ± standard deviation, n = 3). Shaded bars indicate the timing of the
four DOM addition experiments.

October and again in December (Figure 1). These changes in
bacterial production corresponded to modest spikes in chl a
concentration, suggesting a slight spring bloom (Supplementary
Figure 1). To put these changes in context, peak chl a during
the January summer bloom was ∼20 µg L−1 and bacterial
production was ∼120 pmol L−1 h−1 (Luria et al., 2016).
Nevertheless, temporal changes were already underway in the
environment during the winter-to-late spring period.

Bacterial abundance and production increased over time in
both control and DOM+ mesocosms, but increases were more
rapid in the DOM+ mesocosms than in controls (Figure 2).
As samples for bacterial production were not filtered, these
measurements included both free-living and particle attached
bacteria (and archaea). The DOC concentration in DOM+
or control mesocosms did not change significantly during
incubations, indicating that most of the added or ambient DOC
was non-labile (Supplementary Table 1). Changes in POC and
PN provided further evidence for growth of bacteria during
experiments (Supplementary Figure 2). Chl a and inorganic
nutrients did not show consistent differences between treatments
(Supplementary Figure 3). Based on comparisons of linear
models, bacterial abundance was more significantly influenced
by DOM treatment (p = 0.0002, F = 15.9) and incubation day
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FIGURE 2 | Bacterial abundance and production and observed OTU richness over the course of four mesocosm experiments (average ± standard deviation, n = 3).

(p = 6e-12, F = 76.5) than by what month the experiment
was conducted (p = 0.01, F = 3.9) (Supplementary Table 2).
Bacterial production was significantly influenced by all three
factors (p < 0.005, F > 9). OTU richness of free-living
bacteria declined in all experiments regardless of treatment
(Figure 2). Evenness and Shannon diversity also declined in
most mesocosms (Supplementary Figure 4). Incubation day
and month of experiments had a significant effect on richness
(p < 0.0001), while any effect of the DOM treatment was too
small to pass the p < 0.05 cutoff (p= 0.08). Bacterial community
composition in controls and the f/2 treatment were similar
(Supplementary Figure 5).

Non-metric multidimensional scaling based on Bray–
Curtis similarity demonstrated changes in overall free-living
bacterial community composition across experiments (Figure 3).
NMDS axis 1 reflected changes in community composition
by incubation day. Changes in controls represent container
effects, while changes in DOM+ treatments beyond controls
reflect the influence of DOM addition. There were more
rapid and greater changes in DOM+ treatments compared
to controls. Axis 2 reflected differences in community
composition between the start and end of the first two
experiments (August/September) compared to the second

two experiments (October/December). The grouping by
August/September compared to October/December reflected
differences in starting community composition between the two
periods. The relative change in overall community composition,
as reflected in the NMDS, was of similar magnitude across
experiments.

The top 12 OTUs of free-living bacteria (by mean relative
abundance across all samples) together represented 50–75%
of all sequences. In all four experiments, OTUs classified as
Pelagibacteraceae, Oceanospirillales, and SAR324 declined over
time, while OTUs classified as Collwelliaceae and Polaribacter
increased in relative abundance over time (Figure 4). Although
the most abundant Collwelliaceae OTU (819278) displayed
container effects, it had higher relative abundances in DOM+
mesocosms than controls on day 6 in August/September and
on day 6 or 10 in October/December, indicating a response
to DOM addition beyond container effects (Figure 4 and
Supplementary Figure 6). A different Collwelliaceae OTU
(776657) only increased in DOM+ mesocosms and not in
controls, indicating a consistent response to DOM addition as
the season progressed (Figure 4 and Supplementary Figure 6).
The relative abundance of the most abundant Collwelliaceae
OTU (819278) and another Collwelliaceae OTU (6644016)
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) of Bray–Curtis
similarity indices based on OTU relative abundance across all four
experiments. Each point corresponds to an individual mesocosm replicate
(n = 3 per time point per treatment). All samples from all experiments are
shown in each panel. Within each panel, a different experiment is highlighted
with different colors corresponding to different sample days (0, 6, and 10),
with the other experiments shown in gray. Control mesocosm communities
are denoted by circles and DOM+ mesocosm communities are denoted by
triangles.

shifted between August/September and October/December.
This shift corresponded to a smaller but significant in situ
increase in the relative abundance of Polaribacter (907828) in
October/December compared to August/September, suggesting
that the higher starting abundance of Polaribacter (907828)
ultimately led to its higher final abundance in October/December.
Of the top 12 OTUs, 6 varied in relative abundance by 5% or more
at one or more time points between the DOM+ and control
communities (Supplementary Figure 6). Rhodobacteraceae
(812461), Oceanospirillales (884345), and Pelagibacteraceae
(838668) had similar or lower relative abundances in DOM+
mesocosms compared to controls. Polaribacter (907828)
displayed both positive and negative effects between DOM+ and
controls at different times, but it always showed an increase in
relative abundance after the start of experiments, irrespective of
treatment (Figure 4).

We identified a sub-network of OTUs that were significantly
associated with either the control group or the DOM treatment
(r > 0.5; Figure 5). All of the OTUs that were positively correlated
with DOM+ were classified as Gammaproteobacteria, including
Collwelliaceae. Different OTUs identified as Collwelliaceae,
reflected diversity within this family of bacteria. A few
OTUs in this sub-network were negatively correlated with
the control. A second sub-network linking OTUs to bacterial
production showed that four Collwelliaceae OTUs correlated
positively with bacterial production. Alphaproteobacteria OTUs,
over half of them classified as Pelagibacteraceae, as well as
two Gammaproteobacteria, HTCC2089 and HTCC2188, were
negatively correlated with bacterial production (r > 0.7).

DISCUSSION

Phytoplankton blooms and the resulting release of labile DOM
are thought to be a major driver of marine bacterial community
composition. Observational studies have shown that bacterial
community composition and activity vary during phytoplankton
blooms (Pinhassi and Hagström, 2000; Fandino et al., 2001; West
et al., 2008; Tada et al., 2011; Teeling et al., 2012; Klindworth
et al., 2014; Wemheuer et al., 2015). Similarly, the composition of
DOM has been shown to change during phytoplankton blooms
(Zhang et al., 2015; Sperling et al., 2017). This body of work
suggests that bacterial succession is coupled to different stages of
DOM decomposition through changes in relative abundance of
bacterial groups with different metabolic strategies and substrate
preferences (Cottrell and Kirchman, 2000; Alonso-Sáez and
Gasol, 2007; Poretsky et al., 2010; Rinta-Kanto et al., 2012;
Sarmento and Gasol, 2012; Teeling et al., 2012). This pattern
has been cited as evidence in support of niche partitioning,
which may relieve competition between taxa and help explain
high microbial diversity (Hutchinson, 1957; Teeling et al., 2012;
Alexander et al., 2015). Alternatively, some studies have found
that changes in DOM supply only slightly affect bacterial
community composition, suggesting that physiological responses
of metabolically versatile bacteria may be a factor, in addition to
niche partitioning (Kirchman et al., 2004; Rooney-Varga et al.,
2005; Rink et al., 2007).
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FIGURE 4 | Changes in the mean relative abundance of the top 12 OTUs (by mean relative abundance) across all samples (n = 3). Note that the y-axis does not go
up to 1 as the top 12 OTUs are shown instead of all OTUs.
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FIGURE 5 | Sub-networks of highly correlated OTUs built around (A) treatment level (control vs. DOM+; r > 0.5) and (B) bacterial production (r > 0.7). Solid, gray
lines represent positive correlations; dashed, red lines represent negative correlations. Closest taxonomic identification and reference number (in parentheses) are
given for each OTU. “NRO” in the reference number indicates a new reference OTU, i.e., an OTU generated through Qiime’s open reference OTU picking pipeline
from sequences that did not initially match against the Greengenes database.

There is growing evidence that labile organic matter
availability is a primary factor controlling bacterial growth and
community composition in the Southern Ocean (Thingstad and
Martinussen, 1991; Kirchman et al., 2009; Ducklow et al., 2012;
Kim et al., 2014; Luria et al., 2016). However, directly testing

the effects of phytoplankton-derived DOM on bacterial seasonal
succession has proven challenging. Mesocosm experiments, like
the one we conducted here, have traditionally relied on adding
low molecular weight compounds like glucose or amino acids
(Havskum et al., 2003; Allers et al., 2007; Gómez-Consarnau
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et al., 2012). For example, Ducklow et al. (2011) demonstrated
that glucose enrichment of WAP seawater reduced bacterial
diversity. Using more complex DOM substrates derived from
phytoplankton cultures, several recent studies have shown that a
wider range of bacterial taxa responds readily to phytoplankton,
especially diatom-derived DOM, and that DOM originating from
different phytoplankton species stimulates different bacterial
phylogenetic groups (Romera-Castillo et al., 2011; Nelson and
Carlson, 2012; Sarmento and Gasol, 2012). Conversely, Landa
et al. (2014) and Sharma et al. (2014) found that varied
natural DOM sources did not have differential effects on
bacterial community composition despite variation in carbon
quality and quantity. We selected the diatom T. weissflogii as
a DOM source. Other species of Thalassiosira are widespread
in the WAP region, suggesting that the DOM that we added
could be a good analog for DOM exudates for part of the
phytoplankton community. However, the quantity and quality
of DOM exuded by phytoplankton vary with species and
physiological state and DOM from a single source (one species
in one growth phase) does not represent the entire spectrum
of changes in DOM composition and supply that probably
occur during a phytoplankton bloom (Becker et al., 2014;
Landa et al., 2014). Similarly, the isolation technique that we
used selects for hydrophobic DOM and does not efficiently
concentrate very polar compounds. We assume that qualitatively
our DOM extracts contained many of the same compounds
or types of compounds produced by microbes in seawater.
However, we recognize that the amounts and specific details
of the compounds will be different. The concentration of
DOC that we added is in the range of temporal variation
at our study location. Background DOC based on deep-water
samples is ∼40 µmol L−1 and nearshore surface water early
in spring is around this concentration, consistent with the
pattern that we observed in the environment during our study
(Supplementary Figure 1). DOC increases and becomes more
variable as the season progresses and phytoplankton blooms
develop (average ± standard deviation of 51 ± 11 µmol
L−1) (Ducklow, 2017), similar to other coastal polar locations
(Kirchman et al., 2009).

In our experiments, temporal changes in controls followed
those that occurred in DOM treatments, indicating container
effects of increasing cell numbers of rapidly growing bacteria of
certain taxonomic groups over others (Zobell, 1943; Ferguson
et al., 1984; Eilers et al., 2000; Massana et al., 2001). Polaribacter
are heterotrophs that target high molecular weight organic matter
and increase rapidly during phytoplankton blooms in coastal
Antarctic waters (Fernández-Gómez et al., 2013; Williams et al.,
2013; Luria et al., 2016). The relative abundance of Polaribacter
increased rapidly in our experiments, similar to other incubation
experiments of coastal Antarctic waters (Massana et al., 2001;
Landa et al., 2016). The specific Polaribacter OTU (907828)
that increased in our experiments was also abundant in the
environment, reaching peak relative abundance of 20–50% of
sequences at our study location, depending on the year (Luria,
2016; Luria et al., 2016). The most abundant Collwelliaceae
OTU (819278) in our experiments, showed strong increases in
controls, but also consistent increases in DOM treatments over

controls. A different Collwelliaceae OTU (810446) increased
rapidly in relative abundance in the environment (up to ∼30%
of sequences, depending on the year) during the primary
phytoplankton bloom in our study area (Luria, 2016; Luria
et al., 2016). Based on flow cytometry of bacterioplankton in
our study area, Bowman et al. (2017) found an increase in
the proportion of high nucleic acid bacteria compared to low
nucleic acid bacteria during a phytoplankton bloom, indicating
a physiological shift in bacterial communities in addition
to taxonomic changes. Colwellia spp. are commonly isolated
psychrophiles from polar sea-ice or deep-sea environments
and model organisms of psychrophily, reflecting their capacity
for rapid growth in cold environments (Deming et al., 1988;
Bowman et al., 1997; Methé et al., 2005). Based on culture-
independent techniques, Colwellia spp. had a high relative
abundance in deep Antarctic coastal waters, associated with
sinking Phaeocystis particles (Delmont et al., 2014). Conditions
conducive to rapid growth of bacterioplankton occur in Antarctic
coastal waters and these types of bacteria were favored in our
experiments.

In our experiments, we observed differences in bacterial
production and community composition that corresponded to
different times during the winter-to-late spring period. Bacterial
production in the mesocosms decreased from August/September
to October/December, indicating the study period was split
into two phases, rather than changing constantly in one
direction or another, as we initially hypothesized. Subtle
changes in the environment that occurred before our October
experiment, as reflected in chl a and bacterial production,
might be related to the shift that we observed. Rather than
a decrease in magnitude of overall changes in community
composition between the two periods, we observed a shift in
community composition from Collwelliaceae OTUs (819278
and 6644016) in August/September to Polaribacter (907828) in
October/December. This shift appears to be caused by changes
in the relative abundance of Polaribacter (907828) in the starting
seawater, which seemed to enable Polaribacter (907828) to
outcompete the two Collwelliaceae OTUs (819278 and 6644016)
in the October/December experiments. Meanwhile, another
Collwelliaceae OTU (776657) did not appear to be affected by
the increase in relative abundance of Polaribacter (907828). The
factors that governed the negative relationship between OTUs are
not clear but could be related to competitive interactions, direct
antagonism, or differential top-down control (Fuhrman, 2009).
Our study suggests that diversity within the Collwelliaceae could
have functional implications for interactions among other taxa of
bacterioplankton during phytoplankton bloom periods.

Despite longstanding debate about the role of temperature
in regulating bacterial production (Pomeroy and Wiebe, 2001;
Kirchman et al., 2009), a decade-scale study found that the
relationship between bacterial production and temperature
varied from year to year and was even negative in some years
(Ducklow et al., 2012). In our study, although August mesocosms
were incubated at 3◦C, changes in community composition
between August and September were similar. Ducklow et al.
(1999) found no effect of increasing temperature from 2◦ to
4◦C on bacterial production in incubations of Ross Sea water.
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Differing bacterial mortality rates in the initial source water
might have been a factor. Predation in WAP waters has
been shown to increase exponentially with temperature and
during natural or simulated phytoplankton blooms (Bird
and Karl, 1991; Duarte et al., 2005; Garzio et al., 2013).
Brum et al. (2016) found that viral abundance and lysogeny
increased during the spring-to-summer transition in our
study region. Bowman et al. (2017) further suggested the
importance of top-down controls in structuring bacterial
communities in Antarctic coastal waters in addition to bottom-up
controls.

Our initial hypothesis of change in bacterial community
responses as the season progressed was grounded in the niche
model of community assembly wherein similar environmental
conditions (e.g., DOM enrichment) select for the same or
similar species from a diverse initial species pool, producing
communities with similar structures (Fuhrman et al., 2006).
This contrasts with the neutral model of community assembly
in which stochastic forces, including growth, dispersal, and
mortality are dominant forces in community assembly (Hubbell,
2001). While the differences we observed may be governed by
factors that we did not consider (i.e., predation), our findings
could be interpreted as priority effects in which variation in
the initial relative abundance of species alters final community
structure in addition to environmental filtering (Drake, 1990;
Chase, 2007; Fukami and Nakajima, 2011; Nemergut et al.,
2013). Although priority effects have been demonstrated for
sequential colonization of a site by microbes, the application
of this concept to slight numerical advantages in a complex
initial inoculum is less clear (Warren et al., 2003; Jiang
and Patel, 2008; Peay et al., 2010). Strong inter-annual and
long-term climate change drives variation in WAP sea ice
extent and duration and hence the timing and intensity of
phytoplankton blooms (Smith et al., 2008). Subtle changes in
bacterial community composition during spring set the stage
for the ultimate trajectory of bacterial succession upon DOM
addition.
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