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Highly resistant microorganisms (HRMOs) may evade screening strategies used in
routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a
selective advantage in the nosocomial environment. Evasion of resistance detection
can result from the following mechanisms: low-level expression of resistance genes
not resulting in detectable resistance, slow growing variants, mimicry of wild-type-
resistance, and resistance mechanisms that are only detected if induced by antibiotic
pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past
5 years. Remarkably, many outbreaks including major nation-wide outbreaks were
caused by microorganisms able to evade resistance detection by diagnostic screening
tests. We describe various examples of diagnostic evasion by several HRMOs and
discuss this in a broad and international perspective. The epidemiology of hospital-
associated bacteria may strongly be affected by diagnostic screening strategies. This
may result in an increasing reservoir of resistance genes in hospital populations that is
unnoticed. The resistance elements may horizontally transfer to hosts with systems for
high-level expression, resulting in a clinically significant resistance problem. We advise
to communicate the identification of HRMOs that evade diagnostics within national and
regional networks. Such signaling networks may prevent inter-hospital outbreaks, and
allow collaborative development of adapted diagnostic tests.
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INTRODUCTION

Diagnostic screening provides hospitals a level of immunity to antibiotic resistance. When highly
resistant microorganisms (HRMOs) are detected, transmission can be limited by treating the
patient with isolation precautions. In addition, the carriage of HRMOs can be suppressed by
antibiotic treatment or, in case of methicillin resistant Staphylococcus aureus (MRSA), even be
eradicated. If the introduction of HRMOs in hospitals remains undetected, these bacteria can
disseminate from patient-to-patient, and the mobile genetic elements carrying resistance genes
can horizontally transfer from species-to-species. Thus, the epidemiology of nosocomial resistance
may strongly be affected by our diagnostic screening strategies. Moreover, we postulate that evasion
of diagnostic resistance screening could be considered as a critical factor for infection of hospitals
with antibiotic resistance elements, similar to the concept that immune evasion is a critical factor
of pathogens to infect the human host.
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The Netherlands is a high-resource country. Surveillance
on HRMOs is extensive in Dutch hospitals. For this, the
Dutch situation is very proficient to observe effects of
diagnostic screening on the characteristics of HRMOs that
cause nosocomial outbreaks. The Dutch Society for Medical
Microbiology (NVMM) provides guidelines for the detection
of the HRMOs (Working group members NVMM, 2012). For
the detection of HRMOs such as carbapenemase-producing
Enterobacteriaceae (CPE), vancomycin-resistant enterococci
(VRE), extended spectrum beta-lactamase (ESBL) – producing
bacteria and MRSA, selective broth and/or selective media
are used. Nosocomial outbreaks with HRMO are reported
to “Hospital Acquired Infection and Antimicrobial Resistance
Monitoring Group”, and the reports are communicated to clinical
microbiologists. We searched these reports for outbreaks with
micro-organisms harboring resistance mechanisms that were
able to evade detection by routine diagnostics. In addition, we
evaluated data from our hospital, and searched literature for
outbreaks to assess the importance of diagnostic evasion. We
here present the most explicit examples of CPE, VRE, ESBL-
producing bacteria and MRSA outbreaks caused by isolates
harboring diagnostic-evasive resistance mechanisms.

Diagnostic Evasion by CPE
In the Netherlands, the national laboratory guideline
recommends the following screening strategy for the detection
of HRMOs: a screening step, a genotypic confirmation
step and an optional phenotypic confirmation step (Cohen
Stuart et al., 2010; Working group members NVMM, 2012).
According to this guideline, Enterobacteriaceae with an MIC for
meropenem ≥ 0.50 mg/L, or imipenem ≥ 2.0 mg/L should be
evaluated by molecular tests for carbapenemase gene detection.
Optional phenotypic tests, which include the modified Hodge
test, and tests based on inhibition of metallo-betalactamases by
EDTA, and Class A carbapenemases by phenyl-boronic acid,
may be used if genotypic confirmatory tests are not immediately
available. Newer tests for non-genotypic detection of CPE
include the carba-NP test, carbapenem-inactivation method
(CIM-test), and immunochromotographic tests (Nordmann
et al., 2012; van der Zwaluw et al., 2015; Dortet et al., 2016;
Literacka et al., 2017). Genotypic confirmation comprises PCR
and sequence based methods. Next-gen-sequencing facilities
are increasingly accessible for routine diagnostic laboratories.
This allows whole-genome sequence-based carbapenemase gene
detection. In addition, specific primer/probe combinations for
unique markers of an outbreak strains may be designed for
high-throughput diagnostics to control outbreaks (Deurenberg
et al., 2017).

Despite this huge arsenal of CPE-detection methods, CPEs
are still able to evade our diagnostic screening strategies.
In the Netherlands, an inter-hospital outbreak with OXA-
48-producing Enterobacteriaceae from 2009 to 2011 has been
reported (Dautzenberg et al., 2014). The outbreak had been
uncontrolled for 2 years. The plasmids carrying blaOXA−48
had disseminated to 15 (sub)- species. Predominantly OXA-48-
producing Escherichia coli and Klebsiella pneumoniae isolates
were detected. Heterogeneity in resistance to carbapenems

within, and across the OXA-48-producing species was observed.
All OXA-48-producing E. coli isolates had meropenem MICs of
<1 mg/L, a concentration that is commonly used in screening
plates, whereas the meropenem susceptibility breakpoint for
meropenem is 2 mg/L according to EUCAST (EUCAST, 2017). In
addition, if the OXA-48 was not co-expressed with an ESBL gene,
no hydrolysis of 3th generation cephalosporins was detected in
the majority of isolates. These diagnostic stealth-features have
undoubtedly contributed to the magnitude of this outbreak.

The emergence and spread of OXA-48 producing CPEs have
been reported in several countries in Europe (Grundmann et al.,
2017). The outbreaks concerned predominantly K. pneumoniae
clones. A successful K. pneumoniae clone carrying OXA-48 is
ST11, reported in many countries (Lee et al., 2016), amongst
others in Greece (Voulgari et al., 2013), Spain (Oteo et al., 2015),
and Belgium (De Laveleye et al., 2017). Other clones associated
with OXA-48 are ST14, ST15, ST101, SST147, and ST405 (Liapis
et al., 2014; Oteo et al., 2015; Lee et al., 2016). In a Belgian
multi-center study, less than 50% of CPEs were carbapenem
non-susceptible (De Laveleye et al., 2017).

Given the fact that OXA-48 is difficulty to detect, there
is a need to adapt surveillance strategies to detect CPEs.
The EUCAST-guideline advises to screen for CPE if isolates
have a MIC to meropenem > 0.12 mg/L (EUCAST,
2017). Unfortunately, widely used automated susceptibility
testing (AST) systems do not detect MICs below 0.5 mg/L.
The meropenem MIC distribution of OXA-48-producing
Enterobacteriaceae, however, shows a peak at MIC = 0.25 mg/L
(Fattouh et al., 2015). These isolates will remain undetected if
screened by AST only.

When using screening cut-off MICs for CPE detection, which
are lower than the susceptibility cut-offs, the sensitivity is still
just 80% (Huang et al., 2014). Mainly OXA-48-, and some VIM-
producers would remain undetected using meropenem screening
cut-offs. Since carbapenem-resistant isolates are usually send
to reference centers for CPE detection, this may result in
an underestimation of true prevalence numbers (Kaase et al.,
2016). In our hospital, we use both culture on screening agars
and carbapenemase gene detection directly on rectum samples
in patients with a high risk on CPE-carriage to increase the
sensitivity of surveillance cultures (Bathoorn et al., 2013). Direct
screening of rectal swabs for carbapenemases by real-time PCR
performed on enrichment broth showed a higher sensitivity than
culturing on selective agar plates (Singh et al., 2012). However,
relying on genotypic tests alone may also be a pitfall. For instance,
molecular panels for detection of CPE may have a limited number
of carbapenemase gene targets. CPEs that are not detected by
the panel may have an evolutionary advantage caused by the
limitations of this diagnostic method.

Diagnostic Evasion by VRE
A second example of successful diagnostic evasion by HRMOs
is the nationwide emergence of nosocomial outbreaks with
vancomycin-resistant Enterococci (VRE) in the Netherlands.
In the period 2012–2014, 26 outbreaks with VRE have
been reported, including reports of local and inter-hospital
transmissions (van der Bij et al., 2015). Outbreaks predominantly
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occurred with VanA- and VanB-type Enterococcus faecium, that
confer resistance to glycopeptides. VanB VRE can easily remain
undetected by culturing in routine diagnostics. In addition to
the fact that fecal VRE carriage often is detected in very low
amounts, vancomycin resistance in vanB VRE is not always
expressed. These diagnostic challenges have been an important
factor in the ongoing transmission of VRE in hospitals in the
Netherlands. Several phenotypic screening methods, such as
the use of chromogenic agars, have been suggested to identify
vanB VRE with varying vancomycin MICs (Klare et al., 2012).
However, VRE suspected colonies growing on Chrome-agars
may test vancomycin susceptible in routine AST systems despite
positive genotypic confirmation of vanB. This could lead to an
unnoticed and uncontrolled spread of vanB VRE.

In our hospital, patients are screened on a PCR-based method
for VRE on admission at the intensive care unit and if patients
are transferred from or recently have been admitted in another
hospital in the Netherlands or a foreign hospital. If an unexpected
VRE case is found, screening is performed in those patients who
are at risk of VRE transmission.

We have reviewed VRE data from 2013 to 2016 in our
own hospitals. We searched for all VRE positive patients
and selected their first VRE sample. A total of 106 patients
were found, all isolates were vanB E. faecium. Of these vanB
VREs, 26 isolates (24.5%) were tested vancomycin-susceptible
by Vitek2 (bioMérieux) according to the EUCAST susceptibility
breakpoint of ≤4 mg/L (European Committee on Antimicrobial
Susceptibility Testing, 2014). Vancomycin 5 µg paperdisks
(Becton Dickenson) were used to phenotypically detect the
resistance mechanism, which showed an hazy edge also in
the vanB positive vancomycin-susceptible isolates. Of these 26
isolates, 24 were outbreak related (92.3%). The two non-outbreak
related isolates in the vancomycin-susceptible group were found
in a patient transferred from another Dutch hospital and in a
patient transferred from a foreign hospital. The other 80 isolates
(75.5%) were tested resistant to vancomycin. Of these, 65 isolates
(81.3%) were outbreak related (Figure 1). The 15 non-outbreak
related isolates in this group were from the surveillance cultures
of patients transferred from hospitals abroad (n = 1), patients
transferred from other Dutch hospitals (n = 2), in patients
admitted to the ICU (n = 8), and in clinical samples (n = 4).
Noticeably, among these 80 patients with vancomycin-resistant
vanB, we also detected vanB positive vancomycin-susceptible
E. faecium isolates in follow-up samples from 13 patients. These
results are in line with reports in literature. A VRE outbreak in
a neonatal ICU in Germany has been reported, in which even
55% of the vanB positive VRE isolates were tested vancomycin
susceptible (Werner et al., 2012). These data show the possible
pitfalls in detecting vanB VRE in a significant population when
only using phenotypic screening tests.

Pitfalls in detecting vanA VRE have been described due to an
altered phenotype of vanA VRE. The expression of teicoplanin
resistance can be heterogenous conferring into a VanB phenotype
(Park et al., 2008). Moreover, isolates can even test vancomycin
susceptible due to a silenced vanA gene which can easily lead
to uncontrolled outbreaks (Gagnon et al., 2011; Sivertsen et al.,
2016).

FIGURE 1 | Number of first VRE (all vanB Enterococcus faecium) isolates from
patients during 2013–2016 and their corresponding MIC values. The dashed
line represents the vancomycin susceptibly breakpoint of 4 mg/L.

In a multicenter study, the EUCAST disk diffusion method
performed significantly better than the Vitek2 system for the
detection of clinical enterococci isolates with low and medium
level vancomycin resistance (Hegstad et al., 2014). For rapid
detection of VRE carriage, diagnostic strategies using selective
enrichment broths and molecular detection can be used to
increase the sensitivity of diagnostic procedures (Zhou et al.,
2014). Based on above findings, genotypic testing of invasive
vancomycin-susceptible enterococci by PCR can be advised.
All three diagnostic strategies are being used in our routine
diagnostic laboratory.

Diagnostic Evasion by MRSA
To detect MRSA carriage, the Dutch laboratory guideline
recommends to take samples of the throat, nose, and perineum
(Working group members NVMM, 2012). Additional body sites
should be sampled depending on clinical signs such as wounds,
productive cough, skin lesions, or indwelling catheters. To
optimize the sensitivity of the cultures, incubation in relatively
non-selective enrichment salt-only broths is recommended,
followed by culturing for 48 h on selective MRSA screening agars.
Additional rapid molecular test are recommended in case of
urgency.

In the Netherlands, patients with risk factors for MRSA–
carriage such as recent hospitalization abroad, or farm workers
at pig farms, cattle farms, or poultry farms are treated upon
admission in strict isolation until rapid PCR-based diagnostics
are negative. In case of MRSA carriage, patients are treated in
isolation and MRSA eradication therapy can be started. This is
known as the search and destroy policy (Wertheim et al., 2004).
However, PCR-based diagnostics for screening alone would not
detect all cases of MRSA-carriage. In a meta-analysis, a sensitivity
of 92.5% for the overall pooled PCR estimate has been reported,
with a high level of heterogeneity among the studies (Luteijn
et al., 2011). PCR-based false negative MRSA results are in
our experience usually in patients with a low-level carriage
of MRSA. In these cases, culture on chromogenic agar after

Frontiers in Microbiology | www.frontiersin.org 3 November 2017 | Volume 8 | Article 2128

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02128 November 1, 2017 Time: 19:0 # 4

Zhou et al. Diagnostic Evasion of Highly-Resistant Microorganisms

incubation in broth is more sensitive. In our hospital we use the
GeneXpert, an automated PCR-based method to detect MRSA.
The lower detection limit for the Xpert MRSA SA nasal assay is
about 70 colony forming units (CFUs)/sample according to the
manufacturer.

A second reason for failure to detect MRSA is that sporadic
Staphylococcal Cassette Chromosome mec (SCCmec)-cassette
subtypes, which are a common target in commercial tests, may
not be detected by PCR. There is a high diversity in SCCmec-
cassettes: already 11 SCCmec-types and numerous subtypes have
been designated (Liu et al., 2016). The detection of SCCmec by
PCR-based tests is still improving, and the coverage has expanded
over the recent years. However, since there may be shifts in
common lineages, we should be aware of sporadic nosocomial
MRSA that may emerge as successful clones, and are undetectable
by commercial tests (Kinnevey et al., 2014). Variety in the
mecA/mecC target may also result in failure of MRSA detection
by PCR. For instance, MRSAs with the divergent homolog mecA
(mecALGA251) would not be detected by the Xpert MRSA assays
(Garcia-Alvarez et al., 2011).

False-negative PCR results may have a considerable impact
in hospitals. Since patients are discharged from strict isolation
after negative PCR results, the isolate has an opportunity to
spread until the MRSA is identified by culture and the patient
is in strict isolation again. To prevent further spread, contact
investigations among patients in the same room and health
care workers are performed in these cases in the Netherlands.
Since PCR-based detection is not reliable in screening for such
isolates, the investigation of contacts has to be performed
by culture, which delays the time to detection of secondary
transmissions.

Not only PCR-based diagnostics, but also culture-based
detection may be evaded by MRSA. In 2014, clinical
microbiologists were alerted by a report of the monitoring
group on an outbreak with a MRSA strain that could easily
be missed by routine diagnostics. Although the numbers of
transmissions were largely reduced, total control of the outbreak
was difficult due to detection problems using conventional
culturing. The mecA-positive isolate was difficult to culture as the
oxacillin MIC was low, ranging from 0.5 to 6.0 µg/mL. Growth
on ChromIDTM MRSA agar (bioMérieux) plates was strongly
inhibited. We tested the outbreak isolate in our own laboratory
and found a more then 10-fold decrease in colony numbers
if cultured on ChromIDTM MRSA plates compared to blood
agar, resulting in a detection limit on ChromIDTM MRSA below
0.5 × 103 colonies/100 µL. Molecular testing and prolonged
subculturing in broths was advised to detect this isolate.

Diagnostic Evasion by ESBL
Extended spectrum beta-lactamase-detection can be complicated
in natural AmpC-producers such as Citrobacter freundii,
Enterobacter spp., Hafnia alvei, Morganella morganii, Serratia
spp. and Providencia spp, since it mimicks their natural resistance
pattern. Antibiotics can select for mutants with derepressed
AmpC expression, resulting in resistance to cephalosporins
during therapy. Thus, antibiotic treatment with cephalosporins
is not recommended (Livermore et al., 2004). Presence of natural

AmpC alone is no condition for HRMO and infection prevention
measures.

However, in 2015, several outbreaks in various hospitals in
the Netherlands were reported with natural AmpC-producing
Enterobacteriaceae that acquired additional ESBL genes. This
has no consequences for antibiotic therapy choices, however,
infection prevention measures need to be taken.

This combined “AmpC-plus-ESBL” phenotype is difficult to
distinguish from derepressed-AmpC wild-type resistance. The
Dutch laboratory guideline recommend to use cefotaxim and/or
ceftazidim to screen for ESBLs with cut-off MIC values for both
cephalosporins of >1 mg/L. This screening strategy is also for
Enterobacteriaceae with natural AmpCs. This leads to many
false positive results due to derepressed AmpCs. Phenotypic
confirmation based on inhibition ESBL activity by clavulanic
acid or cefepime hydrolysis by disk diffusion, Etest or broth
microdilution methods is recommended.

Natural AmpC-producing Enterobacteriaceae that acquired
additional ESBL genes are common in Dutch nosocomial isolates.
Citrobacter freundii and Enterobacter cloacae showed the highest
percentages of confirmed ESBL co-producers: 3% of Citrobacter
freundii (total n = 9.432), and 2% of Enterobacter cloacae
(n = 28.027) were recorded by the Dutch national antibiotic
resistance surveillance system (ISIS-AR). Microbiologist were
explicitly warned for outbreaks with these difficult to detect
HRMOs in a report by the monitoring group.

The substantial presence of ESBLs in Enterobacteriaceae with
natural AmpCs has been underlined in an Asian study (Choi
et al., 2007). The ESBLs confer additional resistance to fourth
generation cephalosporins, compared to the natural broad-
spectrum AmpCs. These isolate may represent a hidden reservoir
of ESBL-carrying plasmids, which can transfer across species.
Numerous outbreaks with ESBL natural AmpC producers have
been reported in international literature (Mezzatesta et al., 2012).
Since resistance to 3th generation cephlosporins is very common
in natural AmpC producers that do not carry ESBLs (Jacobson
et al., 1995), the dissemination of ESBL-carrying isolates in
hospitals may remain unnoticed.

IMPLICATIONS AND FUTURE
DIRECTIONS

We observed that highly-resistant microorganisms adapt to evade
screening strategies. One can consider this process as a prey
that evolves to escape from predators. Microbiologists, in their
evolutionary role as predators hunting for HRMOs, also have to
keep on innovating to update the detection strategies for these
micro-organisms that are trying to evade. This may result in an
arms race. In evolutionary biology, such an arms race is known
as the Red Queens hypothesis (Castrodeza, 1979). The name of
the theory is based on a quote from Lewis Carroll’s Through the
Looking-Glass: “Now, here, you see, it takes all the running you
can do, to keep in the same place. If you want to get somewhere
else, you must run at least twice as fast as that!”

To run twice at fast, communication within networks of
health care professionals is crucial. In our perspective, we
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described examples of how Dutch clinical microbiologist were
alarmed by a national monitoring group on successful HRMOs
that evade routine screening tests. Specific recommendations
to adjust diagnostic strategies to detect these pathogens were
provided. Additionally, rapid communication within regional
networks is of utmost importance. Inter-hospital patient traffic
is highest between hospitals in the same regions. As a
consequence, hospitals within the same region are at immediate
risk of introduction of HRMOs that evade diagnostics and
cause outbreaks. We recommend to identify your region of
hospitals that are most connected by patient traffic, and set-up
communication networks to alarm for difficult to detect HRMO’s.
Experiences and adjusted diagnostic screening tests should be
shared within these networks. Such a regional approach has
successfully been applied in the control of MRSA in the Dutch-
German cross-border region (Jurke et al., 2013).

We should be aware of the impact of our diagnostics on the
introduction and dissemination of resistance elements in our
hospitals. The Government of the Netherlands has a national
and international mission to combat antimicrobial resistance
(AMR). Therefore the NVMM has composed a vision document
to maintain the low prevalence of CPE in the Netherlands

(Kluytmans et al., 2015). By taking CPE as a biological indicator,
it is implicitly assumed that other HRMOs will be included
in the combat of AMR. To realize the goals, it is of utmost
importance that diagnostic methods are continuously innovated
and used.

We are aware that optimizing diagnostic screening will
increase costs. On the other hand, our examples have shown
that failure of detection by routine diagnostics may lead to
uncontrolled outbreaks. These outbreaks can lead to enormous
financial expenses; costs may rise up to €1,369 per patient per day
(Dik et al., 2016). Moreover, detection of HRMO carriage allows
for directed antibiotic treatment of patients developing infections
by these HRMOs.

Cost reductions in innovation of diagnostics for screening
purposes are foretold to result in nosocomial outbreaks with
HRMOs evading our screenings methods. We would be
outsmarted by prokaryotes.
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