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Candida parapsilosis is a major cause of hospital-acquired infection, often related to
parenteral nutrition administered via catheters and hand colonization of health care
workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate
of 30% points to the pressing need for new antifungal drugs. The present study aimed
at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further
referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis
characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11
anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic
activity, and observation of sessile cell morphology on polystyrene microtiter plates
and using an in vitro model of catheter-associated C. parapsilosis biofilm production.
Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal
development and extracellular matrix production upon peptide exposure were evaluated
by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory
effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent
manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a
statistically significant dose-dependent reduction of preformed-biofilm cellular density
and metabolic activity at high peptide concentrations only. Interestingly, when assessed
in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability
at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced
anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was
used as experimental condition on both early and preformed C. parapsilosis biofilm.
Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key
biofilm related genes. The overall findings suggest hLF 1-11 as a promising candidate
for the prevention of C. parapsilosis biofilm formation and to treatment of mature
catheter-related C. parapsilosis biofilm formation.

Keywords: Candida parapsilosis, biofilm, antimicrobial peptides, hLF 1-11, catheter-related infection

Frontiers in Microbiology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 2218

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02218
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02218
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02218&domain=pdf&date_stamp=2017-11-13
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02218/full
http://loop.frontiersin.org/people/452522/overview
http://loop.frontiersin.org/people/452532/overview
http://loop.frontiersin.org/people/408394/overview
http://loop.frontiersin.org/people/452543/overview
http://loop.frontiersin.org/people/493862/overview
http://loop.frontiersin.org/people/369955/overview
http://loop.frontiersin.org/people/431586/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02218 November 9, 2017 Time: 16:59 # 2

Fais et al. hLF 1-11 Anti-biofilm Activity on Candida parapsilosis

INTRODUCTION

Candida species are the fourth most common isolated
microorganism from blood cultures (Sardi et al., 2013). Among
these yeasts, although Candida albicans still predominates,
infections due to non-albicans species have emerged over the
past two decades (van Asbeck et al., 2009; Pfaller et al., 2010;
Cleveland et al., 2012). In this context, the rise of Candida
parapsilosis, which is now the second or third most common
yeast species recovered from blood cultures in different regions
of Europe (Marra et al., 2011; Silva et al., 2012), ranging from
20% in adults to 44% in premature newborns (van Asbeck
et al., 2009; Bassetti et al., 2011, 2013; Ballot et al., 2013),
mainly correlates with increased use of caspofungin and
voriconazole (Forrest et al., 2008). The increased incidence of
C. parapsilosis candidemia is also associated with therapeutic
regimen-related features (e.g., extended hospital stay) as well
as with microorganism-related characteristics, such as the
selective adherence to prosthetic materials, biofilm formation
ability on plastic surfaces (Pammi et al., 2013), and proliferation
in high concentration of glucose and lipids (Branchini et al.,
1994). C. parapsilosis ability to form biofilms on the surface
and lumen of catheters is highly strain dependent (Kuhn et al.,
2002). C. parapsilosis is known to colonize the hands of health
care workers, thus emphasizing the need of hand hygiene and
proper catheter care (Lupetti et al., 2002; Bonassoli et al., 2005;
Pammi et al., 2013; Barbedo et al., 2015). Since the high glucose
environment associated with parenteral nutrition contributes
to biofilm formation (Dotis et al., 2012), C. parapsilosis is
recognized as the major cause of hospital-acquired infection due
to Candida spp. (Douglas, 2003). Biofilm formation leads to a
structured microbial community that is attached to a biotic or
abiotic surface and embedded in an exopolymeric extracellular
matrix (Chandra et al., 2001; Donlan and Costerton, 2002;
Douglas, 2003), which prevents the entrance of most commonly
used antifungal agents. As microbes embedded in biofilms may
be resistant to antifungals (Tumbarello et al., 2007; van Asbeck
et al., 2009), these C. parapsilosis infections are often associated
with a crude mortality rate of 30% (Maganti et al., 2011; Nucci
et al., 2013; Parmeland et al., 2013; Magobo et al., 2017).

This points to a pressing need for new antifungal agents,
e.g., antimicrobial proteins or peptides (Zasloff, 2002; Hancock
and Sahl, 2006). Antimicrobial peptides have emerged as an
attractive target area from which to source new antibiofilm
solutions (Moreno et al., 2017). A collection of biofilm-active
antimicrobial peptides, with their effects on medically relevant
species, including Candida spp, can be found in the open-
access “BaAMPs” database (www.baamps.it; Di Luca et al.,
2014). The 77 kD antimicrobial protein lactoferrin is part of
the innate defense system and is provided to newborns during
breast-feeding. It is an iron-binding glycoprotein synthesized
by mucosal gland epithelial cells and neutrophils (Nuijens
et al., 1996) and released by the latter cells in response to
inflammatory stimuli (Brock, 1995; Lonnerdal and Iyer, 1995).
Its role in the innate defense system seems to be related
to the release of peptides with wide spectrum microbicidal
activity. Indeed, when human lactoferrin (hLF) is subjected to

pepsinolysis it releases the antimicrobial peptide lactoferricin
H (residues 1 to 47) (Bellamy et al., 1992), which contains
two cationic domains (residues 2 to 5 and residues 28 to 31).
A robust body of evidence indicates that the synthetic peptide
corresponding to residues 1-11 of hLF (GRRRRSVQWCA;
molecular mass, 1374.6 Da), reported as hLF 1-11, that includes
the first cationic domain of hLF (Chapple et al., 1998), is highly
effective in killing yeasts in in vitro and in vivo experiments
(Lupetti et al., 2000, 2002, 2003, 2007) and a recent study has
demonstrated that the peptide is also able to inhibit biofilm
formation by C. albicans mainly at early stages (Morici et al.,
2016).

The present study was undertaken (i) to evaluate the potential
inhibitory activity of hLF 1-11 against biofilm formation of
clinical isolates of C. parapsilosis characterized for their biofilm
forming ability and fluconazole susceptibility, (ii) to gain more
insight into the molecular mechanism(s) underlying the hLF
1-11-induced antibiofilm activity, and (iii) to confirm the anti-
biofilm effect exerted by the peptide in an in vitro model of
catheter infection.

MATERIALS AND METHODS

Strains
Candida parapsilosis strains used in this study are listed in
Table 1. C. parapsilosis strains were stored in YPD broth (Yeast
Peptone Dextrose, Difco BD, Milan, Italy) supplemented with
40% glycerol at −20 and −80◦C. Isolates were subcultured at
30◦C on YPD agar plates, and kept at 4◦C until completion of the
study. Liquid cultures were prepared in YPD broth starting from
a single colony. Following overnight incubation at 30◦C, fungal
cells were washed twice in sodium phosphate buffer (NaPB,
pH 7), and diluted at the desired concentration after cell counting
using a Bürker chamber.

Lactoferrin Peptide
The synthetic peptide corresponding to residues 1-11 of human
lactoferrin was purified by Peptisyntha Inc. (Torrance, CA,
United States). hLF 1-11 stocks were prepared in NaPB (0.1 M,
pH 7) with 0.01% acetic acid (pH 3.7) at a final concentration of
10 mM and were stored at −20◦C.

Biofilm Formation Assay
Biofilm formation assays were performed as previously described
for C. albicans (Morici et al., 2016). Briefly, C. parapsilosis
yeast suspensions were prepared at 2 × 106 cells/mL in
four-fold diluted RPMI 1640 medium (supplemented with
2% glucose and MOPS, pH 7), and seeded in polystyrene,
flat-bottomed, 96-well microtiter plates (100 µl/well). CP 7
and ATCC 22019 C. parapsilosis strains were included in
each experiment as positive and negative control, respectively.
Following incubation at 37◦C for 24 h, non-adhered cells
were removed by washing twice with phosphate buffered saline
(PBS). Biofilm production was evaluated by measuring the
total biofilm biomass and cellular metabolic activity. Biofilm
biomass formed in the presence or absence of hLF 1-11 was
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TABLE 1 | Details of the Candida parapsilosis strains used in this study.

Strain Source Body site Biofilm formation Fluconazole susceptibility (mg/L)

CP 7 A.O.U.P. Pisa, Italy Skin Strong (Tavanti et al., 2010) 0.5

CP 577 A.O.U.P. Pisa, Italy Urine Medium (This study) 1

CP 558 Rosario, Argentina Abscess Medium (Tavanti et al., 2010) 16

ATCC 22019 Reference strain, United States / Weak (Tavanti et al., 2010) 1

CP 508∗ UCD University, Ireland Laboratory strain Weak (Ding and Butler, 2007) 1

∗The strain CP 508, lacking both copies of BCR1 gene (1bcr1/1bcr1) (Ding and Butler, 2007), was kindly provided by Geraldine Butler (UCD University, Dublin, Ireland).
A.O.U.P., Azienda Ospedaliero-Universitaria Pisana.

measured (ODλ490 nm) using an automated plate reader (Model
550 Microplate Reader Bio-Rad, Milan, Italy). Background
optical density was subtracted from the values measured in
each well.

The cellular metabolic activity was evaluated by the
XTT/menadione assay. XTT solution was prepared at 0.5 g/L
in PBS buffer and mixed with a menadione solution dissolved
in acetone at a final concentration of 1 µM. An aliquot of
100 µl XTT/menadione solution was inoculated into each
well of a 96-well plate containing dry preformed biofilms and
incubated in the dark at 37◦C. Following a 2 h incubation,
the supernatant (80 µL) was transferred into a 96-well plate
to measure colorimetric changes at 490 nm, once background
optical density was subtracted from each well. Strains were
arbitrarily divided into strong, medium, and weak biofilm
producers based on the optical density value, as previously
described (Tavanti et al., 2010). Three independent experiments
were performed, each in triplicate.

Inhibition of Biofilm Formation
Biofilm formation assays were carried out as described above.
hLF 1-11 was added to the yeast suspension at three different
concentrations (44, 88, and 176 mg/L), in a final volume of
100 µL/well. Positive and negative controls (untreated fungal
suspension and medium alone, respectively) were included in
each experiment. After incubation at 37◦C for 24 h, non-adhered
cells were removed and the amount of biofilm produced in
presence of hLF 1-11 was determined by measuring both the total
biofilm density and the metabolic activity as indicated above.

hLF 1-11 Activity on C. parapsilosis
Pre-adhered Cells and Preformed Biofilm
Candida parapsilosis strains CP 7, CP 558 and CP 577 (1 × 106

cells/mL in RPMI diluted in NaPB, as previously described)
were incubated in 96-well plates for 24 h. These experimental
conditions allowed the formation of mature biofilm. In addition,
C. parapsilosis strain CP 7 was incubated for 1.5, 3, and 6 h
to allow fungal cells to adhere to the well surface prior to
peptide treatment. Following incubation, non-adhered cells were
removed and 100 µL of hLF 1-11 solution in four-fold diluted
RPMI in NaPB were added to each well at three different peptide
concentrations (44, 88, 176 mg/L). Plates were further incubated
for 24 h at 37◦C and biofilm-related parameters (biomass and
metabolic activity) were determined as described above. Three
independent experiments were performed, each in triplicate.

hLF 1-11 Activity on C. parapsilosis Cell
Morphology in Biofilm
The morphology of sessile cells embedded in biofilm formed
by different C. parapsilosis clinical isolates was visualized
under an inverted microscope (Olympus IMT-2) at 400×

magnification in a 96-well microtiter plate following 24 h of
incubation at 37◦C. Cell morphology of the strong biofilm
producer strain (CP 7) was observed following co-incubation
with hLF 1-11 for 24 h at 37◦C, compared to untreated
control.

Transcriptional Analysis of
C. parapsilosis Biofilm-Related Genes by
qRT-PCR
Biofilm production assay was performed with strain CP 7 treated
with hLF 1-11 44 mg/L in 6-well plates for 24 h at 37◦C.
Untreated CP 7 biofilm was used as a positive control. Null
mutant CP 508 strain, lacking both copies of CpBCR1 gene
(bcr11/bcr11) and impaired in biofilm production (Ding and
Butler, 2007), was also included in the experiment set. After
incubation, adhered cells were removed from the bottom of
the wells by gentle scraping (2 wells/sample) and suspended in
1× PBS. Total RNA was extracted with the Nucleospin RNA
Kit (Macherey Nagel, Duren, Germany) and stored at −80◦C.
The quality and quantity of the extracted RNA were determined
spectrophotometrically. Total RNA (1 µg) was converted into
cDNA with N6 random primers in a 20 µL reaction volume,
using the Reverse Transcription System kit (Promega Inc.,
Madison, WI, United States). The expression of genes involved
in the adhesion process [CPAR2_404790 (CpALS6), CpALS7
(Bertini et al., 2016), CPAR2_500660 (CpALS10); CPAR2_404770
(CpALS11), CPAR2_404780 (CpALS12)], in biofilm maturation
and morphogenesis (CpACE2, CpCPH2, CpEFG1, CpBCR1),
and matrix production (CpFSK1) was determined by qRT-PCR.
Primer sequences used for amplification of specific genes are
shown in Supplementary Table S1. qRT-PCR mixtures contained
40 ng/6 µL cDNA, 10 µL SYBR Green Master Mix (Applied
Biosystem, Life technologies, Monza, Italy) and 1 pMol/µL of
each primer. The amplification was performed in 96-well plates
on CFX96 Touch Real-Time PCR Detection System (BioRad
Laboratories S.r.L., Milan, Italy) (95◦C for 60 s, followed by
40 cycles of 95◦C for 5 s, 60◦C for 30 s). Actin (ACT1)
was used as internal control. The transcription level of the
selected genes was calculated using the formula of 2−11CT .
Data were expressed as means ± standard error of mean
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(SEM) of three independent experiments, each performed in
triplicate.

hLF 1-11 Activity on C. parapsilosis
Biofilm Formed on Catheter Lumen
The ability of hLF 1-11 to inhibit biofilm formation in
C. parapsilosis was investigated in an in vitro model of
catheter-associated Candida biofilm formation. Peripheral Teflon
catheters (PVC) of 1 mm diameter and 32 mm length (Deltaven
FEP, Deltamed SpA; Mantova, Italy) were used for biofilm
formation assays and aseptically cut into 30 mm pieces. Control
samples were represented by catheter pieces inoculated with
20 µL of C. parapsilosis CP 7 fungal cells (5 × 106 cells/mL
in RPMI 1:4 diluted in NaPB) using a micro-syringe. Control
catheters were then placed into a 1.7 micro-centrifuge tube with
1.5 mL of diluted RPMI or an equal volume of 10% glucose
solution. A set of catheters was inoculated with 20 µL of CP 7
and treated with hLF 1-11 44 mg/L or 88 mg/L. Peptide-treated
catheters were then placed into a 1.7 micro-centrifuge tube
containing 1.5 mL of the respective hLF 1-11 solution in RPMI
diluted 1:4 in NaPB or in 10% glucose solution. The ability of hLF
1-11 to eradicate preformed biofilm formation in C. parapsilosis
was also investigated. Briefly, strain CP 7 (5 × 106 cells/mL
in RPMI diluted in NaPB) was inoculated in catheter pieces as
described above, and incubated for 24 h, to allow formation of
mature biofilm. Following incubation, non-adhered cells were
removed and 20 µL of hLF 1-11 solution (44 and 88 mg/L) in
four-fold diluted RPMI in NaPB o 10% glucose solution were
added to catheter, as described above. Peptide-treated catheters
were then placed into a 1.7 micro-centrifuge tube containing
1.5 mL of the respective hLF 1-11 solution in RPMI diluted 1:4
in NaPB or in 10% glucose solution.

Following a 24 h incubation at 37◦C, all colonized catheters
were washed in PBS, internally and externally, and placed in
new micro-centrifuge tubes containing fresh RPMI diluted 1:4
in NaPB or 10% glucose solution. Control and treated catheters
were sonicated for 5 min and vortexed for further 5 min, to allow
the complete detachment of biofilm embedded cells from the
catheter lumen. Yeast suspension were then diluted in PBS and
plated on SD agar and incubated at 37◦C for 24 h, to quantify
colony-forming units (CFUs). Three independent experiments
were performed.

Imaging of in Vitro Formed Biofilms by
Confocal Laser Scanning Microscopy
(CLSM)
Confocal laser scanning microscopy (CLSM) was used to
evaluate the presence of biofilm formed in a catheter model of
C. parapsilosis infection, following hLF 1-11 treatment for 24 h at
37◦C. Untreated biofilm grown in the catheter lumen for 24 h at
37◦C served as positive control.

Briefly, control and peptide treated catheter pieces were
inoculated with 20 µL of C. parapsilosis suspension containing
5 × 106 CP 7 blastoconidia. Peptide-treated catheters were
represented by catheter pieces inoculated with 20 µL of
C. parapsilosis CP 7 fungal cells treated with hLF 1-11 44 mg/L;

both catheter pieces were re-suspended in 1.5 mL four-fold
diluted RPMI 1640 medium into a 1.7 micro-centrifuge tube.
Following a 24 h incubation at 37◦C, the infected catheters
were washed in PBS, internally and externally and stained with
300 µL Syto9 (5 nM) and propidium iodide (30 nM) for
observation with CLSM, as suggested by the producer (Thermo
Fisher Scientific, Waltham, MA, United States). After staining,
biofilms were washed three times with pure water and examined
under a Leica CLSM. An argon laser was used to excite the
fluorophores at a wavelength of 488 nm for Syto9. In a typical
two-channel experiment, images were collected in sequential
mode to eliminate emission cross talk or bleed-through between
the various dyes. Only one experiment was performed and 10
images for each sample were collected for biofilm formation
analysis.

Statistical Analysis
Data were expressed as means ± SEM. Statistical analysis was
performed with one-way ANOVA test, followed by the Tukey–
Kramer post hoc test, using GraphPad Instat software (version
6.05 for Windows, La Jolla, CA, United States). Differences in
gene expression levels by qRTPCR were analyzed by Student’s
paired t-test (GraphPad prism, version 5.0). The level of
significance was set at a P-value of ≤0.05.

RESULTS

Biofilm Formation
A panel of C. parapsilosis strains (Table 1) was tested for the
ability to form biofilm on polystyrene well plate. For each
strain, the biofilm-forming ability was evaluated in terms of
biofilm cellular density and metabolic activity of sessile cells
(Supplementary Figure S1). The strain CP 7, used in the assay
as positive control, was confirmed as strong biofilm producer
(Tavanti et al., 2010). Strains CP 558 and CP 577 were classified
as medium biofilm producers, while CP 508 and reference strain
ATCC 22019 were used as weak biofilm producers. Interestingly,
CP 508, a mutant strain lacking both copies of biofilm-associated
BCR1 gene and included in the test as negative control, showed
indeed a low biofilm production as evaluated by biomass
quantification but metabolic activity levels comparable to those
observed for strain CP 7.

hLF 1-11 Anti-biofilm Activity
The inhibitory activity of hLF 1-11 on biofilm formation was
evaluated in three different clinical isolates (CP 7, CP 577, CP
558) exhibiting medium to high biofilm production ability. As
shown in Figure 1, hLF 1-11 induced a marked reduction in
biofilm cellular density and metabolic activity for the three strains
tested at all the peptide concentrations used (44, 88, 176 mg/L)
(P ≤ 0.001). For the strong biofilm producer strain (CP 7)
the lowest peptide concentration induced a fivefold reduction
in biofilm biomass, which was almost completely eradicated
at higher hLF 1-11 concentrations. A similar trend could be
observed for medium producer strains (Figure 1A). Accordingly,
for all strains metabolic activity was not detectable at hLF 1-11 88
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FIGURE 1 | Effect of hLF 1-11 on biofilm formation by three Candida parapsilosis strains. Yeast cells were co-incubated with different concentrations of hLF 1-11 for
24 h at 37◦C. The peptide activity was assessed in terms of biofilm biomass (A) and metabolic activity (B). Data are expressed as means of three independent
experiments ± SEM. ∗∗∗P ≤ 0.001.

FIGURE 2 | Inverted microscope images (400×) show biofilms produced by C. parapsilosis CP 7 (A), CP 558 (B), CP 577 (C), CP 508 (D), and ATCC 22019 (E)
strains, following incubation for 24 h at 37◦C in a polystyrene microtiter plate. Bar denotes 50 µm.

and 176 mg/L and was significantly reduced at the lowest peptide
concentration used (Figure 1B).

Effect of hLF 1-11 on C. parapsilosis Cell
Morphology
The morphology of different C. parapsilosis strains included in
this study was observed using an inverted microscope following
24 h growth at 37◦C, under biofilm-inducing conditions. As
depicted in Figure 2, strains CP 7, CP 577, CP 558 produced a
thick multi-layer biofilm, in which both yeast and pseudohyphal
cells could be observed. Conversely, strains CP 508 and ATCC
22019 produced a thin and patchy biofilm, where mainly
pseudohyphae were visible (Figure 2). Notably, co-incubation
of hLF 1-11 with C. parapsilosis CP 7 produced a complete
inhibition of biofilm formation, with only few cells visible on
the bottom of the well and predominantly in the yeast form
(Figure 3).

hLF 1-11 Activity on C. parapsilosis
Pre-adhered Cells and on Preformed
Biofilm
The inhibitory activity of hLF 1-11 on pre-adherent fungal
cells was evaluated on C. parapsilosis strain CP 7 (strong
biofilm producer). Fungal cells were allowed to adhere to the
plastic surface of the microtiter plate for 1.5, 3, 6, and 24 h,
respectively. Different peptide concentrations (44 and 88 mg/L)
were then added to the cultures and plates were incubated

for further 24 h at 37◦C. Cells incubated with hLF 1-11 at
both concentrations following 1.5 and 3 h of adhesion failed
to produce biofilm. Indeed, the peptide induced a complete
reduction of biofilm cellular density and metabolic activity
(P< 0.001) (Figure 4). Notably, the activity of hLF 1-11 on the 6 h
pre-adherent cells was completely abolished at the lowest peptide
concentration used, with a statistically significant anti-biofilm
effect observed only at the highest concentration (88 mg/L,
Figure 4). Furthermore, no peptide activity was detected on
preformed mature biofilm (Figure 4). The inhibitory activity of
hLF 1-11 on preformed biofilm was evaluated also on strains
CP 577 and CP 558. The results obtained indicate that hLF
1-11 induced a statistically significant dose-dependent reduction
of preformed-biofilm cellular density and metabolic activity at
high peptide concentrations only (88 and 176 mg/L) (Figure 5).
The peptide activity on biofilm formation was similar for all the
strains tested, regardless of their fluconazole susceptibility.

Transcriptional Analysis of
C. parapsilosis Biofilm-Related Genes
In order to understand the molecular basis of hLF 1-11
inhibition of C. parapsilosis biofilm, expression of biofilm related
genes by qRT-PCR was evaluated following co-incubation of
C. parapsilosis strain CP 7 with the peptide (44 mg/L) for 24 h
at 37◦C. Untreated C. parapsilosis cells served as control. The
results obtained indicated that hLF 1-11 induced a significant
reduction of transcriptional levels of CpALS7, CpACE2, CpEFG1,
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FIGURE 3 | Inverted microscope images show sessile cell organization of
strain CP 7 (strong biofilm producer) in the absence (A) and following
co-incubation with 44 mg/L (B) or 88 mg/L (C) hLF 1-11 for 24 h at 37◦C.
Bars denote 50 µm.

andCpFSK1, while no significant changes in transcriptional levels
of other genes could be observed (Figure 6). Transcriptional
profile of BCR1 mutant CP 508 grown in the absence of peptide,
showed that two adhesin encoding genes CpALS7 and CpALS12
(CPAR2_404780) were significantly down regulated (Figure 6).

hLF 1-11 Inhibits C. parapsilosis Biofilm
Formation on a Catheter Lumen
Considering the ability of C. parapsilosis to form biofilm on
medical prosthetic materials, the ability of hLF 1-11 to inhibit
biofilm formation in an in vitro model of catheter-associated
C. parapsilosis biofilm production was evaluated. Data obtained
from colonized catheters (PVC) showed that hLF 1-11 was able to
induce a 2-log reduction of sessile cell viability at both the peptide

concentrations used (44 mg/L and 88 mg/L) in RPMI diluted in
NaPB. It is worth noting that a more pronounced anti-biofilm
effect was observed (3.5-log reduction) when a 10% glucose
solution was used as experimental condition, in comparison with
respective untreated biofilms (Figure 7). Furthermore, biofilm
formation/inhibition on catheter lumen was monitored by CLSM
following fluorescent staining (Syto9). The untreated catheter
images (positive control) revealed the presence of Syto9 positive
yeast aggregates in a multi-layered biofilm [Figure 7B(ii)].
Conversely, hLF 1-11 treated catheters confirmed an almost
complete reduction of Syto9 positive yeast cells and the presence
of few dead cells stained with propidium iodide [Figure 7B(iii)].

hLF 1-11 Activity on C. parapsilosis
Mature Biofilm Formed on a Catheter
Lumen
Finally, the in vitro model of catheter-associated Candida biofilm
formation was used to evaluate the hLF 1-11 activity on
preformed biofilm. Data obtained showed that hLF 1-11 was able
to induce approximately 2-log reduction in sessile cell viability at
both the peptide concentrations used (44 and 88 mg/L, P ≤ 0.05
and P ≤ 0.001, respectively) in 10% glucose solution, while
no peptide activity was detected on preformed mature biofilm
produced on the catheter lumen when RPMI diluted in NaPB was
used as biofilm-inducing condition (Figure 8).

DISCUSSION

Three main conclusions can be drawn from the present study,
as demonstrated by the following findings. First, the hLF
1-11 peptide induces a drastic reduction in biofilm formation
expressed as both biomass and metabolic activity in a dose
dependent manner following 24 h co-incubation at 37◦C,
even at the lowest peptide concentration used. This effect
was obtained in all C. parapsilosis clinical isolates, which
were selected on the basis of their medium to high biofilm
production ability. Furthermore, biofilm produced in the peptide
absence was characterized by a cellular morphology comprising
pseudohyphae and blastoconidia. Upon exposure with hLF
1-11, a complete inhibition of morphogenesis was observed
microscopically, with only a few cells predominantly in the yeast
form. Kinetic studies were then performed to evaluate whether
the peptide activity was exerted mainly at early stages of biofilm
formation or it was active also at later time points on the
strong biofilm producer isolate (CP 7). Our findings revealed a
statistically significant activity on pre-adhered cells for 1.5 and 3 h
of incubation at both the hLF 1-11 concentrations used, whereas
a significant effect was observed on 6 h pre-adhered cells at the
highest concentration only. This finding is in agreement with data
recently described for C. albicans, where hLF 1-11 significantly
altered early stages of biofilm formation, without exerting any
effect on mature biofilm (Morici et al., 2016). On medium biofilm
producer clinical isolates a significant reduction of both biofilm
biomass and metabolic activity could be observed at 88 mg/L
hLF 1-11. When exposed to a higher concentration of hLF 1-11
preformed biofilm was significantly reduced in all the clinical
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FIGURE 4 | Effect of hLF 1-11 on pre-adhered cells of C. parapsilosis. Yeast cells were incubated at different time points (1.5, 3, 6, and 24 h) and then co-incubated
with hLF 1-11 at two different concentrations for 24 h at 37◦C. The peptide anti-biofilm activity was assessed in terms of reduction of biofilm biomass (A) and
metabolic activity (B). Data are expressed as means of three independent experiments ± SEM. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

FIGURE 5 | Effect of hLF 1-11 on mature biofilm of C. parapsilosis. Yeast cells were incubated for 24 h and then co-incubated with hLF 1-11 at different
concentrations for 24 h at 37◦C. The peptide anti-biofilm activity was assessed in terms of reduction of biofilm biomass (A) and metabolic activity (B). Data are
expressed as means of three independent experiments ± SEM. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

FIGURE 6 | Relative gene expression of C. parapsilosis biofilm-related genes assessed by qRT-PCR. Strain CP 7 was co-incubated in the absence and presence of
hLF 1-11 44 mg/L for 24 h at 37◦C in a 24-wells plate and transcriptional levels of the target genes were determined by qRTPCR using CpACT1 as reference gene
for normalization. Mutant strain CP 508 lacking both copies of BCR1 was included as control. Data are expressed as means of three independent
experiments ± SEM. ∗P ≤ 0.05; ∗∗P ≤ 0.01.

isolates tested, suggesting that hLF 1-11 could also be active on
C. parapsilosis mature biofilm. In a recently described study, hLF
1-11 showed no hemolytic activity (<1%) even at 10× MIC, thus
indicating that hLF 1-11 might be safe to be administered at any
of the peptide concentrations used in this study (Morici et al.,
2017).

Second, a significant reduction in transcriptional level of
three biofilm related genes was observed upon co-incubation of
C. parapsilosis isolate with the peptide under biofilm-inducing
conditions as compared to untreated C. parapsilosis biofilm.
Among the putative C. parapsilosis adhesin-encoding genes,
CpALS7 was found to be significantly down-regulated. To date
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FIGURE 7 | (A) Reduction of biofilm formation in catheters co-incubated for 24 h at 37◦C with two different concentrations of hLF 1-11, compared with the
untreated control. Catheters were incubated in four-fold diluted RPMI or in a 10% glucose solution. Data are expressed as means of three independent
experiments ± SEM. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗ P ≤ 0.001. (B) CLSM images of (i) un-colonized catheter lumen, and catheters co-incubated with strain CP 7 in the
absence (ii) or presence (iii) of 44 mg/L hLF 1-11 for 24 h at 37◦C in four-fold diluted RPMI. Bars denote 50 µm.

FIGURE 8 | Activity of hLF 1-11 on mature biofilm produced on the catheter
lumen following incubation at 37◦ for 24 h in four-fold diluted RPMI or 10%
glucose solution. Data are expressed as means of three independent
experiments ± SEM. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001.

this gene is the only one encoding for an adhesion molecule to
have been characterized in C. parapsilosis (Bertini et al., 2016);
interestingly, it has been recently shown to play a major role in
adhesion to biotic surfaces and in the pathogenic potential in
a murine model of urinary infection (Bertini et al., 2016). This
gene was also down-regulated in the mutant strain lacking both
copies of BCR1 even in the absence of the peptide, suggesting
that CpAls7 might be important for adhesion to abiotic surfaces
as well. Other CpALS genes were not significantly altered upon
peptide treatment, nor in the BCR1 deleted strain, where only
CpALS12 was found to be down-regulated. This result confirms
previous data obtained on the BCR1 mutant, in which the
deletion of this important biofilm regulator does not affect
CpALS10 and CpALS11 transcriptional levels (Ding and Butler,
2007).

One of the genes involved in biofilm maturation and
morphogenesis was also found to be reduced by hLF 1-11
exposure in agreement with phenotypic analysis of biofilm
formed mainly consisting of isolated yeast cells. This finding
parallels previous data obtained with C. albicans, showing a
strong inhibitory effect on hyphal production by the peptide

in this species. However, filamentation in C. parapsilosis is
mainly due to pseudohyphal formation, since it does not
produce true hyphae, and therefore it may play a less significant
role in biofilm development and maturation compared to
C. albicans. Down-regulation of matrix associated CpFSK1 gene
corroborates with experimental data indicating a significant
biomass reduction following exposure to hLF 1-11. To better
define the role played by the peptide in the regulation of
biofilm-associated genes, future studies will be addressed to
investigate transcriptional levels of selected genes in response to
hLF 1-11 in immature biofilm as well as in later stages of biofilm
formation.

Third, hLF 1-11 was able to inhibit biofilm formation in an
in vitro model of catheter associated C. parapsilosis colonization.
PCV catheters co-incubated with C. parapsilosis Cp7 with and
without hLF 1-11 for 24 h revealed a significant inhibitory
effect exerted by the peptide in RPMI medium at both the
concentrations tested. CLSM imaging confirmed the peptide
activity on biofilm formation depicting low number of viable
fungal cells on the peptide-treated catheter lumen compared to
untreated catheters.

Interestingly, this an anti-biofilm activity was significantly
increased when 10% glucose solution was used as biofilm-
inducing condition. This finding is clinically relevant considering
that 10% glucose solution is often administered via catheters
as part of parenteral nutrition in hospitalized patients. This is
particularly important in neonatal intensive care units (NICUs)
where premature newborns are at high risk of developing
catheter related C. parapsilosis systemic infections (Trofa et al.,
2008; Deepak et al., 2013) Indeed, C. parapsilosis represents a
major threat for neonates in NICU as it frequently colonizes
the hands of health care workers, has high affinity for
intravascular devices, and parenteral nutrition (Trofa et al.,
2008).

Furthermore, despite the fact that no significant hLF 1-11-
anti-biofilm activity was observed on mature biofilm formed in
the catheter lumen in RPMI medium, a significant reduction
of biofilm cellular density could be detected in mature catheter
associated biofilm produced in the presence of 10% glucose
solution at both the peptide concentrations used.
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The overall findings candidate hLF 1-11 as a promising agent
to prevent C. parapsilosis and C. albicans (Morici et al., 2016)
biofilm formation and to treat mature C. parapsilosis biofilms
grown on PVC catheters used for parenteral nutrition.

Further studies will be aimed at evaluating the hLF 1-11 anti-
biofilm activity on biofilms formed by other clinically relevant
Candida species. Furthermore, the use of hLF 1-11 as coating
agent for preventing biofilm formation could also be investigated.
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