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Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted

in broad-spectrum life threatening infections among the vulnerable, but more recently

as a pathogen in immunocompetent individuals. The bacteria are consistently being

implicated in necrotizing otitis, cutaneous infections including soft tissue infection and

keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia

(with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic

arthritis, among others. S.maltophilia is also an environmental bacteria occurring in water,

rhizospheres, as part of the animals’ microflora, in foods, and several other microbiota.

This review highlights clinical reports on S. maltophilia both as an opportunistic and as

true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes,

flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors,

the antibiotic resistance factors, and their implications are considered. Low outer

membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance

mechanisms like the production of two inducible chromosomally encoded β-lactamases,

and lack of carefully compiled patient history are factors that pose great challenges to

the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives

and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics

with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa

together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia’s

production and sustenance of biofilm by quorum sensing enhance their virulence,

resistance to antibiotics and gene transfer, making quorum quenching an imperative

step in Stenotrophomonas control. Incorporating several other proven approaches like

bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil,

nanoemulsions, and use of cationic compounds are promising alternatives which can be

incorporated in Stenotrophomonas control arsenal.
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INTRODUCTION

Stenotrophomonas maltophilia, previously called Pseudomonas
maltophilia or Xanthomonas maltophilia, has emerged as an
important nosocomial pathogen in clinical environments (Senol,
2004). It is responsible for various infectious diseases and death
in hospitalized patients especially among the immunosuppressed,
immunocompromised as well as those with medical implants
(Robert et al., 1987; Calza et al., 2003; Cernohorská and Votava,
2004; Yeshurun et al., 2010; Hentrich et al., 2014). They are
aerobic, glucose non-fermentative (but oxidize glucose and
maltose), Gram-negative bacillus with slightly smaller size than
other species in the Stenotrophomonas genus. They are motile
with the aid of polar flagella and produce pigmented colonies
(yellow) on MacConkey agar. S. maltophilia are catalase-positive,
usually oxidase-negative (distinguishing feature with the genus)
and lysine decarboxylase (Gilligan et al., 2003). Table 1 shows the
/biochemical characteristics of S. maltophilia. They are frequently
isolated from water and soil (Adjidé et al., 2010); and from
animals and plant materials (Borner et al., 2003; Berg et al., 2005;
Furushita et al., 2005; Smeets et al., 2007). The bacteria frequently
colonize patients’ irrigation fluid (e.g., irrigation solutions,
intravenous fluids etc.) and patient body fluid (respiratory
aerosols or mucous, urine, and wound exudates) (Minkwitz and
Berg, 2001). This review article attempts an overview of the
implication of the commensal S. maltophila in infections; their
antibiotic regimen; therapeutic outcomes, reported genetic basis
of observed resistances, and future approaches for therapy.

THE S. MALTOPHILIA: AN
ENVIRONMENTAL COMMENSAL OR AN
INFECTIOUS AGENT

S. maltophilia is a commensal organism of supposedly
low virulence, yet vibrant as an opportunistic pathogen
(Gnanasekaran and Bajaj, 2009). The bacteria’s frequent
colonization of fluids used in the hospital settings, irrigation
solution, and/or invasive medical devices might become
a vehicle to bypass normal host defenses to cause human
infection (de Oliveira-Garcia et al., 2003). Hence, it has similar
pathophysiology or pathogenesis with other non-fermentative
aerobic organisms, in the face of immune systems as impedance
factors. This in a way makes consultation cumbersome (Chang
and Huang, 2000). S. maltophilia can cause a wide spectrum of
serious infections (Calza et al., 2003; Cernohorská and Votava,
2004). Its ubiquity is ascertained in the environment as a
commensal and in the hospital environment as an opportunistic
pathogen in immunocompromised individuals or true pathogen
in immunocompetent (Table 2). Figure 1 illustrates various
niches in environmental and clinical settings as well other
factors associated with the bacteria. In the environment,
the organism is found as the dominant species that usually
outcompete the rhizospheric bacterial populations (Alavi et al.,
2014). S. maltophilia can also be detected as environmental
commensals and as aetiological agents respectively (Youenou
et al., 2015). Youenou et al. (2015) reported that two clinical

TABLE 1 | Biochemical/growth characteristics of S. maltophilia.

Characteristics Reaction/

results

Characteristics Reaction/

results

Growth without NaCl + Carbon

utilization

source

Adonitol +

Growth with NaCl

(1.5 and 3.0%)

+ Arabinose +

Growth at 4◦C − Adipate +

Growth at 42◦C +/− Amygdalin +

Catalase + Mannose +

Oxidase +/− Mannitol +

Methionine as growth

requirement

+ Caprate −

Optimum growth

temp of 35◦C

+ Citrate +

Hydrolysis of esculin + N-acetyl-glucosamine +

Hydrolysis of gelatin + Fructose +/−

Fermentation of

glucose

− Galactose +/−

Motility + Gluconate +

Nitrate reduction +

Lysine decarboxylase + Inositol +

Arginine dihydrolase − Melobiose −

Ornithine

decarboxylase

− Maltose +

Tryptophane

desaminase

− Lactose +

β-galactosidase +/− Trehalose +/−

Methyl red − Tween 80 hydrolysis +

Voges-Proskauer

reaction

− DNase production +

H2S production − Starch hydrolysis −

Urea hydrolysis −

Phenylamine

deaminase

− “Acid production from maltose” +

“Acid production from glucose” −

−means negative reaction or no growth;+means positive reaction or growth;+/−means

variable reactions.

strains, one from Spain and the other from Australia clustered
with an environmental strain from Brazil. The clinical strains,
which were, identified as D457 and AU12-09 respectively as
well as strain JV3 from the rhizosphere showed that both the
environmental strain and the clinical strains are closely linked.
This ubiquity of the potential pathogen may have effect on the
epidemiology. The activities of the S. maltophilia in the root
rhizosphere are beneficial (Ryan et al., 2009; Mendes et al.,
2013; Alavi et al., 2014). This is because, the bacteria exert
positive effects in plant growth and health, bioremediation and
phytoremediation and synthesis of valuable macromolecules
(Ting and Choong, 2009; Borland et al., 2016).

S. maltophilia, which is usually free living in the environment
has been implicated in nosocomial infections and community
based infections (Köseoglu et al., 2004; Meyer et al., 2006;
Falagas et al., 2009). It has been reported as etiological agents in
bacteraemia, ocular infection, endocarditis and RTIs (associated
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TABLE 2 | Stenotrophomonas maltophilia as commensal in environment and etiological agent.

Habitat Environmental (commensal) Clinical/Subclinical (pathogen or opportunistic pathogen)

Terrestrial Rhizospheric Sources References Clinical Manifestation References

Butternut roots’ Adegoke and Okoh, 2015 Necrotizing otitis Borner et al., 2003; Al-Ghamdi et al.,

2012

Potato roots Dawam et al., 2013 Cutaneous infections Smeets et al., 2007

Grass roots Adegoke and Okoh, 2015 Endocarditis Kim et al., 2002; Reynaud et al., 2015

Maize roots Pereira et al., 2011 Meningitis Platsouka et al., 2002; Libanore et al.,

2004; Yemisen et al., 2008; Wang C. H.

et al., 2014

Rice roots Zhu et al., 2015 Soft tissue infection Sakhnini et al., 2002

Medicago roots Shen et al., 2015 Keratitis Arora et al., 2005

Wheat roots Majeed et al., 2015 Acute respiratory tract infection Pathmanathan and Waterer, 2005

Sunflower roots Ambrosini et al., 2012 Bacteraemia (usually with/without

Hematological malignancies)

Labarca et al., 2000; Friedman et al.,

2002; Senol et al., 2002; Al-Anazi et al.,

2006; Jaidane et al., 2014

Water and

wastewater

Municipal Chang et al., 2005; Adjidé et al., 2010 Tropical pyomyositis Thomas et al., 2010

Cystic fibrosis Talmaciu et al., 2000; Di Bonaventura

et al., 2007; Hansen, 2012

Microfiltered water dispensers Sacchetti et al., 2009

River water Nakatsu et al., 1995 Intestinal colonization resulting in

diarrhea

Apisarnthanarak et al., 2003

Saline subterranean Lake Rivas et al., 2009

Septic arthritis Aydemir et al., 2008

Showerheads Feazel et al., 2009

Drinking water Simões et al., 2007; Silbaq, 2009 Endocarditis Takigawa et al., 2008

with cystic fibrosis), wound infection and urinary tract infections
(UTI) (Kim et al., 2002; Platsouka et al., 2002; Arora et al.,
2005). It is also an aetiologic agents of meningitis, sepsis, skin,
and soft tissue infections (SSTI) and it has been diagnosed with
rare cases of pyomyositis (Gales et al., 2001; Platsouka et al.,
2002; Sakhnini et al., 2002; Arora et al., 2005; Pathmanathan
and Waterer, 2005; Al-Anazi et al., 2006; Yemisen et al.,
2008; Thomas et al., 2010). Clinical skin presentations include
primary cellulitis, cellulitis-like cutaneous metastasis or cellulitis
or metastatic nodular skin lesions, gangrenous cellulitis, ecthyma
gangrenosum, soft-tissue necrosis, and infected mucocutaneous
ulcers (Denton and Kerr, 1998; Foo et al., 2002; Teo et al.,
2006; Smeets et al., 2007). Figure 2A showed the ulcerated
fingers infected with S. maltophilia (Trignano et al., 2014) in
an immunocompetent person. This showed the true pathogenic
status of the organism and it reveals the scourge of the
organism which affect both intact skin (Sakhnini et al., 2002;
Teo et al., 2006; Smeets et al., 2007) and ulcerated skin (Rit
et al., 2015) in immunocompetent patients with non-healing
outcome. This is exemplified by a case depicted in Figure 2A

resulted in amputation of the fingers that would not heal due to
S. maltophilia. Intact skin infections include metastatic cellulitis
(Teo et al., 2006; Smeets et al., 2007), myositis (Downhour
et al., 2002), and ecthyma gangrenosum among others. Some of
these infections are depicted in Table 2. The organism has been
frequently linked with cystic fibrosis (Figure 1) as an emerging
potential pathogen, and pneumonia occurs more often as an
expression of colonization with the bacteria (Pathmanathan and
Waterer, 2005).

EPIDEMIOLOGY OF S. MALTOPHILIA

INFECTION

As S. maltophilia is ubiquitous worldwide in the environment as
commensal, its scourge in serious infections is equally global. In
Germany, Meyer et al. (2006) determined changes in occurrence
of S. maltophilia isolates per 1,000 patient days between 2001
and 2004 as nosocomial infection in intensive care unit (ICU),
which revealed as high as 165 isolates per 1,000 in some study
locations. Earlier, Apisarnthanarak et al. (2003) in a 6 weeks’
surveillance study in Washington, USA reported a prevalence of
9.4% from stool samples. Labarca et al. (2000) in Los Angeles,
USA observed an epidemic of S. maltophilia blood colonization
among controlled allogenic bone marrow transplant patients.
Also in Turkey Caylan et al. (2004), in a study from June 2000 to
December 2001, isolated 44 strains as etiological agents from 41
hospitalized patients. Based on an epidemiological typing, Caylan
et al. (2004) could conclude that the three outbreaks in the study
area were caused by 12 strains showing the potentials of the
bacteria in eliciting public health disturbances. Apisarnthanarak
et al. (2003) noted that patients infected with S. maltophilia
usually administer some antibiotics by self-medication, which
usually fail due to multidrug resistance profile of the bacteria.

S. maltophilia has been reported as an etiological agent of
several infectious diseases (Waters et al., 2012; Flores-Treviño
et al., 2014; Pompilio et al., 2016). Quite a lot of clinical
manifestation can be traced to the bacterial ability to change
trait, together with virulence-associated factors whichmade them
successful pathogens. Although, these dynamics are yet-to-being
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FIGURE 1 | Various niches in environment and clinical settings as reservoir for S. maltophilia and unique attributes.

fully understood (Pompilio et al., 2016), the effects on human
health are undeniable. Both environmental and clinical strains
have the virulence factors to colonize and advance to specific
morbidity (Denton and Kerr, 1998; Pompilio et al., 2011). A
report by Gulcan et al. (2004) confirmed 3 cases of S. maltophilia
infection by molecular typing to be epidemiologically linked
together. S. maltophilia cause pneumonia, UTI and surgical
site infection (SSI), ophthalmologic infection, septic shock, and
colonization of medical implants among immunosuppressed
individuals (Al-Anazi and Al-Jasser, 2014). The bacteria have
also been reported as an etiological agent of pyomyositis and
otitis externa in immunocompetent adults (Thomas et al., 2010;
Al-Ghamdi et al., 2012). Therefore, the organism behaves as
both opportunistic and true pathogen. In 2012, a study from 59
hospital in United States of America and 15 in Europe implicated
187 isolates of S. maltophilia as etiological agents of RTIs out
of 2968 cases, showing high frequency of occurrence of these
bacteria as a pathogen and etiological agent.

Denis et al. (1977) reported two cases of, S. maltophilia
meningitis in Africa 1977 (when the organism was still known
as Pseudomonas maltophilia). Otherwise, evident cases from

Africa is generally sparse. Meanwhile, S. africana of the same
genus as S. maltophilia is documented as a related opportunistic
human pathogen across Africa (Drancourt et al., 1997). In
recent times, the consistency of infection by the organism as
reported worldwide (Huang et al., 2013; Wang C. H. et al.,
2014; García-León et al., 2015; Reynaud et al., 2015) is quite
alarming. S. maltophilia accounts for about 3.7% (n = 10,000)
in hospital discharges and in the word of Abbott et al. (2011),
“S. maltophilia is the third most common non-fermenting Gram-
negative bacilli responsible for healthcare-associated infections,
behind P. aeruginosa and Acinetobacter spp”. Rit et al. (2015)
in India reported a case of non-healing wound resulting
from colonization of S. maltophilia in an immunocompetent
individual. In addition, an outbreak of drug resistant meningitis
was reported by Wang C. H. et al. (2014) in Taiwan, China.
These do not exclude multidrug resistant pacemaker infective
endocarditis by this same organism as reported by Reynaud
et al. (2015) in France and otitis external was reported by Al-
Ghamdi et al. (2012) in Saudi Arabia. Some of these cases have
been fatal (Thomas et al., 2010; Yeshurun et al., 2010; Huang
et al., 2013; Hentrich et al., 2014). A recovery rate of 3.1%
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FIGURE 2 | S. maltophilia: (A) Infected digital ulcer of the second and third fingers of the right hand (Trignano et al., 2014); (B) Small colonies (indicated by red dashed

circle) and big colonies cultivated on agar plates containing high concentrations of ampicillin (600µg/mL) (Abda et al., 2015); (C) Characterization of flagella Produced

by Clinical Strains of S. maltophilia by scanning electron microscope (de Oliveira-Garcia et al., 2002); (D) Scanning electron micrograph of a S. maltophilia biofilm

grown at 30◦C for 24 h in a flow cell (Briandet et al., 2008); (E) Transmission electron microscopy images of Vermamoeba vermiformis infected by S. maltophilia

(Cateau et al., 2014); (F) Colored transmission electron micrograph (TEM) of S. maltophilia (Science Photo Library).

in S. maltophilia infections was reported (Jones, 2010) in an
11-year study, done till 2008, among pneumonia patients on
admission. The patients from the United States had highest
recovery rates (3.3%), followed by EU (3.2%), then distantly by
Southern America (2.3%) (Jones, 2010). Some of the clinical
infections associated with these bacteria are depicted in Table 2

below.

INFECTION PATHOGENESIS AND
PATHOGENICITY

The unique features of S. maltophilia as reflected in Figure 1.

Pathogenesis is by colonization, rather than infection, (Weber
et al., 1999; Pathmanathan and Waterer, 2005), which is often
accompanied by tissue invasion. Thus, it is often reported as
colonization or infection (Juhász et al., 2014). Contaminated
irrigation solutions and/or invasive medical devices may serve
as “vehicle” with which it bypasses the non-specific immunity
and causes human infections. Conditions like prolonged
hospitalization, most common in ICU, implanted devices and
mechanical ventilation, intravenous drug abuse, exposure to

wide-range of antibiotics, as well as malignancy can predispose
patients to infection (Rolston et al., 2005) which may progress
immediately. Kim et al. (2002) reported the establishment of
S. maltophilia infection leading to endocarditis in a patient
that had a replacement of valve with 27mm Carbo Medics
metallic due to severe rheumatic valvular disease. The duration
of hospitalization of some patients before the onset of the
Stenotrophomonas related clinical features and/or diagnosis is
an important factor in nosocomial infection. Exemplifying case
studies considered the duration of hospitalization before the
onset of S. maltophilia bacteremia, which ranged from 11.5 to 24
days (Friedman et al., 2002; Senol et al., 2002; Lai et al., 2004)
and about 3 weeks in other centers (Tsai et al., 2006). The burn
patients usually develop S. maltophilia bacteremia after a week of
staying in hospital (Krzewinski et al., 2001; Valdezate et al., 2001).

Table 3 gives an overview of the bacterial virulence factors
and/or virulence associated factors in S. maltophilia and its
potential application in diagnosis/therapy. As mentioned earlier,
the detail of pathogenesis of S. maltophilia is not fully
understood, but a number of studies have thrown light on
certain pertinent details. de Oliveira-Garcia et al. (2002) reported
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TABLE 3 | Virulence and virulence associated factors in S. maltophilia and its potential application in diagnosis/therapy.

Virulence and

virulence associated

factors

Unique composition/

structure/attributes

Virulence mechanisms Potential application of the

factor in diagnosis/therapy

Reference

Biofilm *Coded for, by biosynthetic

genes rmlA, rmlC, and xanB

*Produced as the bacteria

spread and intimately attach to

surfaces

*Protects the bacteria against

host immune factors

*Promotes antibiotic resistance

Iron-restrictive regulation to slow

done biofilm formation and

reduce spread

Di Bonaventura et al., 2004;

Huang et al., 2006

Quorum sensing “Diffusible Signal Factor (DSF)

quorum sensing (QS) system to”

“Mediate intra- and inter-specific

signaling and regulate

virulence-related processes”

Quorum quenching therapeutic

approach by incorporating the

structural analogs of DSF and

other factors

Tay and Yew, 2013; Thomas

et al., 2014; Huedo et al., 2015

Extracellular enzymes “DNase, RNase, arbutinase,

protease (StmPr1 serine

protease) acetase, esterases,

lipases, mucinase, acid and

alkaline phosphatases,

hyaluronidase, phosphoamidase,

elactase, leucine arylamidase,

and β-glucosidase”

*Utilizes varieties of enzymes to

digest tissue proteins and serum

making leading to the collapse of

immune architechture, lesion,

and hemorrhage

Synthesis of a Structural analogs

of DSF to block extracellular

enzymes production & other

virulence factors

Crossman et al., 2008; Thomas

et al., 2014; DuMont and

Cianciotto, 2017

Flagella Sequence identity to the flagellin

of Proteus mirabilis, Serratia

mercenscens, Escherichia coli,

etc.

*Facilitates evasion via motility

from lysin, agglutinin, precipitin

etc in humoral responses

*Adhesins factor

Anti-Flagella antibodies Zgair and Chhibber, 2011; Haiko

and Westerlund-Wikström, 2013

Pili/fimbriae “Fimbrillar structures (5–7µm in

width) just like pili

interconnecting bacteria and

mediating adhesion of the

bacteria to the abiotic surface”

*The aid in adherence,

autoaggregration, colonization of

surfaces, and

*Antibiotic resistance

“Specific antibodies against

SMF-1 fimbriae inhibited the

agglutination of animal

erythrocytes, adherence to

HEp-2 cells and biofilm formation

by S. maltophilia”

de Oliveira-Garcia et al., 2002,

2003

Small colony variant Down-regulation of the bacterial

electron transport and/or

dihydrofolate reductase (DHFR)

pathway sulfamethoxazole

resistance, bringing about small

colonial form

Switch to the SCV phenotype is

a response to antibiotic pressure

due to down-regulation of the

bacterial electron transport

and/or dihydrofolate reductase

(DHFR) pathway

“SCV S. maltophilia from the

sputum of CF patients has

implications in laboratory testing”

Anderson et al., 2007

*Indicates particular concern.

the observation of appreciable sequence identity to the flagellin
of Proteus mirabilis, Serratia marcenscens, Escherichia coli, and
others. in S. maltophilia flagella by analysis of N-terminal
amino acid sequence. The bacteria are sometimes uniflagellated,
biflagellated or multiflagellated. Monopolar flagella arrangement
in S. maltophilia using Leifson flagella stain is shown in Figure 2.
S. maltophilia attach to abiotic surfaces and colonizes medical
devices where it subsequently will form part of a biofilm (Elvers
et al., 2001). This biofilm facilitates their attachment to cultured
airway epithelial cells (de Abreu Vidip et al., 2001; de Oliveira-
Garcia et al., 2003; Di Bonaventura et al., 2007) and their
spread in an abiotic environment is facilitated by the flagella
(Krzewinski et al., 2001). Both the biofilm production coded
for, by biosynthetic genes rmlA, rmlC, and xanB and flagella
are important in colonization and motility (Huang et al., 2006).
This can be studied easily in the laboratory. S. maltophilia
biofilms were analyzed by employing “in vitro tissue-culture
assays.” Scanning electron micrograph of a S. maltophilia biofilm
cultured in a flow cell is depicted in Figure 2D (Briandet
et al., 2008). The biofilm contributes to bacterial virulence as it
protects the bacteria against antibiotics (Monroe, 2007; Hunter,
2008; Abraham, 2016) (See Table 3). S. maltophilia, like other

Gram-negative bacteria, utilizes the QS to coordinate expression
of phenotypes and cell-to-cell communication, interlinked by
QS molecules and receptors that depend on the number of
cells present (LaSarre and Federle, 2013). S. maltophilia K279a
genome further bears a diffusible signal factor (DSF) dependent
QS system (Fouhy et al., 2007). This system was first detected
in Xanthomonas campestris pv. campestris (Fouhy et al., 2007;
Huang and Wong, 2007). DSF synthesis depends on rpfF within
rpf operon to regulate virulence factors (Huedo et al., 2014).
Two pathways of QS regulations include: N-Acyl homoserine
lactones (AHLs) and Diffusible Signal Factor quorum sensing
(DSF-QS). The synthesis and expression of DSF-QS pathway of
Xanthomonas, Xylella fastidiosa, and in S. maltophilia require
rpf gene cluster. DSF-QS regulates bacterial motility (Newman
et al., 2004; Huedo et al., 2015; Suppiger et al., 2016), biofilm
formation (Huedo et al., 2014; García et al., 2015), and virulence
(Huedo et al., 2014, 2015). S. maltophilia utilizes the interactions
to coordinate phenotypes of the cells for host colonization and
pathogenesis.

The development of small colonial form or small colonial
variants (SCV) phenotype in S. maltophilia (Figure 2B) is
a response toward reducing the antibiotic pressure on the
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bacteria due to down-regulation of the BET (“bacterial electron
transport”) and/or DHFR (“dihydrofolate reductase pathway”)
(Table 3). S. maltophilia is also endowed with a number of
enzymes which play vital roles in their pathogenesis. Some of
them include deoxyribonuclease, protease, ribonucleases, among
others as depicted in Table 3 (Windhorst et al., 2002; Nicoletti
et al., 2011). Windhorst et al. (2002) describes the StmPr1
protease from S. maltophilia that possess intracellular human
tissue degradative potential. This Stmpr1 protease remains a
notable pathogenicity factor in the bacteria targetable for the
development of therapeutic agents (Windhorst et al., 2002;
Nicoletti et al., 2011).

Another typical regulator is the c-di-GMP [“bis (3′,5′)-
cyclic diguanosine monophosphate”], which is a cellular
second messenger known for regulating bacterial activities
like pathogenicity. The regulatory function of c-di-GMP in
S. maltophilia remains unclear. In nosocomial S. maltophilia,
BsmR is a negative regulator of biofilm development that
degrades c-di-GMP. When BsmR are increasingly released,
bacterial cells swim away (use their flagella) and are less
likely to form quorum or biofilm (Liu et al., 2017). This is
because BsmR regulates the expression of 349 genes including
those for the expression of flagella genes. This involves
FsnR, which “triggers” transcription of 2 flagellum-associated
operons through adherence with their promoters (Kang et al.,
2015). Certain pathways leading to the formations of essential
macromolecules are regulated by the expression of small RNAs.
Small RNAs are interconnected with QS and c-di-GMP to control
bacterial physiology in the rhizosphere where S maltophilia is a
regular resident. These regulatory factors are potential targets for
novel antibacterial agent against these bacteria.

As stated, the bacteria behave as a true pathogen in some
cases (Kim et al., 2002; Hansen, 2012). This is reflected in
their ability to infect immunocompetent individuals. Thomas
et al. (2010) reported that the bacteria is an aetiologic agent for
pyomyositis in an immunocompetent adult. Earlier, Pruvost et al.
(2002) also described a case of community-acquired superficial
pyoderma due to these bacteria in an immunocompetent host.
It is also reported in other immunocompetent patients having
community-borne meningitis together with plantar pyoderma
(Libanore et al., 2004). Similar observation has been where
S. maltophilia is prominent among pathogens in polymicrobial
infections (Meyer et al., 2006). It shows the dual nature of this
Gram-negative rod bacteria and the need to handle it as potential
pathogen even when isolated from environment as commensal.

The risk of S. maltophilia infection are on the rise
due to factors like prolonged hospitalization in an intensive
care unit, HIV infection, cancer, cystic fibrosis, neutropenia,
presence of surgical wound, artificial respiration, and previous
administration of broad-spectrum antibiotics. Administering
broad-spectrum antibiotics to which S. maltophilia has inherent
resistance eradicates wide range of bacteria that would have
restricted the colonization of tissues by S. maltophilia through
microbial antagonism.

It is worth to briefly mention the S. maltophilia relationship
with Vermamoeba vermiformis for growth and protection in the
amoeba’s which was investigated by Cateau et al. (2014) over

28 days under harsh conditions. This internalization ensures
survival in hospital water systems and potentiate reinfection of
patients (Cateau et al., 2014). Transmission electron microscopy
images of V. vermiformis infected by S. maltophilia is illustrated
in Figure 2E, where the arrow in this figure indicate the
S. maltophilia inside the V. vermiformis.

DIAGNOSIS AND IDENTIFICATION FOR
RESEARCH AND CLINICAL PURPOSES

A correct diagnosis is important in choosing appropriate
therapy (Preud’homme and Hanson, 1990). The main challenge
confronting proper diagnosis (and even control) of S. maltophilia
in most clinical manifestation is absence of patient history due
to initial rarity (Das et al., 2009). Therefore, misdiagnosis of
the S. maltophilia cases for other possible etiologies often lead
to development of fatal complications (Burdge et al., 1995).
In a number of cases, the prescription of prolong antibiotic
therapy interfere with non-specific immunity, resulting in a rapid
colonization (Mamedova and Karaev, 1979; Drancourt et al.,
1997; Agvald-Ohman, 2007). Addressing the presence of the
organism in sputum as infection and subsequent use antibiotic
therapy seem to be a wrong approach, since this might not
translate to tissue colonization. A proactive diagnostic approach
is needed before antibiotic therapy.

S. maltophilia has been miss-identified as B. cepacia-complex
(Burdge et al., 1995; McMenamin et al., 2000). Conventional
cultural methods on nutrient agar support the growth, although
certain strains require methionine (O’Marley, 2009; Pinot
et al., 2011). Isolation from natural sources (Pinot et al.,
2011) including inanimate colonization or animal sources
can easily be done with MacConkey agar supplemented with
imipenem antibiotic. The imipenem inhibits many other bacteria
(Rodloff et al., 2006). In addition, VIA-medium which contain
Vancomycin, Imipenem, and Amphotericin B and mannitol
agar base has been shown to be effective in isolation and
recovery (Foster et al., 2008; Pinot et al., 2011). Further
characterization on the small Gram negative, oxidase negative
rod can be done using the Analytic Profile Index, API
20E and BD Phoenix (Becton Dickinson, France) systems
(Aydemir et al., 2008). Biochemical/growth characteristics for
phenotypic identifications are summarized in Table 1. Since API
identification may not be totally accurate, speciation can be
confirmed using molecular techniques such as genus-specific
and specie-specific hybridization (Kempf et al., 2000; Cottrell
et al., 2005). In vivo studies is also used and these studies
utilize lipid peroxidation, lactate dehydrogenase activity and
histopathological examination of tissue homogenate to measure
the effect of S. maltophilia on tissue (Naika et al., 2004;
Ibrahim and Nassar, 2008). If appropriate methods are used,
the interference of the S. maltophilia infection in some body
function can easily be studied. For instance, the improvement
in laboratory identification brought about the recognition of
Sm association in lung function in cystic fibrosis, though the
organism was not expected in this particular case before its
isolation (Goss et al., 2004).
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Reference laboratories employ back-up methods and tools
like “Matrix-assisted laser desorption/ionization time of flight”
(MALDI-TOF), protein electrophoresis, polymerase chain
reaction (PCR), DNA sequencing, transmission and scanning
electron microscopy, immunological assay, western blotting,
and N-terminal amino acid sequence analysis to confirm the
identity of the organism (de Oliveira-Garcia et al., 2003; Chibber
et al., 2008; Lira et al., 2012; Mukherjee and Roy, 2013; Adegoke
and Okoh, 2015). The genetic make-up is determined using
randomly amplified polymorphic DNA PCR (Krzewinski et al.,
2001). A PCR (“polymerase chain reaction”) with total sensitivity
and specificity approach emerged for S. maltophilia two decades
ago (Whitby et al., 2000). Pulsed field gel electrophoresis (PFGE)
technique (Denton and Kerr, 1998) is employed for typing during
the molecular epidemiological study of S. maltophilia. Adamek
et al. (2011) attempted using rep-PCR fingerprinting and partial
gyrB gene sequencing to further characterize S. maltophilia
within the same species, which though was not perfectly
concluded, yet it was a promising pathway to understudy the
links between the clinical and environmental strains.

The MALDI-TOF, usually coupled as MALDI-TOF MS
(“matrix-assisted laser desorption/ionization time-of-flight
mass-spectrometry”) is a fast rising technology for high-
throughput and quick microbial taxonomy. Rahi et al. (2016)
affirmed that MALDI-TOF MS has relatively higher accuracy,
a comprehensive database and is low-cost compared to other
techniques for microbial identification and that the method is
now replacing several others in clinical diagnosis. Also, PFGE
with modifications is preferentially recommended to other
established protocols in tracking S. maltophilia nosocomial
outbreak due to its speed, simplicity, and cost effectiveness
(Shueh et al., 2013).

In order to reduce method based error, Clinical and
Laboratory Standard Institute (CLSI) recommended “Standard
Broth Microdilution (SBM), a dried-down form of broth
microdilution (DMD), E-Test (ET), agar disk diffusion (DD)
e.g., with interpretive manuals displayed in Table 4, and agar
dilution (AD)’ methods. These methods are of importance for
studies of antibiotic susceptibility testing (AST) of S. maltophilia
with Trimethoprim/Sulfonamethoxazole (Wiles et al., 1999), and
these methods are also used to provide epidemiology work-
base data for use in perspective Sm-control arsenal. Standards
“zone diameter and minimal inhibitory concentration (MIC)
interpretive Standards’ for S. maltophilia” as approved by Clinical
and Laboratory Standards Institute (2014) is depicted in Table 3.

INFECTION PROGNOSIS AND/OR
THERAPEUTIC OUTCOME

There is an increased risk of co-infection that affects the
limited the therapeutic option for S. maltophilia. Prognostic
factors that include therapy-based immunosuppression, blood-
based carcinoma, neutropenic, transplantation etc. are also
important to determine recovery or mortality, resulting from
S. maltophilia. Conditions that remove myelosuppression and
invasive indwelling catheter, and prompt treatment with

TABLE 4 | Zone diameter and Minimal Inhibitory Concentration (MIC) interpretive

standards for Stenotrophomonas maltophilia (M100-S24, Clinical and Laboratory

Standards Institute , 2014).

Test/

Report

group

Antimicrobial

agent

Disk

content

Zone diameter

interpretive

criteria (nearest

whole mm)

MIC Interpretive

Criteria (µg/mL)

S I R S I R

β-LACTAM/β-LACTAMASE INHIBITOR COMBINATIONS

B Ticarcillin-

clavulanate

– – – – ≤16/2 32/2–

64/2

≥128/2

CEPHEMS (PARENTERAL) (INCLUDING cephalosporins I, II, III, and IV.)

B Ceftazidime – – – – ≤8 16 ≥32

TETRACYCLINES

B Minocycline 30 µg ≥19 15–18 ≤14 ≤4 8 ≥16

FLUOROQUINOLONES

B Levofloxacin 5 µg ≥17 14–16 ≤13 ≤2 4 ≥8

FOLATE PATHWAY INHIBITORS

A Trimethoprim-

sulfamethoxazole

1.25/23.75

µg

≥16 11–15 ≤10 ≤2/38 – ≥4/76

PHENICOLS

B* Chloramphenicol – – – – ≤8 16 ≥32

*Not routinely reported on isolates from the urinary tract.

pre-confirmed antibiotic have been reported to determine the
chance of recovery (Vartivarian et al., 1994) as their surfaces
have been observed to enhance colonization. Johnson (2000)
noted that nearly all mucocutaneous complications involving
S. maltophilia of HIV infected individuals either improved or
were resolved if restoration of immune function is achieved by
highly active antiretroviral drugs.

Primary cellulitis, disseminated cutaneous nodules, and
mucocutaneous ulcers caused by S. maltophilia are often
associated with underlining malignancies. Some complications
of S. maltophilia infection accompanied with metastatic skin
nodules and/or systemic inflammatory response syndrome
(sepsis), muco-cutaneous infections in neutropenic patients with
cancer have poor prognosis. Marchac et al. (2004) stated that
Aspergillus fumigatus co-infect individuals with S. maltophilia.
The report suggested that the effect of A. fumigatus co-infection
with S. maltophilia has no association with administration
of steroid. In the words of Marchac et al. (2004) “allergic
bronchopulmonary aspergillosis was diagnosed in 5 of 17 (30%)
patients with A. fumigatus in the sputum and taking oral
steroids.”

High mortality often resulting from mucocutaneous
S. maltophilia infections in neutropenic patients with cancer
makes the effect of secondary immunosupression a worrisome
trend in the infection prognosis (Tseng et al., 2009; Wakino et al.,
2009; Freifeld et al., 2011; Piena et al., 2015). Accompanying
widespread injury to vital somatic tissues might be a relative
factor to this. Clinical effort to reduce alarming mortality rate
from various forms of this bacterial infection and its attending
complications is imperative. For instance, S. maltophilia is
increasingly recognized among the cancer patients and the
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mortality brought about by the organism in the cases of
bacteremia in non-burned patients was reported as 10–69%
(Micozzi et al., 2000; Friedman et al., 2002; Senol et al., 2002).
Tsai et al. (2006) reported a mortality rate of 30.7% in burn
patients colonized by S. maltophilia while all (100%) the patients
that acquired nosocomial meningitis involving S. maltophilia
died (Yemisen et al., 2008).

CONTROL OF S. MALTOPHILIA

Since S. maltophilia both act as an opportunistic pathogens and
has been implicated among immunocompetent individuals (Kim
et al., 2002; Pruvost et al., 2002; Libanore et al., 2004; Thomas
et al., 2010; Huang et al., 2013; Wang C. H. et al., 2014; García-
León et al., 2015; Reynaud et al., 2015), its control is quite
essential. Removal of the invasive indwelling devices without
change of medication, hygienic handling of breached skin or
self-fix medical devices and proper quality control measure
in the preparation of irrigation solution or intravenous fluid
are imperative in the control and management of nosocomial
S. maltophilia infection. Elsner et al. (1997) observed that a
patient with fatal pulmonary hemorrhage, acute leukemia, and
fulminant pneumonia recovered immediately after an indwelling
contaminated catheter was removed, affirming the role of such
devises in S. maltophilia infection. While considering principles
of catheter related infection (CRI), Mer (2005) also reported
that, as a general rule the removal of catheter in catheter-related

blood stream infections (CRBSI) is compulsory and that most of
the infectious complications usually resolve after removal of the
catheter.

ANTIBIOTIC ADMINISTRATION

Treatment of infection caused by S. maltophilia is complicated
because this pathogen exhibits multi drug resistance (MDR).
Worse still, the environmentally isolated strains also showed this
MDR as depicted in Figure 3, limiting the available therapeutic
options (Denton and Kerr, 1998; Köseoglu et al., 2004) if
infection occurs. This is worsened by co-infection, which makes
the treatment of S. maltophiliamore cumbersome. S. maltophilia
exhibits multiple resistance against antibiotics suitable for
treating nosocomial infections. It is imperative to remember that
some of the antibiotics used in the treatment of ESBL producers
like S. maltophilia are broad spectrum. Hence, utmost care needs
be taken in its selection, as consideration to patient’s ability to
withstand drug contra-indication(s) is imperative even in some
polymicrobial cases. Abuse of the extended spectrum antibiotics
may lead to selection of highly resistant S. maltophilia strains. Co-
trimoxazole (trimethoprim-sulphamethoxazole, TMP-SMX) is
the treatment of choice in symptomatic infection but no available
information exists on the best management of co-trimoxazole-
resistant infections.

Ciprofloxacin and other older quinolones reportedly
possessed 50% efficacy against S. maltophilia in vitro (Denton

FIGURE 3 | Multiple antibiotic resistant profile of S. maltophilia from root rhizosphere (Adegoke and Okoh, 2015).
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and Kerr, 1998). Observation was also made by Weiss et al.
(2000) that trovafloxacin, clinafloxacin, and morxifloxacin have
appreciable in vitro activity against the organism and have been
employed to treat chronic infections by it. Trimethoprim—
sulphamethoxazole, TMP-SMX have been recommended by a
number of researchers as initial therapeutic option for serious
S. maltophilia infections (Lo et al., 2002). Fluoroquinolone
was reported as better therapeutic choice in case of cystic
fibrosis, as it has much higher peak lung concentration than
peak plasma concentration (Schubert et al., 2005). However,
exploiting the benefit of synergy in combination therapy using
the fluoroquinolone antibiotics or TMP-SMX have several
advantages, due to the ease with which the organism acquires
resistance to monotherapy (Weiss et al., 2000; Foo et al., 2002).
Zelenitsky et al. (2005) reported better bactericidal kinetics due to
combination therapy involving TMP-SMX and ceftazidime than
for monotherapy. A study by Wang Y. L. et al. (2014) showed
that clinical success rates monotherapy with fluoroquinolone
and TMP-SMX were 52 and 61% respectively (P = 0.451).
Therapeutic successes have also been reported with the use of
minocycline (MIN) and doxycycline (DOX) (Chung et al., 2013;
Farrell et al., 2014). They were specifically recommended for
being most potent antibiotics against S. maltophilia isolates (MIN
= 98.9%, DOX = 94.6%) compared to TMP-SMX of 93.4% in
the Esposito et al. (2017) study. Though S. maltophilia is known
for resistance to imipenem and other antibiotics with lower
spectrum than imipenem, any of TMP-SMX, MIN, or DOX can
still be good choice for treatment, following appropriate AST.

Even then, secondary drug interaction with body metabolism
when considering appropriate therapy for S. maltophilia is
imparative. Some effective antistenotrophomonad drugs without
damaging primary contra-indications might interfere with other
existing drugs in plasma (Dickinson et al., 2001). Carbapenem
antibiotics with estrogen affect the effectiveness of contraceptive
in vivo. Some patients’ intolerant of TMP-SMX should be
noted (Archer and Archer, 2002). Dalamaga et al. (2003)
reported improvement in the S. maltophilia infection treatment
in burn patients following the administration of TMP-SMX.
Careful consideration is expected before antibiotic regimen
is prescribed in Stenotrophomonas control arsenal. Tesoro
et al. (2011) recommended co-trimoxazole-ticarcillin-clavulanate
combination therapy due to their synergism and the reported
bactericidal effect against the ticarcillin-clavulanate resistant
strains. This should be considered for the patients who are
TMP-SMX tolerant.

BASIS OF RESISTANCE

S. maltophilia exhibits high AR profile due to both inherent
and acquired antibiotic resistant genes (Alonso et al., 2004; Di
Bonaventura et al., 2004; Nicodemo and Paez, 2007; Gilbert et al.,
2010). It is important to note that, DSF-QS earlier discussed also
regulates AR (Fouhy et al., 2007). Besides this, all S. maltophilia
strains have been shown to harbor resistant genes (Alonso
et al., 2004; Nicodemo and Paez, 2007; Gilbert et al., 2010).
This implies that resistant strains to quinolones, cotrimoxazole

(TMP-SMX), cephalosporins-antibiotics and other conventional
therapy for S. maltophilia infections are upcoming. In a Canadian
hospital environment for instance, erythromycin and tetracycline
resistance genes were detected in 100% air samples collected
(containing S. maltophilia) from hospital rooms, (Furushita
et al., 2003; Perron et al., 2015). In Korea, Song et al. (2010)
observed that antibiotic resistance gene (ARGs) sul1 within class
1 integrons rather than sul2 were responsible for TMP-SMX
resistance. In S. maltophilia, isolates can be linked to multiple
ARGs also within the Class 1 integrons. ARGs, macrolide
phosphotransferase (mphBM) amidst cluster of genes (like heavy
metal tolerance gene) cadmium efflux determinant (cadA) as
well as its transcriptional regulator gene (cadC) was reported
in S. maltophilia D457 by Alonso et al. (2004). In the study,
the S. maltophilia (a Gram-negative) acquired ARGs from
gram-positive bacteria. Similarly, the role of S. maltophilia
efflux pumps (EfPs) ABC, DEF, GH, IJK, MN, OP, VWX,
and YZ multidrug efflux pump cannot be overlooked. This
is because it nurtures the innate multidrug resistance (MDR)
in S. maltophilia (Zhang et al., 2001, 2004; Li et al., 2002;
Sánchez et al., 2002; Crossman et al., 2008; Gould et al., 2013;
Huang et al., 2013; García-León et al., 2015). This is outlined
in Table 3. Zhang et al. (2001) noted that S. maltophilia efflux
pump F, SmeF in a hyper-expressed form and multidrug efflux
components could enhance MDR in S. maltophilia. The MDR
clinical isolate of S. maltophilia strain was also reported to
effect the over-expression of the resistance-nodulation-division
(RND) family efflux pumps SmeZ and SmeJK (Gould et al.,
2013). The RND-type EfPs SmeABC in S. maltophilia is under
the control of two-component system (TCS) known as SmeRS,
situated above the efflux pump genes. Studies showed that if
SmeR response regulator are denatured, AR would reduce and
overexpression of SmeR triggers up the expression of smeABC (Li
et al., 2002). The expression of AME gene cassettes predicates
increased resistance to aminoglycoside (Huang et al., 2015).
The chromosomal aminoglycoside resistance determinants also
known as aminoglycoside-modifying enzymes (AMEs) are born
by AME genes, which in turn are the predominant gene cassettes
resident in the class 1 integrons of S. maltophilia. All the
attributes of these bacteria give further credence to the need to
incorporate isolates like S maltophilia and Acinetobacter species
as test isolates in drug research as proposed by Adegoke and
Okoh (2012).

While inactivating enzymes and efflux pumps are recognized,
yet in-depth studies are still on-going in this area. Mutant
library accounted for extensive unusual AR mechanisms and it
encompasses genes for metabolism, and resistant phenotypes.
Inducible beta-lactamase activity (“2 chromosomally encoded-
lactamases, L1 and L2, and an aminoglycoside acetyltransferase”)
(see Table 5) (Poole, 2001), poor outer membrane permeability
and efflux mechanism (McKay et al., 2003), horizontal gene
transfer (HGT) (Alonso et al., 2004), biofilm formation,
extracellular slime, or glycocalyx are important factors in
multiple AR (Di Bonaventura et al., 2004). Furushita et al. (2005)
observed inter-cluster divergence in beta lactamase gene in six
strains of S. maltophilia, suggesting horizontal gene transfer
(HGT) among them. Therefore, ARGs are of specific interest due
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TABLE 5 | Some of the resistance genes acquired/reserved in S. maltophilia.

Antibiotic resistance genes Expression Antibiotic/antibiotic group affected References

L1 Beta lactamase production Beta lactam antibiotics Zhang et al., 2000; Avison et al., 2002; Hu

et al., 2008; Lin et al., 2009

L2 Beta lactamase production Beta lactam antibiotics Zhang et al., 2000; Avison et al., 2002; Hu

et al., 2008; Lin et al., 2009

Sul1 Sulphonamide hydrolases’ production Sulphonamides/trimethoprim-

sulfamethoxazole

Toleman et al., 2007; Wang Y. L. et al., 2014;

Adegoke and Okoh, 2015

Sul2 Sulphonamide hydrolases’ production Sulphonamides/trimethoprim-

sulfamethoxazole

Toleman et al., 2007; Wang Y. L. et al., 2014;

Adegoke and Okoh, 2015

Sul3 Sulphonamide hydrolases’ production Sulphonamides/trimethoprim-

sulfamethoxazole

Wang Y. L. et al., 2014; Adegoke and Okoh,

2015

“Sme ABC Efflux pump (RND based) Ciprofloxacin/floroquinolone, tetracycline Li et al., 2002; Zhang et al., 2004

DEF Meropenem, chloramphenicol Alonso and Martínez, 2000; Zhang et al., 2001,

2004; Sánchez et al., 2002

GH Undetermined Crossman et al., 2008; Huang et al., 2013

IJK Tetracycline, aminoglycosides,

ciprofloxacin

Crossman et al., 2008

MN Undetermined Crossman et al., 2008; Huang et al., 2013

OP Aminoglycosides, macrolides, doxycline,

some quinolone

Lin et al., 2014

VWX quinolone García-León et al., 2015

YZ” Aminoglycosides Gould et al., 2013

Smqnr Penta-peptide repeat protein Quinolone Sánchez and Martínez, 2009; Zhang et al.,

2011; 2012

Bacterial topoisomerase

and gyrase genes

Chromosomal mutations of the quinolone

resistance–determining regions in DNA gyrase

and DNA topoisomerase IV

Quinolone and fluoroquinolone Jia et al., 2015; Kanamori et al., 2015

spgM Phosphoglucomutase ceftazidime, gentamicin, nalidixic acid,

piperacillin-tazobactam, polymyxin B,

polymyxin E, ticarcillin-clavulanic acid,

vancomycin

Liaw et al., 2010

to the transferability from one species to another (Alonso et al.,
2004).

These aforementioned resistance attributes are common to
both environmental and clinical strains (Botes et al., 2007;
Youenou et al., 2015). It evidenced their strong similarities in
possible attributes for host invasion as well as antibiotic resistance
(Alavi et al., 2014; Youenou et al., 2015). S. maltophilia can
acquire and transfer the ARGs to other bacteria species through
HGT (Berg et al., 2005, 2016) in the root rhizosphere of plants

SUGGESTION FOR TACKLING THE
GROWING HEALTH THREAT FROM
S. MALTOPHILIA: FUTURE TREATMENT

S. maltophilia must be accepted as true pathogen due to its high
pathogenic potentials it possesses (Alonso et al., 2004; Nicodemo
and Paez, 2007; Gilbert et al., 2010; Huang et al., 2013; Wang C.
H. et al., 2014; García-León et al., 2015; Reynaud et al., 2015).
Since the rhizospheres’ strains in Brazil was the same as the
clinical etiology of infection in Australia and Spain (Youenou
et al., 2015), the organism no doubt is an emerging threat (Huang
et al., 2013; Wang C. H. et al., 2014; García-León et al., 2015;
Reynaud et al., 2015), either from clinical settings or in the root

rhizosphere. Adegoke and Okoh (2015) reported high resistance
and detection of resistance genes among S. maltophilia from
root rhizosphere, making it potentially difficult to threat if it
infects an organism. It has even been reported that the bacteria
have higher competitive advantage in root rhizosphere than most
known phytopathogens, making its presence an advantage to
plant (Cernava et al., 2015). This gives the Stenotrophomonas a
competitive advantage among phytopathogens in the rhizosphere
and makes it potentially bacteria for internalization into plants,
though as plants’ growth promoter (Miceli et al., 2015). This
scenario posits the bacteria as a threat in human body system,
making microbial antagonism (a form of natural immunity
produce by body microflora) ineffective.

Based on report of studies on Staphylococcus aureus and
Acinetobacter baumannii by Su et al. (2011) and Davies and
Marques (2009), the right approach is by blocking the virulence
factors in S. maltophilia to prevent further colonization in
infection state and to resensitize antibiotics, to which such
factors have rendered ineffective. Interfering with bacterial
communication can potentially prevent progression of infection
(Cegelski et al., 2008). This QS disruption is one of the novel
approach to tackle bacterial infections (Alanis, 2005; Su et al.,
2011) and inhibition of biofilm formation by 2-Aminoimidazole
have been reported by Žula et al. (2013), and 2-bromoalkanoic
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acids reported by Gutierrez et al. (2013). Meanwhile Davies and
Marques (2009) had earlier reported disruption of S. aureus
biofilms using 10 nM of cis-2-decenoic acid. Another researcher,
Su et al. (2011) reported that higher biofilm dispersing potential
associated with Pb-compounds than the natural compound, cis-
2-decenoic acid. They were also reported to doubly to quadruply
re-induce MRSA resistance to oxacillin. More clinical based
research in biofilm inhibition, QS disruption and blockings other
virulence factors (Table 3) as it relates to S. maltophilia are hereby
recommended.

As stated earlier, S. maltophilia should also be included as one
of the test isolates in antibacterial drug research as we proposed
previously (Adegoke andOkoh, 2012). Limited antibacterial drug
studies have ever considered these bacteria as test isolates. There
should be consideration for its alarming resistance to many of
the existing antibacterial drugs, in the last line of defense (e.g.,
imipenem) and the reports showing the organism as a repository
of ARGs (Crossman et al., 2008; Gould et al., 2013; Huang
et al., 2013; Adegoke and Okoh, 2015; García-León et al., 2015).
The outcome of the study that reported high effectiveness of
Epigallocatechin-3-gallate (EGCG) from green tea (Gordon and
Wareham, 2010), essential oil (Fabio et al., 2007), nanoemulsions,
peptide inhibition of beta lactamase or the use of appropriate
protease inhibitor and use of cationic compounds should be
incorporated in Stenotrophomonas control arsenal. An example
is cationic peptides extracted from amphibians, which allow
material absorption by S. maltophilia as it increases the outer
membrane permeability of S. maltophilia (Figure 1). These
peptides are usually more potent than conventional (Kraus and
Peschel, 2006). The EGCG from green tea has been reported to
interfere with S maltophilia biofilm production as well as reduces
their cell count in vivo (Vidigal et al., 2014). Using confocal
laser scanning microscopy, Vidigal et al. (2014) observed huge
increase in dead cell within the biofilm produced by the bacteria
in cystic fibrosis patients based on the EGCG dosage used. The
studies show success in both in-vitro and in-vivo application and
may be a novel therapeutic alternative to solve the problems
associated with drug resistance. Current fluoroquinolone therapy
is known with severe contra-indication in children and pregnant
women (Larsen et al., 2001), emphasizing the need for more
antibacterial research with the bacteria in focus. Prospective

anti-Stenotrophomonas drugs should target the Stmpr1 protease
known to have indispensable function in its virulence (Windhorst
et al., 2002; Nicoletti et al., 2011).

Lysogenic phase as well as lytic phase of Stenotrophomonas
strains with phages have been demonstrated, showing the
possibilities of employing bioengineered bacteriophage therapy
in the control of multiple antibiotic resistant Stenotrophomonas
infection (Hagemann et al., 2006; García et al., 2008; Vos
et al., 2009). A number of promising phages that can serve as
therapeutic alternatives to S. maltophilia are emerging (Liu et al.,
2013; Lee et al., 2014; Peters et al., 2015) and listed in Table 6.
Phages DLP1 and DLP2 were observed by Peters et al. (2015)
with potency of infecting wide host range of bacterial pathogens,
including S. maltophilia and have been suggested as potential tool
for possible phage therapy. Other bacteriophages have also been
shown with such potentials. An example is the DLP6 (vB_SmoM-
DLP6) which was hosted with S. maltophilia strain D1571 from
soil. The phage DLP6 which belong toMyoviridae family infected
and lysed about 50% of the tested clinical S. maltophilia, including
the original S. maltophilia strain D1571 (Peters et al., 2017). This
creates a vibrant roadmap for more promising phage therapy
where several conventional antibiotics fail.

CONCLUSION

S. maltophilia has a very dynamic characteristic. The organism
is not only an opportunistic pathogen in severe life threatening
infection in the vulnerable but also reported as true pathogen
in immunocompetent individuals. This bacterial species is
accompanied with illnesses and death from RTI, especially
in clinical conditions like cystic fibrosis, bacteremia and/or
urinary tract infections among others. Appropriate diagnosis
with adequate caution is imperative as arbitrary administration
of antibiotic might result in increase in myelosuppression
and/or selection of resistant strains of the species. S. maltophilia
possesses inherent resistance to antimicrobials predicated
by low outer membrane permeability, natural MDR efflux
systems, and resistance mechanisms like the production of
two inducible chromosomally encoded-lactamases. Imminent
danger in S. maltophilia control arsenal should be avoided by
reclassifying the organism as pathogen and incorporating it as

TABLE 6 | Some phages for potential treatment of multiple antibiotic resistant S. maltophilia.

Phages Description Source Host/Host range References

DLP1 Exhibits unique plaque development Red Deer River

sediment

Wide range Peters et al., 2015

DLP2 Phage DLP2 is larger than DLP1. It has a non-contractile

tail (≈205 nm; capsid size ≈70 nm in diameter)

soil planted with blue

flax

Wide range Peters et al., 2015

Maltocin P28 “It appears like a contractile but non-flexible phage tail

(phage remnant) structure based on electron microscopy”

S. maltophilia strain P28 Due to the sequence analysis similar to P2 phage

genome, it might have multiple host range

Liu et al., 2013

Smp131 Morphology resembles the members of myoviridae

(genome size ≈250)

Clinical samples Narrow host range Lee et al., 2014

phiSMA5 Morphology resembles the members of myoviridae

(genome size ≈160 kb)

clinical samples Narrow range Lee et al., 2014

φSHP1 Filamentous phage Environmental samples SMP1 specific Liu et al., 2012
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one of the test isolates in antibacterial drug research. Strict
adherence to rules of hygiene, quality control in hospitals units
and pharmaceutical companies, avoiding the abuse of antibiotics
etc. are advocated, as these conditions predispose the organism
to antibiotic resistance. Antimicrobial resistance genes from
the organism could be transferred to other species and cause
serious public health concerns. Hence, the use of such genes as
markers for genetically modified crops should be discouraged.
The suggested therapeutic options in this article will surely lead a
way forward in the Stenotrophomonas control arsenal.
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