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The gut microbiome plays an important role in health and disease. Antibiotics are known
to alter gut microbiota, yet their effects on glucose tolerance in lean, normoglycemic
mice have not been widely investigated. In this study, we aimed to explore mechanisms
by which treatment of lean mice with antibiotics (ampicillin, metronidazole, neomycin,
vancomycin, or their cocktail) influences the microbiome and glucose metabolism.
Specifically, we sought to: (i) study the effects on body weight, fasting glucose,
glucose tolerance, and fasting insulin, (ii) examine the changes in expression of key
genes of the bile acid and glucose metabolic pathways in the liver and ileum, (iii)
identify the shifts in the cecal microbiota, and (iv) infer interactions between gene
expression, microbiome, and the metabolic parameters. Treatment with individual or
a cocktail of antibiotics reduced fasting glucose but did not affect body weight. Glucose
tolerance changed upon treatment with cocktail, ampicillin, or vancomycin as indicated
by reduced area under the curve of the glucose tolerance test. Antibiotic treatment
changed gene expression in the ileum and liver, and shifted the alpha and beta diversities
of gut microbiota. Network analyses revealed associations between Akkermansia
muciniphila with fasting glucose and liver farsenoid X receptor (Fxr) in the top ranked
host-microbial interactions, suggesting possible mechanisms by which this bacterium
can mediate systemic changes in glucose metabolism. We observed Bacteroides
uniformis to be positively and negatively correlated with hepatic Fxr and Glucose 6-
phosphatase, respectively. Overall, our transkingdom network approach is a useful
hypothesis generating strategy that offers insights into mechanisms by which antibiotics
can regulate glucose tolerance in non-obese healthy animals. Experimental validation of
our predicted microbe-phenotype interactions can help identify mechanisms by which
antibiotics affect host phenotypes and gut microbiota.

Keywords: antibiotics, gut microbiota, glucose tolerance, lean, non-obese, transkingdom networks

Abbreviations: AUC, area under the curve; Fgf15, fibroblast growth factor 15; Fxr, farsenoid x receptor; G6pase, glucose
6-phosphatase; Glut1, glucose transporter 1; GTT, glucose tolerance test; Hk1, hexokinase 1; Hk2, hexokinase 2; Insr, insulin
receptor; Pck1, phosphoenolpyruvate carboxykinase 1; Shp, small heterodimer partner; Tgr5, G protein-coupled bile acid
receptor 1.
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INTRODUCTION

The human gastrointestinal tract contains a multitude of
microbiota, including bacteria, viruses, and fungi (Utzschneider
et al., 2016). Their genome, although variable between individuals
(Human Microbiome Project Consortium, 2012), is capable
of a diverse set of functions that may influence the host’s
metabolic and immune systems (Tremaroli and Backhed,
2012; Greer et al., 2013; Sanz et al., 2015), including normal
homeostasis (Utzschneider et al., 2016). Changes in the
gut microbes have recently been associated with various
diseases (Qin et al., 2012; Karlsson et al., 2013; Wu et al.,
2015). For example, changes in Lactobacillus, Clostridium,
Ruminococcus sp., E. coli, Bacteroides, Akkermansia muciniphila
are observed in diabetic and obese patients (Qin et al., 2012;
Karlsson et al., 2013; Murri et al., 2013; Chakraborti, 2015;
Kasai et al., 2015; Sanz et al., 2015). These diverse results
indicate a need for a better understanding of the mechanistic
roles specific taxa play in the regulation of host metabolic
functions.

Antibiotics add an interesting dynamic to the host-
microbiome relationship. Although, antibiotics are well-known
to cause short (Perez-Cobas et al., 2013; Pallav et al., 2014;
Panda et al., 2014) and long-term (De La Cochetiere et al.,
2005; Jernberg et al., 2007; Dethlefsen et al., 2008; Jakobsson
et al., 2010; Dethlefsen and Relman, 2011; Raymond et al.,
2016) alterations in the gut microbiome, there is a lack of
consensus on their effects on glucose tolerance, body weight and
other metabolic parameters (Francino, 2015; Mikkelsen et al.,
2016). Moreover, effects of antibiotics in lean, normoglycemic
mice as compared to mouse obesity models have not been
widely investigated. An intervention study in healthy, glucose
tolerant young human males treated with 4-days broad-spectrum
antibiotics cocktail showed shifts in the cultivable gut microbiota
but no changes in postprandial plasma glucose and serum
insulin (Mikkelsen et al., 2016). Due to the use of a broad-acting
antibiotic cocktail in a short course as well as the use of fecal
samples for culture-based bacterial assessment, this study
provides limited insight on a comprehensive picture of changes
in intestinal microbes and on associations between individual
antibiotics and specific intestinal microbes. Understanding
antibiotic-microbiome interactions and their effects on glucose
metabolism in healthy mammals is critical for identifying initial
changes in microbiota that eventually may lead to diseases such
as obesity and diabetes.

In this study, we aimed to understand the regulatory
mechanisms by which individual antibiotics and their cocktail
influence the cecal microbiome and host phenotypes in lean
mice, namely, gene expression and metabolic parameters.
By treating lean mice with different antibiotics we sought
to: (i) study the effects on body weight, fasting glucose,
glucose tolerance, and fasting insulin, (ii) examine the changes
in expression of key genes of the bile acid and glucose
metabolic pathways in the liver and ileum, (iii) identify the
shifts in the cecal microbiota, and (iv) infer interactions
between gene expression, microbiome, and the metabolic
parameters. We repeated the entire experiment twice and

performed meta-analyses to increase the confidence of our
results.

MATERIALS AND METHODS

Mice and Antibiotics Treatment
Eight weeks old adult male Swiss Webster mice were initially
purchased from Taconic Biosciences (Germantown, MD,
United States). Mice were housed at the Laboratory Animal
Resource Center at Oregon State University for 3–5 days for
acclimation under standard 12-h light cycle with free access to
food (5001, Research Diets) and water. Experimental procedures
were carried out in accordance with protocols approved by the
Oregon State University Institutional Animal Care and Use
Committee. Mice were given single, cocktail, or no antibiotics for
4 weeks to create a stable altered microbiome. Antibiotics were
administered in autoclaved drinking water individually, or in a
cocktail for 4 weeks in the following concentrations: ampicillin
(1 gl−1), metronidazole (1 gl−1), neomycin trisulfate (1 gl−1),
and vancomycin (0.5 gl−1). This time course is consistent with
standard antibiotic administration used in multiple studies for
altering microbiota (Rakoff-Nahoum et al., 2004; Morgun et al.,
2015; Greer R.L. et al., 2016). Each group consisted of five mice
per experiment, total 30 mice per experiment, except for four
mice in the cocktail group from the second experiment. Water
consumption was monitored over the 4 weeks treatment period
and all groups showed consumption equivalent to control water.

Glucose Tolerance Testing
Mice were fasted for 6 h during the light phase with free access
to water. A concentration of 2 mg kg−1 glucose (Sigma–Aldrich)
was injected intraperitoneally. Blood glucose was measured at 0
(immediately before glucose injection), 15, 30, 60, and 120 min
with a Freestyle Lite glucometer (Abbot Diabetes Care).

Serum Collection and Hormone
Measures
Mice were fasted for 6 h during the light phase with free
access to water. Serum was collected via submandibular bleed
using BD microtainer serum separator tubes. Fasting insulin was
measured by ultrasensitive ELISA (Crystal Chem) according to
manufacturer’s protocols.

Bacterial DNA Extraction, 16S rRNA
Gene Library Preparation and PCR
Unflushed cecal tissue and content was suspended in 1.4 ml
ASL buffer (Qiagen) and homogenized with 2.8 mm ceramic
beads followed by 0.5 mm glass beads using an OMNI
Bead Ruptor (OMNI International). DNA was extracted from
the entire resulting suspension using QIAamp DNA Stool
Mini Kit (Qiagen) according to manufacturer’s protocol. DNA
was quantified using Qubit broad range DNA assay (Life
Technologies). The V4 region of 16s rRNA gene was amplified
using universal primers (515f and 806r) (Caporaso et al., 2012).
Individual samples were barcoded, pooled to construct the
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sequencing library, and then sequenced using an Illumina Miseq
(Illumina, San Diego, CA, United States) to generate pair-ended
250 nt reads. Quantitative PCR was performed for A. muciniphila
as described in Schneeberger et al. (2015) with DNA for standard
curve isolated from the cultivated microbe.

RNA Preparation and Gene Expression
Analysis
Liver and ileum (flushed out of content) were collected and
snap frozen prior to RNA extraction. Liver was homogenized
using OMNI Rotor-Stator Homogenizer in Trizol and RNA
was extracted using Trizol/chloroform extraction followed by
the RNeasy Mini kit (Qiagen). Ileum RNA was extracted
using OMNI Bead Ruptor and 2.8 mm ceramic beads (OMNI
International) in RLT buffer followed by Qiashredder and RNeasy
kit using Qiacube (Qiagen) automated extraction according
to manufacturer’s specifications. Total RNA was quantified
using Nanodrop (Thermo Scientific). Complementary DNA was
prepared using iScript reverse transcription kit (Bio-Rad) and
qPCR was performed using QuantiFast SYBR mix (Qiagen) and
StepOne Plus Real Time PCR system and software (Applied
Biosystems). Primers used for qPCR are listed in Supplementary
Table S1.

Statistical Analysis of Phenotypic Data
An outlier value per group per experiment was removed (if
p-value < 5%) for each phenotype (metabolic parameters and
genes) using the default Grubb’s test from R package outliers
v0.14 (Komsta, 2011). The data was log2 transformed and
differential phenotypes (antibiotics vs. control) were detected
using limma (Ritchie et al., 2015) (Bioconductor 3.4, BiocInstaller
1.24.0, R 3.3.2) per experiment. A combined Fisher’s p-value
was calculated for each phenotype from the p-values for the
limma t-statistic from each experiment. A false discovery
rate (FDR) was calculated on the combined p-values. Change
in phenotype was considered statistically significant if the
phenotype had same direction of (abx/control) fold change
in both experiments, individual p-value < 20% in each
experiment, Fisher’s combined p-value (Fisher, 1932) <5%
and FDR < 10%. The dot plots for the phenotypes were
generated using R package ggplot2 (Wickham, 2009) and the
GTT curves were generated using GraphPad Prism software
v7.03.

Analyses of 16S rRNA Gene Sequencing
Data
The samples were demultiplexed and forward-end fastq files were
analyzed using QIIME v. 1.9.1 (Caporaso et al., 2010). The default
quality filter parameters from QIIME’s split_libraries_fastq.py
were applied to retain high quality reads (Phred quality
score > = 20 and minimum read length = 75% of 250
nucleotides). A closed reference OTU picking with 97%
sequence similarity was performed using UCLUST (Edgar,
2010) and Greengenes reference database v13.8 (DeSantis
et al., 2006; McDonald et al., 2012) to cluster 16S rRNA
gene sequence reads into OTUs and assign taxonomy. The

reference sequence of an OTU from the Greengenes database
was used to obtain species level taxonomic assignment using
Megablast (Altschul et al., 1997; Morgulis et al., 2008) (top
hit using default parameters). A threshold of 99% cumulative
abundance across all samples in an experiment was used
to retain abundant microbes, thus removing OTUs with
approximately <0.01% abundance across all samples in that
experiment. The read counts were normalized using cumulative
sum scaling (Paulson et al., 2013) followed by quantile
normalization.

The normalized OTU tables were used for diversity and
statistical analysis. Briefly, a sampling depth of 200,000 sequences
per sample was used for rarefaction. The alpha diversity
metrics were calculated on unrarefied and rarefied OTU tables
(Supplementary Table S2). The Shannon diversity index (from
rarefied data) for samples with and without antibiotics treatment
was compared with a non-parametric t-test. The difference
was considered to be statistically significant if the direction
of (abx/control) fold change in both experiments is the same,
individual p-value < 2% in each experiment, Fisher’s combined
p-value < 0.1% and FDR < 0.1%. Beta diversity was calculated
using weighted UniFrac (Lozupone and Knight, 2005) and the
distances were used for PCoA (Gower, 1998) and visualized using
EMPeror (Vazquez-Baeza et al., 2013). The taxonomic summary
bar plots were used to visualize abundance at the phylum and
order levels.

The log2 transformed OTU tables were used for limma
analysis. Meta-analysis was performed using the same criteria as
applied for phenotypes to identify differentially abundant OTUs.
A heatmap with row scaling was generated for each experiment
using R packages ggfortify v0.2 (Horikoshi and Tang, 2016) and
gplots v3.0.1 (Warnes et al., 2016). Hierarchical clustering was
used to group OTUs (rows) based on similar abundance patterns
across the groups in the first experiment and the same row
order was used for the second experiment without row-wise
clustering.

Network Reconstruction and Prioritizing
Microbe-Phenotype Edges
Spearman rank correlations were calculated between all pairs of
genes, microbes, and metabolic parameters across all samples or
per-group in an experiment. A combined Fisher’s p-value was
calculated for each pair from the p-values for the correlation from
each experiment. A FDR was calculated on the combined p-values
separately for the following correlations: (i) within genes, (ii)
within metabolic parameters, (iii) between genes and metabolic
parameters, and (iv) between OTUs and phenotypes (genes or
metabolic parameters).

We retained edges that satisfy the following criteria: the
sign of correlation coefficients in the two experiments should
be consistent, individual p-value of correlation within each
experiment is <20%, combined Fisher’s p-value of all experiments
<5% and FDR cutoff of 10% for edges without a microbial node
(i, ii, and iii), whereas 1% for edges containing at least one
microbial node (iv).

Next, the transkingdom network was generated (Dong et al.,
2015; Morgun et al., 2015; Greer R.L. et al., 2016; Rodrigues
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et al., 2017) by keeping the criteria-satisfying phenotypic (i, ii, and
iii) and OTU-phenotype (iv) edges, where the OTU has >0.5%
median abundance across the two experiments in at least one
group.

Finally, an OTU-phenotype edge was retained if it
showed consistent sign of per-group Spearman correlation
coefficient between the two experiments, principles of causality
compliancy (Yambartsev et al., 2016) [i.e., satisfied fold change
relationship between the two partners in the appropriate
(abx vs. control) comparison] in at least one group, and
the same sign of correlation coefficient across different
groups. To put this bipartite network in perspective of the
phenotypic connections a phenotypic edge was included
(only during visualization) if its strength of correlation was
stronger than at least one OTU-phenotype edges connecting
the phenotypes. Network topology statistics, namely degree
and betweenness centrality (BC), were calculated using
NetworkAnalyzer (Assenov et al., 2008) in Cytoscape v3.5
(Shannon et al., 2003). These edges were ranked using a
score of maximum (per-group OTU abundance) × absolute
[median (per-group correlation)] to prioritize OTUs and
the phenotypes they potentially affect, where the per-group
OTU abundance and correlation are medians across the
two experiments. The top hit of BLAST for the Greengenes
representative sequence for an OTU was used to obtain species
level identification.

Data Availability
Raw reads of 16S rRNA gene sequencing have been deposited
at NCBI under BioProject PRJNA394608, Biosamples of
SAMN07356206 – SAMN07356264, Sequence Read Archive
SRP112596.

RESULTS

Lean, normoglycemic male mice were left untreated, or
were treated with ampicillin, metronidazole, neomycin or
vancomycin, or a cocktail containing all four antibiotics for
4 weeks to study the effects of antibiotic treatment on glucose
tolerance, genes involved in glucose and bile acid metabolism,
and the gut microbiota. Antibiotics resulted in different patterns
of changes in the metabolic parameters, gene expression, and
intestinal microbiome.

Antibiotics Improved Glucose Tolerance
in Lean Mice
No metabolic parameter worsened following antibiotics
treatment (Figure 1 and Supplementary Figure S1). We
observed that treatment with individual or cocktail of antibiotics
reduced fasting glucose, but did not change body weight. Glucose
tolerance improved upon treatment with cocktail, ampicillin,
or vancomycin as indicated by reduced AUC of the GTT.
Treatment with all antibiotics, including metronidazole or
neomycin reduced fasting glucose levels, however, the latter two
did not cause changes in systemic glucose tolerance. Fasting
insulin was reduced only when the mice were treated with

vancomycin. Overall, glucose metabolism was regulated by
antibiotic treatment.

Antibiotics Changed Expression of
Genes Involved in Glucose and Bile Acid
Metabolism
Tissue specific host gene expression is important in many
metabolic processes (Thomas et al., 2008; Chiang, 2013) and
regulated by gut microbiota (Larsson et al., 2012). These, along
with the knowledge that intestinal glucose metabolism can
control systemic glucose levels (Saeidi et al., 2013), led us to
examine the expression of key glucose and bile acid metabolic
genes in the liver and the ileum.

The majority of the tested genes in the ileum showed changes
in expression due to antibiotic treatment (Figure 1). Ileum
Hk2 and G6pase transcripts showed decreased expressions after
treatment with cocktail, ampicillin, or vancomycin. Ileum Pck1
and Tgr5 mRNA were increased after treatment with ampicillin
or vancomycin, but showed no changes after with cocktail. Ileal
Hk1 and Glut1 did not change gene expression after antibiotics,
whereas, Fgf15, Fxr, and Shp showed antibiotic-specific patterns
in expression.

Only three genes showed differential expression in the liver
following antibiotic treatment (Figure 1). Fxr and G6pase
showed increased and decreased expression, respectively, in
ampicillin or vancomycin treated mice. Pck1 showed lower
expressions in ampicillin treated samples. Hk2 and Insr genes in
the liver did not change following antibiotics treatment.

Despite some variability in tissue specific behavior of genes
in response to antibiotics, the improved glucose tolerance upon
antibiotic treatment suggests that relationships between gene
expression and metabolic parameters are mostly preserved
across all groups. Hence, we constructed a correlation
network consisting of (differentially expressed) genes and
(differentially abundant) metabolic parameters using all samples
per experiment (Figure 2). Genes from the ileum, including
G6pase, Hk2, and Fxr were strongly connected with the
GTT-AUC. The Fxr gene in the liver was positively correlated
with the ileum Tgr5 but negatively correlated with ileum Fxr and
with fasting glucose and GTT. Altogether, this network indicates
opposite effects of intestinal and liver Fxr on glucose metabolism.
Furthermore, it also suggests that increased glycolytic gene
expression program in ileum is connected to worsening of
systemic glucose metabolism.

Antibiotics Caused Shifts in Microbial
Communities
Microbiome composition is known to be affected by antibiotics
(De La Cochetiere et al., 2005; Jernberg et al., 2007; Dethlefsen
et al., 2008; Jakobsson et al., 2010; Dethlefsen and Relman,
2011; Perez-Cobas et al., 2013; Pallav et al., 2014; Panda
et al., 2014; Raymond et al., 2016) and involved in metabolic
processes (Larsson et al., 2012; Tremaroli and Backhed, 2012;
Sanz et al., 2015; Utzschneider et al., 2016), so we hypothesized
that gut microbes might play a mechanistic role in the effect
of antibiotics (Morgun et al., 2015; Greer R. et al., 2016; Greer
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FIGURE 1 | Metabolic parameters and gene expression in antibiotic-treated and control animals. (A) Summary table; the red and green colors indicate increase and
decrease, respectively, in antibiotic treated group compared to the control. (B) GTT curves for the antibiotics treated and control groups in the two experiments.
(C–E) Metabolic parameters and gene (F–O) expression represented as means with standard error bars. The red and blue colors indicate experiments one and two,
respectively. Asterisks indicate parameters that show statistically significant differences upon antibiotics treatment compared to untreated control mice [same
direction of (abx/control) fold change in both experiments, individual p-value < 20% in each experiment, Fisher’s combined p-value < 5% and FDR < 10%]. Cn,
Control; Coc or Cc, cocktail; Amp or A, ampicillin; Met or M, metronidazole; Neo or N, neomycin; Van or V, vancomycin.

R.L. et al., 2016) on host glucose metabolism (Caesar et al.,
2012; Greer R.L. et al., 2016). Sequencing the 16S rRNA gene
of the cecal microbiome from the two experiments provided
a total of 14,321,948 high quality reads with mean length of
248.50 bases and standard deviation of 9.42. A threshold of

99% cumulative abundance across all samples per experiment
retained 734 and 677 OTUs in the two experiments (overlap
of 561 OTUs) with 5,450,867 and 5,525,927 assigned sequences
to the OTUs. The alpha diversity metrics on the normalized
and rarefied OTU tables are provided in Supplementary
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FIGURE 2 | A network consisting of metabolic parameters and gene expression from liver or ileum. An edge indicates the sign of spearman correlation coefficients
across all samples in the two experiments are consistent, individual p-value of correlation within each experiment is <20%, Fisher’s combined p-value of all
experiments <5% and FDR < 10%. Red and green colors indicate increased and decreased median fold change (abx/control) for nodes, respectively; where the
color intensity corresponds to the level of fold change (e.g., dark color indicates fold change ratio is further away from 1); diamond and rectangle shapes indicate
genes and metabolic parameters, respectively. Blue and orange colors indicate negative and positive correlated edges, respectively.

FIGURE 3 | Taxonomic plots showing mean bacterial abundance across the different groups at the phylum level.

Table S2. As expected, the cocktail of antibiotics reduced the
diversity of the samples compared to untreated or individual
antibiotics (Supplementary Figures S2, S3). Shannon diversity
comparisons showed that alpha diversity decreased when
treated with cocktail, ampicillin, or vancomycin (Supplementary
Figure S2).

A PCoA analysis using the weighted UniFrac suggested
that the overall community composition from vancomycin
and ampicillin treatment was closer to that when treated
with antibiotics cocktail (Supplementary Figure S3). At the
phylum level, Firmicutes decreased in cocktail, ampicillin, and
metronidazole treated samples. Bacteroidetes decreased upon
cocktail and vancomycin treatment but increased when treated
with metronidazole (Figures 3, 4 and Supplementary Figure S5;
Sheet in Supplementary Table S3). The treatment with
antibiotics showed similar patterns of change in the abundant
bacteria at the order level, while less abundant bacteria showed

antibiotic specific changes (Supplementary Figures S4, S6).
Vancomycin treatment increased Verrucomicrobiales in both
experiments compared to control, however, increase in the
second experiment was extremely high (fold change = 17,480)
compared to the first (fold change = 358). Of note, this order
was presented by single member (A. muciniphila). Thus, we also
analyzed the abundance of this microbe via specific PCR and
confirmed differences between two experiments in vancomycin
treated groups (0.04 and 9794.4 ng DNA A. muciniphila/ g cecal
content in the first and second experiments, respectively).

Cocktail, ampicillin, and vancomycin treated samples showed
similar patterns of change at the OTU level as compared to the
microbiome of control samples (Figure 4), which may be related
to the fact that only these antibiotic treatments were able to
change GTT-AUC (Figure 1). Prevotella sp. (OTU_189721) was
the most abundant OTU in control (median abundance across
two groups (24%), neomycin (38%), and metronidazole (17.5%)
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FIGURE 4 | Heatmap of differentially abundant OTUs in the different groups. The represented OTUs passed the same statistical criteria as that used for phenotypes.
The rows (OTUs) were clustered based on the abundance in the first experiment and the same row order was used for the second experiment. The rows were
scaled, and orange and blue colors indicate increased and decreased abundance, respectively. The ids and taxa names for the rows (OTUs) are provided in
Supplementary Table S3. The boxes indicate OTU clusters with the same taxonomy: Boxes 1 (113/117), 2 (43/46), and 3 (43/45) primarily contained Clostridiales
(phylum: Firmicutes), while Box 4 (38/38) had Enterobacteriales (phylum: Proteobacteria).

treated samples. Enterobacteriaceae family (OTU_1111294) was
the most abundant in cocktail (38%) and vancomycin (28%), and
the third most abundant in ampicillin (14%) treated samples.
Bacteroides uniformis (OTU_589071) was the most abundant
upon ampicillin treatment (22.8%), while A. muciniphila was the
second most abundant in vancomycin treated samples (17.5%)
(Supplementary Table S4).

Microbes Are Associated with Changed
Phenotypes
Gut microbiota can control the expression of many genes in
the small intestine (Larsson et al., 2012). Therefore, we asked
whether the antibiotic-induced changes in the microbiome were
potentially connected to the observed changes in gene expression.
We constructed a transkingdom network using all groups,
consisting of genes, metabolic parameters, and OTUs, to identify
candidate interactions whereby microbes can mediate changes in
systemic glucose tolerance and found 131 OTU-phenotype edges.

To focus on microbe-phenotype relationships that are not
affected by type of antibiotics, we retained the 40 edges (Figure 5)
that maintained the same sign of correlation coefficient between
the various groups of both experiments and consistent with
potential causal relations (Dong et al., 2015; Morgun et al.,
2015; Greer R.L. et al., 2016; Rodrigues et al., 2017) in at least
one group of both experiments. Overall, this means that while
a strength of OTU-phenotype interaction may be weak for a
particular antibiotic group, this interaction may still be important
in mediating effects of antibiotics on the host in general. The

abundance of a microbe and its strength of correlation with a
phenotype are expected to be crucial in mediating the effects,
hence these 40 edges were ranked using a score that takes
into account the maximum per-group OTU abundance and
the median per-group correlation strength with a phenotype
(Figure 6; See formula in section “Materials and Methods”).

NCBI BLAST on an OTU’s Greengenes reference sequence
was used to obtain its (closest) species level identification.
Interestingly, associations between A. muciniphila with fasting
glucose and liver Fxr showed as the top interactions suggesting a
possible mechanism through which this bacterium can mediate
systemic changes in glucose metabolism. Proteus mirabilis was
negatively correlated with GTT-AUC. Bacteroides uniformis was
positively and negatively correlated with hepatic Fxr and G6pase,
respectively. Importance of phenotypes in the network was also
determined by degrees of connectedness (degree) and BC. GTT-
AUC (degree = 14, BC score = 0.65) and liver Fxr (degree = 8,
BC score= 0.60) were the highly connected metabolic parameter
and gene, respectively, as well as the key nodes in the largest
connected component of the network. Overall, it suggests that
gut microbiota potentially influences the liver metabolic genes
and systemic metabolic parameters and mediates the effects of
antibiotics on host phenotypes.

DISCUSSION

Germ-free Swiss Webster mice showed improved glucose
metabolism (Caesar et al., 2012), suggesting that microbiota
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FIGURE 5 | Transkingdom Network. Red and green colors indicate increased and decreased median fold change (abx/control) for nodes, respectively; diamond,
rectangle, and circle shapes indicate genes, metabolic parameters, and OTUs, respectively. Blue and orange colors indicate negative and positive correlated edges,
respectively. We indicate a phenotypic edge if its strength of correlation (in the phenotypic network) is stronger than at least one OTU-phenotype edges connecting
the phenotypes.

regulate metabolism in this strain. Furthermore, Swiss Webster
mice are traditionally outbred, so more similar to human
population. Therefore, Swiss Webster mice were selected for
this study. While research has been done to study the effects
of antibiotics on microbiota and glucose tolerance in diseased
models (Francino, 2015), these effects in lean, non-diabetic or
normoglycemic mice are not well studied. Such a study can
provide meaningful insights into the host-microbial interactions
and consequences of antibiotics in healthy population, and may
allow the prediction of protective mechanisms and risk factors for
development of diabetes.

To the best of our knowledge, our study is the first to
show the ability of antibiotics to change glucose metabolism
in healthy mice. The reduced fasting glucose and GTT-AUC
in two experiments, especially in the ampicillin, vancomycin,
and cocktail treated samples suggest that antibiotic treatment
cause systemic improvements in glucose tolerance. Although
our observations of reduced GTT-AUC contradicts with the
absence of change observed in healthy humans (Mikkelsen et al.,
2015), the cocktail ingredients and time course of antibiotic
treatment (1 week vs. 4 weeks) of the two studies may be more
critical factors contributing to this disagreement than differences

between two species (i.e., mice and humans). Additionally,
the unchanged insulin secretion by cocktail treatment in our
study is in agreement with the study performed in humans
(Mikkelsen et al., 2015). Noteworthy, one study did not
observe any changes in fasting glucose and insulin in chow
fed C57BL6 mice when treated with broad-spectrum antibiotics
(ampicillin, metronidazole, and neomycin) (Pang et al., 2013).
This disagreement might be due to differences in the mice strain,
gut bacterial communities in different mouse facilities and the
antibiotics used in the cocktail. For example, effect of vancomycin
on glucose metabolism can be partially attributed (at least for our
second experiment) by increased abundance of A. muciniphila
which is missing in some mouse colonies. While the two studies
(Pang et al., 2013; Mikkelsen et al., 2015) have some discrepancies
with our observations, there are numerous supportive studies
using germ-free (Caesar et al., 2012) or diet-induced obese (Cani
et al., 2008, 2014; Membrez et al., 2008; Carvalho et al., 2012;
Hwang et al., 2015; Fujisaka et al., 2016) mice that have shown
improved glucose tolerance in the absence of microbiota and with
antibiotics usage and the consequently modulated microbiota.

The expression of key genes from the glucose and bile acid
metabolism pathways were measured, since bile acid signaling
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FIGURE 6 | Ranking the transkingdom edges. The score accounts for the bacterial abundance and its correlation strength with a phenotype. Blue and orange colors
indicate negative and positive correlated edges, respectively. A broken axis (indicated by “Z”) allows for clear visualization of the other pairs.

plays an important role in glucose homeostasis (Nguyen and
Bouscarel, 2008; Trauner et al., 2010; Prawitt et al., 2011; Chiang,
2013; Nie et al., 2015; Trabelsi et al., 2016). We observed
well-known (and therefore expected) relationships between the
tissue-specific expression patterns of different genes themselves
and with the systemic metabolic parameters in vancomycin and
ampicillin. Low hepatic Fxr causes increased gluconeogenesis
(Ma et al., 2006) and bile acid synthesis (Duran-Sandoval et al.,
2004), while increased liver Fxr (Li and Guo, 2015) and intestinal

Fgf15 (Holt et al., 2003) suppress hepatic bile acid synthesis
(Kong et al., 2012) and regulate hepatic glucose metabolism
(Potthoff et al., 2011). Also, increased liver Fxr represses G6pase
(Yamagata et al., 2004; Ma et al., 2006; Zhang et al., 2006),
Pck1 (De Fabiani et al., 2003; Yamagata et al., 2004; Ma et al.,
2006), and like repressed ileum Fxr (Jiang et al., 2015b), improves
glucose tolerance (Ma et al., 2006; Zhang et al., 2013), similar
to our results. Along the same lines, mice treated with Fgf15
showed improved glucose metabolism (Zhou et al., 2017) and
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increased intestinal Fgf15 expression represses liver G6pase and
Pck1, key enzymes for liver gluconeogenesis (Potthoff et al.,
2011). In line with our observations in vancomycin treatment,
Fxr agonist obeticholic acid (OCA; Intercept Pharmaceuticals,
New York, NY, United States) increased mRNA levels of Fgf15
and Tgr5 in the ileum of C57BL/6J mice without increase
in ileum Fxr (Pathak et al., 2017), and an increase in ileum
Fgf15 expression decreased plasma glucose levels even with
low insulin levels (Potthoff et al., 2011). Supporting our
results from ampicillin treatment, a study showed that treating
mice on high fat diet with antibiotics cocktail inhibited Fxr
signaling in the ileum but not in the liver, and observed
decreased expression of Shp in the ileum (Jiang et al., 2015a).
Furthermore, Fxr and Shp mRNA in the ileum were also
reduced in germ-free Swiss Webster mice on chow diet compared
to the conventionally raised (untreated) group (Sayin et al.,
2013). Overall, these studies along with ours support the idea
that bile acids repress gluconeogenesis (Modica et al., 2010).
However, it is interesting to see that while metronidazole,
neomycin, and cocktail do not show the above changes in
gene expression there is still improvement in fasting glucose
and/or glucose tolerance, suggesting that microbiota might play
an even bigger role in mediating the effects of antibiotics
on phenotypes through additional mechanisms not explored
here.

In fact, microbiota can change the expression of many genes
in the ileum (Larsson et al., 2012). Their study observed down-
regulated Hk2, G6pase, and Shp in the ileum of germ-free mice
when compared to conventionally raised mice on chow diet,
supporting our results from cocktail (ampicillin, or vancomycin)
treatment. Also, some of the changes in gut microbiota to
antibiotics that we observe in our data, e.g., the increased
Verrucomicrobiales following vancomycin (Hansen et al., 2012)
and Enterobacteriales increase upon treatment with ampicillin or
vancomycin (Ubeda et al., 2010), are well documented.

While the effects of microbes on systemic glucose tolerance
in lean subjects are rarely studied, their ability to influence
glucose metabolism is well-recognized (De Vadder et al.,
2016). A good example of well-established causal relations
between specific bacteria and glucose metabolism is beneficial
effect of A. muciniphila. For example, it was shown that
A. muciniphila was able to delay the onset of diabetes in the
vancomycin treated mice (Hansen et al., 2012). Furthermore,
multiple studies demonstrated that this bacterium can improve
glucose metabolism in animal models and in humans (Everard
et al., 2013; Zhang et al., 2013; Joyce and Gahan, 2014;
Shin et al., 2014; Anhe et al., 2015; Dao et al., 2016; Greer
R.L. et al., 2016). It might not be surprising that the negative
correlation between A. muciniphila and glucose levels was
detected as one of the top ranked edges in our unbiased
transkingdom network, thus, providing extra confidence for
our results about less investigated bacteria inferred in our
analyses.

Our predictions provide insights into host-microbial
interactions. For instance, our result of Bacteroides uniformis
being correlated with hepatic G6pase and Fxr might indicate
potential mechanisms by which this bacterium improves

glucose tolerance (Gauffin Cano et al., 2012). Also, it was
shown that colonization with Bacteroides thetaiotaomicron
makes mice leaner comparing controls despite similar levels of
food consumption. The ability and preference of Bacteroides
thetaiotaomicron and Bacteroides ovatus to utilize polysaccharide
rich diet (McNulty et al., 2013) may explain these effects.
However, our result of the negative correlation between
abundance of these two bacteria and Pck1 (simple sugar forming
gluconeogenic enzyme) may suggest the effect of these bacteria
on liver gluconeogenesis. Similarly, P. mirabilis is predicted
to have a negative interaction with GTT-AUC in our study,
but shown to be positively correlated in rats with and without
high fat diet (Lecomte et al., 2015). This disagreement may be
explained by different physiological pathways dominating in
the same bacterial species in different host that has been clearly
shown for other bacteria (Oh et al., 2010). Overall, our study
offers testable hypothesis regarding critical microbe-phenotype
associations.

CONCLUSION

We show that antibiotics alter systemic glucose metabolism in
lean mice. In addition to reporting changes in the microbiota,
expression of key genes from the glucose and bile acid
metabolism pathways, and concomitant systemic metabolic
measures, we delineate potential mechanisms by which microbes
mediate these effects. While there is a general understanding of
the different players and mechanisms of microbiome-mediated
regulation of the glycemic response (Tremaroli and Backhed,
2012; Devaraj et al., 2013; Cani et al., 2014; Hartstra et al., 2015;
Janssen and Kersten, 2015; Parekh et al., 2015; Sanz et al., 2015;
Boulange et al., 2016; Marchesi et al., 2016; Stenman et al., 2016;
Suez et al., 2016), a lot remains to be understood, especially
in terms of identifying the precise pathways operating in host-
microbiome interactions. Overall, our data strongly suggests
that antibiotics affect systemic glucose metabolism via shaping
gut microbial communities and consequently regulating gene
expression programs in intestine and liver. Yet, treatment of
germfree mice with antibiotics as well as colonization of germ-
free mice with antibiotic modified microbiota are required to
fully support above statement. Also, it is doubtful that different
antibiotics use the same mechanisms of gene expression and
microbiota changes to affect systemic glucose tolerance, and
the limited number of samples per group makes it difficult to
obtain antibiotic-specific mechanisms. Furthermore, while the
taxonomical assignments of 16S rRNA sequencing of current
study present natural challenges, further studies employing
shotgun metagenomics sequencing will allow to overcome this
limitation. Finally, our experimental design followed by a data-
driven, systems biology approach of network analysis offers
consistent and statistically significant interactions that may
be integral in mediating the host-microbiome communication.
Furthermore, this approach is a useful hypothesis generating
strategy and future experimentation can help investigate the
distinct mechanisms in the different antibiotics and eventually
lead to personalized medicine (Zmora et al., 2016).
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FIGURE S1 | Dot plots with mean and error bars showing (A) body weight or
(B–E) expression of the phenotypes across the different groups. The red and blue

colors indicate experiments one and two, respectively. These phenotypes did not
show statistically significant differences upon antibiotics treatment compared to
untreated control mice.

FIGURE S2 | Boxplots showing the Shannon diversity index. Asterisk indicate
statistically significant differences upon antibiotics treatment compared to
untreated control mice: same direction of (abx/control) fold change in both
experiments, individual p-value < 2% in each experiment, Fisher’s combined
p-value < 0.1% and FDR < 0.1%.

FIGURE S3 | PCoA plot showing weighted UniFrac distance for cecal microbiota
in the control and antibiotics treated mice. Each circle indicates a sample.

FIGURE S4 | Taxonomic plots showing bacterial abundance across the different
groups at the order level.

FIGURE S5 | Taxonomic plots showing bacterial abundance across the different
samples at the phylum level.

FIGURE S6 | Taxonomic plots showing bacterial abundance across the different
samples at the order level.

TABLE S1 | Primers for the genes tested in this study.

TABLE S2 | Alpha diversity metrics on the unrarefied and rarefied OTU tables in
the two experiments.

TABLE S3 | Levels of Firmicutes and Bacteroidetes in the two experiments.
Asterisks indicate parameters that show statistically significant differences upon
antibiotics treatment compared to untreated control mice: same direction of
(abx/control) fold change in both experiments, individual p-value < 20% in each
experiment, Fisher’s combined p-value < 5% and FDR < 10%.

TABLE S4 | The ID, Greengenes taxonomy, and the median frequency per group
for the OTUs in the same order as of the heatmap.
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