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Blood stream infections can be caused by several pathogens such as viruses, fungi

and bacteria and can cause severe clinical complications including sepsis. Delivery of

appropriate and quick treatment is mandatory. However, it requires a rapid identification

of the invading pathogen. The current gold standard for pathogen identification relies

on blood cultures and these methods require a long time to gain the needed diagnosis.

The use of in situ experiments attempts to identify pathogen specific immune responses

but these often lead to heterogeneous biomarkers due to the high variability in methods

and materials used. Using gene expression profiles for machine learning is a developing

approach to discriminate between types of infection, but also shows a high degree

of inconsistency. To produce consistent gene signatures, capable of discriminating

fungal from bacterial infection, we have employed Support Vector Machines (SVMs)

based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint

optimization constraining them to the same set of discriminating features increased

the consistency of our biomarker list independently of leukocyte-type or experimental

setup. Our gene signature showed an enrichment of genes of the lysosome pathway

which was not uncovered by the use of independent classifiers. Moreover, our results

suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR

of the identified lysosome-related genes confirmed the distinct gene expression increase

in monocytes during fungal infections. Concluding, our combined classifier approach

presented increased consistency and was able to “unmask” signaling pathways of

less-present immune cells in the used datasets.

Keywords: classification, feature selection, gene expression, machine learning, SVM

INTRODUCTION

A central goal of gene expression profiling studies is to identify key features that allow
differentiation between specific clinical conditions of the patients of the corresponding samples (Ng
et al., 2005). Several computational approaches have been developed to generate gene signatures
with diagnostic potential: regression analyses, classification using decision trees, Random Forests
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and Support Vector Machines (SVMs) (Saeys et al., 2007).
Especially the latter is a powerful method in the discovery-based
approach (linking differential expression to a disease state) in
the field of diagnostic biomarkers (Golub et al., 1999; Brown
et al., 2000; Furey et al., 2000; Noble, 2004; Lee, 2007). One of
the greatest advantages of SVMs is their implicit optimization
for generalization by maximizing the separating hyperplane
(McDermott et al., 2012; Batuwita and Palade, 2013). In the case
of gene biomarker discovery for pathogen discrimination, the
SVM can be employed to find the distinctive gene expression
pattern that distinguishes best the type of infection (Brown et al.,
2000). However, the generated gene signatures from independent
studies usually do not present a high degree of consistency even if
the same discrimination problem was addressed. We previously
showed that combining classifiers using a Mixed Integer Linear
Programming (MILP) improved consistency of gene signatures
even if generated from quite diverse settings (Saraiva et al.,
2016). The gene signature produced by Saraiva et al. accurately
discriminated infected from non-infected samples with an
average accuracy of 92% and was proposed as a generic host
immune response toward infections due to the heterogeneity
of the expression datasets in terms of immune cell stimulation.
Gene set enrichment analysis revealed that two pathways were
significantly enriched (Toll-like and Nod-like receptor signaling;
Saraiva et al., 2016).

Whilst knowing if an individual is infected or not, it is essential
to determine the type of the infection for the administration
of the accurate therapy in the least amount of time (Bloos and
Reinhart, 2014). Discriminating between fungal and bacterial
infections is of vital importance, especially in the context of
systemic infection. The current “gold standard” for pathogen
identification relies on blood cultures which require several days
for a result (Kirn and Weinstein, 2013).

In this study, we followed up on our previous investigations.
The human immune system is complex and composed of many
players. The innate immunity is the first line of defense against
pathogens in the body. The ability to mount an adequate and
effective innate immune response relies on the efficient and
proper activation of, but not exclusively, both neutrophils and
monocytes. Monocytes not only fight infections but can also
differentiate into other immune cells such as macrophages and
dendritic cells (DCs) which, in turn, are capable of phagocytic
activity and provide the necessary stimulus to the adaptive
immune system cells (Shi and Pamer, 2011; Lauvau et al., 2015).
Monocytes express most of the pattern recognition receptors
(PRRs) involved in fungal (Netea et al., 2008) and bacterial
infections (Hessle et al., 2005), and studies have shown that
the type of infection influences monocyte differentiation and,
consequently, trigger different signaling cascades (Shi and Pamer,
2011). Monocytes take a pivotal role in the early pathogen
recognition during candidiasis (Netea et al., 2008; Klassert et al.,
2014; Ngo et al., 2014) and have been suggested to be the most
effective type of innate immune cells in the killing of C. albicans
(Netea et al., 2008).

Considering the ratio of the different immune cells we
hypothesized that the effect on specific pathways of a less
abundant type of immune cells could be “masked” by the

overwhelming effect of more numerous leukocytes such as
neutrophils or lymphocytes. Studies have shown that the
expression of several genes is immune cell type-specific (Wong
et al., 2011; Allantaz et al., 2012; Gardinassi et al., 2016;
Petryszak et al., 2016). Other studies have also shown that
gene overexpression can activate distinct molecular pathways
depending on the cell population (Liu et al., 2015; Didonna et al.,
2016). Cell-type specific gene expression studies have also shown
that the relative proportion of each leukocyte type invariably
has an impact on the global gene expression profile (Palmer
et al., 2006). In the same study, the set of genes with the highest
relative expression in lymphoid cells presented the lowest relative
expression in whole blood (e.g.,CD3G, LEF1,TCF7,CD3D,MAL,
and CD2). In our study, we employed the combined classifier
approach we develop earlier (Saraiva et al., 2016) on datasets
of similar leukocyte compositions and aimed to determine if
these similarities also present specific signaling pathways not
uncovered by the generic approach on the immune response in
our previous study.

METHODS

Dataset Assembly
The normalized gene expression data from two datasets
(accession numbers: GSE42606 and GSE69723) was obtained via
Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/)
from the National Center for Biotechnology Information (NCBI)
database. RNA-Seq data was retrieved from NCBI’s Sequence
Read Archive (SRA). A study performed by Klassert et al.
(Klassert et al., 2017; Riege et al., 2017), and hereon identified
as “Klassert,” generated RNA-Seq data (accession number
SRP076532) which consisted of healthy human blood-derived
monocytes stimulated with heat-killed Aspergillus fumigatus
AF293, Candida albicans SC5314 yeast (both at a Multiplicity
of infection (MOI) of 1), Escherichia coli serotype O18:K1:H7
(MOI of 10) or left untreated (control). Cells were stimulated for
3 and 6 h after which their RNA was extracted. On the raw reads
a sequence quality analysis was performed using FastQC version
0.10.1 and a read trimming to 150 bp was performed using
FASTX Toolkit 0.0.14 and adapter trimming using cutadapt
version 1.3. Reads were mapped onto the reference genome
GRCh38/hg38 from the UCSC server and counted for each gene
across all samples using HTSeq-count. The read number per
gene, total read number per sample and gene length was then
used to calculate the Reads Per Kilobase of transcript per Million
mapped reads (RPKM) values across all genes and samples.
Genes with RPKM values of 0 across all samples were removed.
Smeekens and co-workers (Smeekens et al., 2013) performed a
study in which peripheral blood mononuclear cells (PBMCs),
isolated from blood of healthy human donors, were stimulated
with heat-killedC. albicansUC820 (1× 106/mL),Mycobacterium
tuberculosis (10 ng/mL) and LPS derived from E. coli (10 ng/mL).
Cells grown in Roswell Park Memorial Institute Medium (RPMI)
culture medium were used as controls (accession number
GSE42606). Samples were taken at 4 and 24 h after infection.
In this dataset, only the 4-h time point was considered for our
studies since we were investigating the innate immune response
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in the acute phase. For future reference, this dataset will be
identified as “Smeekens.” Transcriptomic data generated by
Saraiva et al. (2016), and hereby identified as “Saraiva,” was
generated by challenging healthy human blood-derived PBMCs
with either heat-killed C. albicans MYA-3573 yeast (MOI of 2)
or LPS derived from E. coli 0111:B4 (10 ηg/mL) (InvivoGen).
Four samples were extracted 4 h post-infection. RNA was
extracted using RNAEasy Kit Qiagen and quantity and quality
of the total RNA was analyzed using a Nanodrop ND-1000
spectrophotometer (Thermo Fischer Scientific, USA) and a Tape
Station 2200 (Agilent Technologies, USA). Lastly, transcriptional
data of human blood isolated monocytes challenged with
A. fumigatus conidia (MOI of 2) and LPS (10 ng/mL) was
downloaded from the European Molecular Biology Laboratory
(EMBL) ArrayExpress database (E-MEXP-1103) (http://www.
ebi.ac.uk/arrayexpress/experiments/E-MEXP-1103/) and is
hereby identified as “Mattingsdal.” A total of 5 and 6 samples
were extracted 6 h post-challenge (A. fumigatus and LPS,
respectively).

Data Preprocessing
Each dataset was controlled if prior normalization had
been executed on the expression data. In the absence of
normalization, the following was performed: RNA-Seq data was
log2 transformed and a 1% quantile added onto all values, whilst
microarray data was normalized by employing the functions
“lumiN” and method “vsn” of the “lumi” R package (Du et al.,
2008). Elimination of possible duplicate gene entries was carried
out by use of the “avereps” function in the “limma” R package
(Ritchie et al., 2015), which calculates the mean expression
values for duplicate entries. Finally, z-scores were calculated for
each gene. The gene list, to be used for feature selection and
classification, consisted of the intersection of the gene lists from
all datasets and amounted to 1,567 genes.

Classification
In each dataset, the samples were grouped into either fungal
(class 1) or bacterial (class 2). The number of samples in each
dataset for each analysis is shown in Table 1. For classification
and feature selection, we employed Support Vector Machines
(SVMs) implemented with Mixed Integer Linear Programming
as previously described (Saraiva et al., 2016) and with the same
parameters (number of cross-validations (runs) and number
of features (genes) to be selected in each cross-validation)
as explained in the following (full implementation procedure
in the Text S1). This process was done for both single and
combined classifiers to compare both approaches. Briefly, during
each cross-validation, SVMs were constrained to n = 30
features (genes) and they selected these with which they best
discriminated between fungal and bacterial infected samples on
the training data. Two thirds of the samples were randomly
selected for training whilst one third was used for testing. This
procedure was repeated 100 times. To remove the possible
imbalance between classes, a stratified approach was employed in
which the maximum number of samples to be used in each class
was determined by the class with the least number of samples.

TABLE 1 | Number of samples in each dataset divided into fungal and bacterial

class.

Dataset Cell type Fungal class Bacterial class

Smeekens PBMC 24 49

Mattingsdal Monocytes 5 6

Klassert Monocytes 18 9

Saraiva PBMC 4 4

To remove less frequently selected genes, further filtering of
the gene lists was performed. Genes not selected in at least 20
runs (out of 100) in each classifier (both single and combined)
were removed. The resulting gene lists were then merged into
their respective group (either single or combined approach).
Ascertaining the functional overview of the refined gene lists
was achieved by performing literature analysis as well as using
the functional annotation tools of the Database for Annotation,
Visualization and Integrated Discovery (DAVID, version 6.7,
https://david.ncifcrf.gov/home.jsp (Huang da et al., 2009) using
Homo sapiens background. The full workflow is depicted in
Figure S1.

Differential Gene Expression Analysis
In each dataset we calculated differentially expressed genes using
Student’s t-tests with multiple testing correction (Benjamini-
Hochberg method, Benjamini and Hochberg, 1995). Genes were
regarded as differentially expressed if their adjusted p-value
was below 0.05. Intersection of differentially expressed genes
was performed for all datasets and according to leukocyte
composition (all datasets, PBMC specific and monocyte specific).
Gene set enrichment analysis, for each list, was carried out as
stated above.

EXPERIMENTAL VALIDATION

Monocyte Isolation
Buffy coats of healthy male donors for cell isolation were
kindly provided by Dagmar Barz in anonymized form (Institute
of Transfusional Medicine of the Jena University Hospital).
Human monocytes were isolated from 50ml buffy coats of
four healthy male donors as previously described (Müller et al.,
2017). Briefly, ficoll-density gradient centrifugation was used
to isolate first peripheral blood mononuclear cells (PBMCs).
After restoring the osmolarity of the cells with 0.45% NaCl,
remaining erythrocytes were lysed using a hypotonic buffer.
Where needed, 5 × 106 PBMCs were seeded in 6-well plates
(VWR International, Germany) and allowed to equilibrate for
1 h at 37◦C 5% CO2. From the remaining PBMCs, monocytes
were then isolated using quadro-MACS (Miltenyi Biotec, UK)
by labeling the non-monocytic cells with a cocktail of Biotin-
conjugated antibodies and Anti-Biotin Microbeads (Monocyte
Isolation Kit II, Miltenyi Biotec, UK). Cell viability of >98% was
assayed by Trypan blue staining. Monocyte concentration was
adjusted to 2.5× 106 cells/ml in RPMI 1640 GlutaMAX medium
(Gibco, UK) supplemented with 10% fetal bovine serum (FBS,
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Biochrom, Germany) and 1% Penicillin/Streptomycin (Thermo
Fisher Scientific, USA), 5× 106 cells were seeded in 6-well plates
(VWR International, Germany) and allowed to equilibrate for 1 h
at 37◦C 5% CO2.

Preparation of Fungi and Bacteria
Overnight culture from Escherichia coli (isolate 018:K1:H7) in LB
medium was washed twice in PBS and resuspended in 1ml RPMI
1640 GlutaMAX medium (Gibco, UK) supplemented with 10%
FBS (Biochrom, Germany) at a concentration of 5 × 108 cfu/ml.
Aspergillus fumigatus (AF293) was grown in Aspergillus Minimal
Medium (AMM) Agar-plates for 6 days at 30◦C. Conidiospores
were harvested by rinsing the plates with sterile 0.05% Tween-
20 (Sigma-Aldrich, Germany) and filtered through 70- and 30-
µm pre-separation filters (Miltenyi Biotec, UK) to get rid of
mycelium traces. Spores were washed twice in PBS and cell-
concentration was adjusted to 107 conidia/ml in RPMI 1640
GlutaMAX medium supplemented with 10% FBS. Conidia were
then incubated at 37◦C under shaking for 7 h until cells turned
to germ tubes. Germlings were centrifuged and resuspended at 1
× 108 cells/ml in RPMI 1640 GlutaMAX medium supplemented
with 10% FBS. Overnight culture of Candida albicans (SC5314)
in YPD medium was washed twice in PBS and cell concentration
was adjusted to 5× 107 cfu/ml in RPMI 1640GlutaMAXmedium
supplemented with 10% FBS.

Monocyte Stimulation Assay
Pathogens were all heat-killed by incubation at 65◦C for 30min
before infection. Monocytes were stimulated with heat-killed
pathogens at a pathogen:host ratio of 10:1 for bacteria, 1:1 for
A. fumigatus germ tubes and C. albicans yeasts. In addition, cells
were stimulated with pathogen-derived cell wall components:
LPS (50 ng/ml) and zymosan (1µg/ml). After 3 h incubation at
37◦C and 5% CO2, monocytes were lysed for RNA isolation.
To analyse the expression level of the genes of interest, total
RNA was extracted from 5 × 106 Monocytes using the Qiagen
RNeasy mini kit (Qiagen, Germany). Residual genomic DNA
was removed by on-column incubation with DNaseI (Qiagen,
Germany). A NanoDrop D-1000 Spectrophotometer (Thermo-
Fisher Scientific, USA) was then used to assess the amount
and quality of the isolated RNA samples. Complementary
DNA (cDNA) was synthesized from 1.5 µg of RNA using
the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, UK) followingmanufacturer’s instructions. To detect
the expression of the genes by PCR, specific primers for
each target were designed using the online Primer-BLAST tool
of the NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).
Possible secondary structures at the primer binding sites were
taken into account by characterizing the nucleotide sequence of
the regions of interest using the Mfold algorithm (Zuker, 2003).
The sequences of all primers used for amplification are listed in
Table S1. For quantification of the relative expression of each
gene, we used a CAS-1200 pipetting robot (Qiagen) to set up
the qPCR-reactions and a Corbett Rotor-Gene 6000 (Qiagen) as
Real-Time qPCR apparatus. Each sample was analyzed in a total
reaction volume of 20 µl containing 10 µl of 2× SensiMix SYBR
MasterMix (Bioline, UK) and 0.2µMof each primer. The cycling

conditions included an initial step of 95◦C for 10min followed
by 40 cycles of 95◦C for 15 s, 60◦C for 20 s and 72◦C for 20 s.
For each experiment, an RT-negative sample was included as a
control. Melting curve analysis and primer efficiency was used
to confirm the specificity of the qPCR reactions. The relative
expression of the target genes was analyzed using the Pfaffl
method (Pfaffl et al., 2004; Rieu and Powers, 2009). To determine
significant differences in the mRNA expression between different
experimental conditions, the relative quantity (RQ) for each
sample was calculated using the formula 1/ECt, where E is
the efficiency and Ct the threshold cycle. The RQ was then
normalized to the housekeeping gene peptidylprolyl isomerase B
(PPIB). The stability of the housekeeping gene was assessed using
the BestKeeper algorithm (Pfaffl et al., 2004). The normalized
RQ (NRQ) values were log2-transformed for further statistical
analysis with GraphPad PRISM v7.02. Statistical analysis was
performed using repeated measures one way ANOVA and
Bonferroni correction.

RESULTS

Classification was performed on each individual dataset
(“Klassert,” “Smeekens,” “Saraiva,” and “Mattingsdal”) using
100 randomly assigned training sets within a cross-validation
scheme. A list of 30 genes was generated in each classification
run which best discriminated samples infected with fungal
from bacterial pathogens. Consistency of the gene signature was
determined by calculating the pairwise overlap (POL) between
cross-validations of each classifier. Briefly, the gene list (n = 30)
of each cross-validation of one dataset was intersected with the
gene list of each cross-validation of another, different dataset.
This was done for each pair of single classifiers. To obtain better
consistency (as we observed in our initial study identifying
biomarkers for infection irrespective of the kind of infection,
see Saraiva et al., 2016), we also combined classifiers of two
datasets (e.g., Smeekens with Klassert) constrained to use the
same feature selection. We intersected the 100 cross-validations
between single classifiers, between single and combined classifiers
and between only combined classifiers. An illustrative example of
this procedure is depicted in Figure S2. The averaged POL of the
100 generated gene lists of single vs. single, single vs. combined
and combined vs. combined classifiers returned values of 0.78
(1σ = 0.41), 1.09 (1σ = 0.48), and 1.64 (1σ = 0.49), respectively.
The POL of combined vs. single already showed an increase in
almost 40% when compared to single vs. single, increasing to
more than 100% when calculating the POLs between combined
classifiers.

Next, we aimed at determining which pathways were
significantly enriched in both the single and combined classifier
gene lists. In each classifier (single and combined approach), the
genes not selected in at least 20% of the total number of runs
(k = 100) were excluded from further analysis. A total of 175
and 164 genes, for single and combined classifiers, respectively,
remained (Table S2). The enriched pathways of single and
combined gene signatures are shown in Tables 2, 3, respectively.
Interestingly, one enriched gene set of the combined classifier
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TABLE 2 | Enriched gene sets of the single classifier approach.

Gene set P-value

Chemokine signaling 2.3E-17

Cytokine-cytokine receptor interaction 8.6E-15

Toll-like receptor signaling 2.7E-5

Jak-STAT signaling 7.2E-4

Chronic myeloid leukemia 0.0011

Leukocyte transendothelial migration 0.011

Natural killer cell mediated cytotoxicity 0.192

B cell receptor signaling 0.031

Fc epsilon RI signaling 0.035

Intestinal immune network for IgA production 0.042

TABLE 3 | Enriched gene sets of the combined classifier approach.

Gene set P-value

Toll-like receptor signaling 2.2E-4

Cytokine-cytokine receptor interaction 3.1E-4

Lysosome 0.014

Chemokine signaling 0.027

Jak-STAT signaling 0.042

gene list was not present in that of the single classifier—Lysosome
(KEGG pathway). Next, independent from the classifier results,
for each dataset, differentially expressed genes in fungal vs.
bacterial infected samples was calculated. The intersection of
the differentially expressed genes across all datasets resulted in
a list of 13 genes (ST3GAL5, HMOX1, LGALS9, GLA, HAVCR2,
TBC1D9, ACADVL, BCAR3, RHOU,MGAT2, CCL23, RGS1, and
SPRY2) and no enriched gene sets. Intersection of differentially
expressed genes was performed not only for all datasets but now
also based on the type of the immune cells to shape out the origin
of these differences in gene expression.

As stated before, monocytes are vital players in the control of
infection, by both promoting inflammation and differentiating
into other immune cells. The processes that they influence,
however, can be distinct to those of other more abundant
immune cells such as lymphocytes and the expressed genes of
monocytes may hence be “masked.” To elucidate this masking
phenomenon, we calculated the differentially expressed genes
of the datasets of the PBMCs (datasets Saraiva, Smeekens), and
of the monocytes (Klassert, Mattingsdal) separately. Intersecting
differentially expressed genes, both up and down regulated, of
the datasets encompassing solely monocytes resulted in 720
genes, whilst the intersection of datasets comprised of PBMCs
resulted in a list of 57 genes. The enriched gene sets, for
PBMC-specific and monocyte-specific differentially expressed
genes are shown in Table 4. The enriched gene sets in all
groups suggested that genes coding for the lysosome were
specifically induced by monocytes during a fungal challenge. To
note, the combined classifier-originated gene list also showed an
enrichment of genes coding for the lysosome (lysosome gene set
in the following). Additionally, we intersected the differentially

TABLE 4 | Enriched gene sets of PBMC-specific and monocyte-specific

differentially expressed genes in fungal vs. bacterial infection (both up and down

regulated).

PBMC-specific Monocyte-specific

Gene set P-value Gene set P-value

Jak-STAT signaling 0.0011 Toll-like receptor signaling 2.5E-5

Toll-like receptor signaling 0.0035 NOD-like receptor 3.5E-5

Cytokine-cytokine

receptor interaction

0.046 Hematopoietic cell lineage 2.4E-4

Cytokine-cytokine

receptor interaction

3.9E-4

Chemokine signaling 0.0018

Jak-STAT signaling 0.0035

Lysosome 0.0044

Cytosolic DNA-sensing 0.0049

MAPK signaling 0.0054

Adipocytokine signaling 0.016

expressed and up-regulated genes (in fungal vs. bacterial) from
the monocyte datasets (Klassert and Mattingsdal) and performed
gene set enrichment tests. Only two pathways were significantly
enriched—the lysosome and Toll-like receptor signaling (P =

3.2E-4 and 0.015, respectively). We believe that this strengthens
our initial finding that cell type specific gene expression is still
captured when combining classifiers, without the requirement of
performing a cell type specific analysis beforehand. Performing
gene set enrichment tests on differentially expressed genes from
cell type specific datasets produced the same results.

Gene set enrichment was also performed on the gene list
that resulted in the intersection of differentially expressed and
up regulated genes considering only the datasets of stimulated
PBMCs, and comprised of Jak-STAT signaling, cytokine-cytokine
receptor interaction and toll-like receptor signaling (Table S3).

In summary, we identified a few, well selected, distinct
gene sets being enriched in differentially expressed genes
discriminating fungal from bacterial infection, and when
elucidating gene sets specifically expressed in monocytes by our
combined classifier approach and a monocyte specific analysis,
the lysosome gene set came out to be highly enriched in
discriminative genes. Hence, in the following, we focused on the
lysosomal gene set.

Experimental Validation
We reproduced the experimental settings of the studies herein
considered focussing on monocytes, and stimulated human
monocytes with the respective pathogens. The validation of
the expression profiles observed for monocytes in the RNA-
Seq data was performed using quantitative RT-PCR. For this
purpose, we first tested the stability of the housekeeping gene
used (PPIB). Using the algorithm BestKeeper (Pfaffl et al., 2004),
the expression stability (std dev± CP) and coefficient of variation
(CV) for the housekeeping gene was calculated for monocytes.
On this basis, PPIB was proved as a highly stable housekeeping
gene for relative expression analyses (std dev ± CP = 0.35; CP =

1.95 %).
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Lysosome-Related Genes
Based on the results obtained using our combined classifier
approach, 4 lysosome-related genes were selected for validation
by real time RT-qPCR analysis. These were the genes encoding
for Galactosidase A (GLA), Scavenger receptor class B member
2 (SCARB2), Niemann-Pick disease, type C1 (NPC1) and the
CD164 molecule (CD164). The real-time RT-qPCR plots are
shown in Figure 1 (The complete table of the RT-qPCR mean
expression values across conditions and corresponding p-values
are shown in Table S4). Almost all genes showed a significant
increase in their expression when the fungi-stimulated group
was compared to either the unstimulated controls and/or to the
bacteria-challenged samples. GLA was significantly up-regulated
by both fungal pathogens when compared to control and to
E. coli-stimulated monocytes. SCARB2 was up-regulated in a
highly significant manner in C. albicans-stimulated monocytes
when compared to E. coli-challenged monocytes. SCARB2 also
showed a significant increase in expression when compared

to controls and A. fumigatus-challenged monocytes. In E. coli
stimulatedmonocytes, SCARB2was significantly down-regulated
when compared to controls. NPC1 showed a significant
increase in its expression in A. fumigatus-stimulated monocytes
when compared to all other challenges. C. albicans-stimulated
monocytes also showed significant increase of NPC1 expression
when compared to controls. Lastly, CD164 was significantly up-
regulated in both fungi when compared to E. coli and controls.
In summary, we could validate the expression of the selected
genes to be either specifically or significantly more up-regulated
in monocytes stimulated by fungal pathogens when compared to
monocytes stimulated by bacterial pathogens confirming them
as potential biomarkers for fungal vs. bacterial induced systemic
infection.

The fungi-specific pattern observed for lysosome-related
genes in monocytes was less evident in PBMCs, as confirmed
by an additional set of experiments in which monocytes and
PBMCs from the same donors were stimulated in parallel with

FIGURE 1 | Relative mRNA expression of GLA, SCARB2, CD164, and NPC1 after stimulation with Candida albicans (C.a.), Aspergillus fumigatus (Asp.) and

Escherichia coli (E. coli). Data were obtained from four independent experiments, each performed with cells from different donors. Results are presented as mean ±

SE of the fold change relative to the control (unstimulated cells) according to (Pfaffl et al., 2004). (Please see also: Rieu and Powers, 2009. Real-Time Quantitative

RT-PCR: Design, Calculations, and Statistics. The Plant Cell; Vol. 21: 1031–1033. Shown is also the statistical significance after repeated measures One-Way ANOVA

after multiple testing correction (Bonferroni) (***p < 0.001; **p < 0.01; *p < 0.05).
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C. albicans, A. fumigatus, and E. coli (Figure S3). These results
are in accordance with the microarray and RNA-Seq readouts
from the different datasets analyzed (Monocytes vs PBMCs),
and might explain why the lysosome-pathway was significantly
enriched only in the monocyte datasets.

Lysosome-Unrelated Genes
Our approach identified additional genes that showed a
differential pattern in leukocytes upon fungal vs. bacterial
infection but unrelated to the lysosome. These included the BAG
family molecular chaperone regulator 3 (BAG3), the fatty acid
binding protein 5 (FABP5), the peroxisome proliferator-activated
receptor gamma (PPARG), the heme oxygenase 1 (HMOX1) and
the C-C chemokine receptor type 1 (CCR1). Real-time qPCR of
these genes showed a significant (P ≤ 0.05) increased expression
in fungal stimulated monocytes when compared to all other
stimuli. Except for BAG3, all other genes were downregulated
after E. coli stimulation, reaching statistical significance for two
of the genes (HMOX1 and CCR1) (Figure S4).

DISCUSSION

Accurate identification of key features that allow for
differentiation between specific clinical conditions represents
an important challenge with diagnostic potential for the clinical
daily practice. As shown in our previous study (Saraiva et al.,
2016), the consistency of differential gene signatures increases
substantially after combining classifiers when compared to
single classifiers. The application of the combined classifier
approach limits the impact of many variables that exist when
comparing datasets such as the pathogen strain, laboratory
settings, time of sample extraction and stimulated cell-type (e.g.,
PBMCs or whole blood), amongst others. This is particularly
important when trying to generate a generic gene signature
capable of discriminating infections irrespective of the immune
cell type. In the present work, we validated our method on
specific populations of immune cells, and demonstrated its
ability to identify cell-specific signatures that were masked
in mixed populations if using classifiers without combining
the datasets. As observed in our results, combining classifiers
for discrimination between fungal and bacterial infections
in different leukocyte-compositions, such as PBMCs and
monocytes, generated a gene signature enriched for several
immune signaling pathways, among which the lysosome gene
set was observed which turned out to be specific for monocytes.
This was ascertained by the comparison of the enriched
signaling pathways of differentially expressed genes in cultures
of monocytes against PBMCs, both challenged with fungal and
bacterial pathogens. We validated our results experimentally
employing qPCR, analyzing a set of lysosome-related genes
that were either selected by the combined classifier or uniquely
differentially expressed in the monocyte challenged datasets. As
shown, all the lysosome-related genes (GLA, SCARB2, NPC1,
and CD164) exhibited a significant increase in their expression
after fungal challenge when compared to bacterial stimulation,
indicating a fungal-specific response by monocytes (Figure 1).
Similar results were also obtained for other, non-lysosome

related genes that were part of the fungal-specific signature and
also these genes could be validated by qPCR (Figure S4). These
genes included BAG3, PPARG, FABP5, HMOX1, and CCR1.

Functional Relevance of the Differentially
Expressed Lysosome-Related Genes
α-Galactosidase A (GLA) is a glycoside hydrolase enzyme
encoded by the GLA gene. This enzyme hydrolyses the
terminal α-galactosyl moieties (especially the α-1,6 linkage)
of glycoproteins and glycolipids. Specifically, GLA is a
lyososmal enzyme that degrades globotriaosylceramide (Gb3)
to lactosylceramide, preventing its accumulation in this
compartment (Darmoise et al., 2010). Deficiency of this enzyme
(GLA) and accumulation of the glycolipid Gb3 in the lysosome
of peripheral blood mononuclear cells (PBMCs) has been
shown to contribute to diverse physiopathological alterations
such as the continuous pro-oxidative and pro-inflammatory
state of these cells (De Francesco et al., 2013). Moreover,
a pro-inflammatory role of Gb3 could be demonstrated in
that study, which was directly mediated by the TLR4-pro-
inflammatory signaling pathway (De Francesco et al., 2013).
Candida albicans yeast, among other fungi, binds to TLR4 that
recognizes short linear O-bound mannan structures present
in the fungal cell wall (Netea et al., 2008). Besides this, the
GLA product lactosylceramide has been reported to be very
abundant on plasma membranes of phagocytes, being involved
in the phagocytosis, chemotaxis, and superoxide generation
during fungal infection (Jimenez-Lucho et al., 1990; Iwabuchi
et al., 2015). Our results show that C. albicans and A. fumigatus
induce a significantly higher expression of the GLA gene than
E. coli, suggesting the importance of this enzyme in monocytes
during fungal infection. Among all the lysosome-related genes
analyzed in this study, GLA showed the strongest up-regulation
upon pathogen-challenge, particularly during fungal stimulation
(24-fold for C. albicans and 14-fold for A. fumigatus). It might be
speculated that GLA avoids the accumulation of the glycolipid
Gb3 in the lysosome as an anti-inflammatory and protective
mechanism in monocytes, which might be of special importance
during fungal clearance. Moreover, the conversion of Gb3 to
lactosylceramide, as a membrane microdomain of immune cells,
may increase the phagocytosis and clearance of the fungi.

Scavenger receptor class B member 2 (SCARB2) is a gene
whose encoded protein, the lysosomal integralmembrane protein
type-2 (LIMP-2/SCARB2), has been shown to be essential for the
normal biogenesis andmaintenance of lysosomes and endosomes
(Gonzalez et al., 2014). As a lysosomal membrane protein,
SCARB2 has been reported to act as an entry receptor for
Enterovirus 71 (EV71) leading to its internalization to the
lysosome (Yamayoshi et al., 2014). Other scavenger receptors,
such as CD36 and SCARF1 (human homologs of the murine
C03F11.3 and CED-1, respectively), have been shown to bind
C. neoformans and C. albicans via ß-glucan structures, providing
protection against these fungal pathogens in a mice model (Croze
et al., 1989). Not much is known about the function of SCARB2
during fungal induced immune responses, but our results suggest
that this scavenger receptor, like other similar members of
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this protein family, may play an important role in fungal
recognition and internalization to the lysosome. Moreover,
we analyzed whether the most common fungal and bacterial
cell wall components (the fungal ß-glucan and the bacterial
lipopolysaccharide, respectively) could explain the differential
regulation of this gene by the different pathogens. E. coli-derived
LPS resembled the downregulation of SCARB2 already observed
after stimulation with E. coli cells. In contrast, the fungal ß-glucan
component seems to have no effect on the regulation of this
gene (Figure S5). From these results we could conclude that
the bacterial liposaccharide seems to be responsible for the
downregulation of SCARB2. In turn, the absence of regulation
of this gene in the presence of zymosan, a representative of
ß-glucan, suggests that other specific fungal epitopes might
induce the expression of this gene during fungal infection,
especially during C. albicans infection. In this study, other genes
encoding lysosomal transmembrane proteins, CD164 and NPC1,
were analyzed. Croze et al. reported CD164 encoding sialomucin
protein (Endolyn-78) to be involved in the maturation of
the endosomal-lysosomal compartment (Croze et al., 1989),
while the Niemann-Pick disease type C1 (NPC1) protein
encoded by the NPC1 gene mediates intracellular cholesterol and
sphingolipids trafficking into the late endosome and lysosome
(Alam et al., 2012). NPC1 is located in late endosomes and
lysosomes and its encoded protein might promote the creation
and/or movement of these compartments to and from the cell
periphery (Ko et al., 2001). In our study, we have shown the up-
regulation of CD164 and NPC1in human monocytes specifically
after fungal challenge, which again suggests the importance of
biogenesis and functionality of the lysosome for fungal clearance
in monocytes.

Functional Relevance of Differentially
Expressed Non-lysosome-Related Genes
Most of the genes further analyzed in this study associated to
the proper biosynthesis and functionality of the lysosome during
fungal infection. In addition, other mechanisms, such as immune
cells recruitment, phagocytosis and nutrient metabolism, are also
known to be crucial for a successful fungal killing and clearance
by the phagocytes. Thus, other genes identified in this study
to be fungal-challenge specific are involved in those pathways
and might play an important role during fungal infection. For
instance, BAG3 encodes the BAG family molecular chaperone
regulator 3 (BAG3) protein which regulates macroautophagy for
degradation of polyubiquitinated proteins (Gamerdinger et al.,
2009). The peroxisome proliferator-activated receptor gamma
(PPARG) is a gene expressed in macrophages and its encoding
a protein that plays a central role in regulating fatty acid storage
and glucose metabolism (Tyagi et al., 2011). Fatty Acid Binding
Protein 5 (FABP5) is a protein encoded by FABP5 gene and
plays a role in the uptake of fatty acids, transport phenomena
and fatty acid metabolism (Moore et al., 2015). The HMOX1
gene, encoding heme oxygenase-1 (HO-1), has been shown
to be required for immune cell protection against systemic
infections (Silva-Gomes et al., 2013). Primarily, HO-1 degrades
heme into biliverdin and carbon monoxide (CO). CO has

shown different effects, it supports anti-inflammatory cytokine
expression (Piantadosi et al., 2011) but may in turn increase the
virulence of the infection (Navarathna and Roberts, 2010). The
C-C Chemokine Receptor 1 (CCR1), encoded by the CCR1 gene,
has been shown to be widely expressed in immune cells and it was
associated with the maintenance of chemokine gradients during
infection (Lionakis et al., 2012).

In summary, by integrating our combined classifier
approach with distinct differential gene expression analysis
across well selected, different studies investigating diverse
species of pathogens, we could identify genes that are up-
regulated in monocytes during fungal infection, much more
or exclusively in comparison to a bacterial infection. Once
fungi are phagocytosed, monocytes display transcriptional and
translational reprogramming, adapting their physiology and
killing mechanisms to fungal-derived stressors. In our study, we
show the up-regulation of fungi-specific genes, which seem to be
important in the fungal-derived reprogramming. Moreover, the
application of the combined classifier approach made it possible,
for the first time, to identify lysosome-related gene expression as
a monocyte-specific footprint of fungal infections. Determining
whether loss of the candidate genes have any functional impact
on infection is also of great importance. siRNA-mediated
knock-down experiments, combined with pathogen-challenge
should be performed in the future. The multiple readouts with
possible effects on phagocytosis, killing, cytokine production and
metabolism would represent an attractive target for follow-up
studies.
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