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Inter-Kingdom Interactions
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Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands

During the last decades, research on the function of volatile organic compounds focused
primarily on the interactions between plants and insects. However, microorganisms
can also release a plethora of volatiles and it appears that microbial volatile organic
compounds (mVOCs) can play an important role in intra- and inter-kingdom interactions.
So far, most studies are focused on aboveground volatile-mediated interactions
and much less information is available about the function of volatiles belowground.
This minireview summarizes the current knowledge on the biological functions of
mVOCs with the focus on mVOCs-mediated interactions belowground. We pinpointed
mVOCs involved in microbe-microbe and microbe–plant interactions, and highlighted
the ecological importance of microbial terpenes as a largely underexplored group
of mVOCs. We indicated challenges in studying belowground mVOCs-mediated
interactions and opportunities for further studies and practical applications.

Keywords: volatile organic compounds, microbial interactions, bacteria, fungi, protists, plant–microbe
interactions

INTRODUCTION

Many secondary metabolites have been reported to be involved in microbial interactions. One
group of secondary metabolites produced by soil and plant-associated microorganisms, but largely
unexplored to date, are the volatile organic compounds (VOCs). VOCs are typically small, odorous
compounds (<C15) with low molecular mass (<300 Da), high vapor pressure, low boiling
point, and a lipophilic moiety. These properties facilitate evaporation and diffusion aboveground
and belowground through gas- and water- filled pores in soil and rhizosphere environments
(Vespermann et al., 2007; Insam and Seewald, 2010; Effmert et al., 2012). Microbial volatile organic
compounds (mVOCs) belong to different chemical classes including alkenes, alcohols, ketones,
benzenoids, pyrazines, sulfides, and terpenes (Schulz and Dickschat, 2007; Lemfack et al., 2014,
2017; Kanchiswamy et al., 2015; Schmidt et al., 2015). A recent meta-analysis by Schenkel et al.
(2015) provided a comprehensive overview of VOCs derived from soil-borne microbes.

The production of mVOCs in soil is influenced by various factors including the growth stage of
the microbes, nutrient availability, temperature, oxygen availability, pH, and soil moisture content
(Wheatley, 2002; Insam and Seewald, 2010). Several recent studies reported that the production of
certain mVOCs can be induced or suppressed during inter-specific microbial interactions (Garbeva
et al., 2014a; Schulz-Bohm et al., 2015; Tyc et al., 2015; Piechulla et al., 2017). mVOCs were often
considered to be by-products of primary metabolism, but recent findings revealed that many
mVOCs demonstrate biological activity (Schmidt et al., 2015; Tyc et al., 2017a). Furthermore,
in bacteria, the production of certain mVOCs is dependent on the GacS/GacA two-component
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regulatory system (Cheng et al., 2016; Ossowicki et al., 2017).
These findings clearly disagree with the opinion that mVOCs are
just waste products.

While soluble metabolites are often responsible for short
distance interactions, VOCs are considered to be long-distance
messengers (Tyc et al., 2017b; Westhoff et al., 2017). There are
many types of microbial interactions occurring belowground
such as bacteria–bacteria, fungi–fungi, fungi–bacteria, bacteria–
protists, fungi–plant, bacteria–plant, and bacteria–fungi–plant
interactions. However, most studies addressing belowground
VOCs-mediated interactions are focused mainly on the root-
emitted volatiles (recently reviewed by Delory et al., 2016).

The knowledge we have gained from research conducted over
the last few years reveals that mVOCs can have both beneficial
and harmful effects on other organisms (Effmert et al., 2012;
Schmidt et al., 2015). mVOCs can provide organisms with rapid
and precise ways to recognize neighboring organisms (both
friends and foe) and to launch proper responses.

The aim of this review is to summarize the current knowledge
concerning the role of mVOCs in intra- and inter-kingdom
interactions, to pinpoint mVOCs (e.g., terpenes) involved in
microbe–microbe and microbe–plant interactions as well as to
indicate challenges in studying belowground mVOCs-mediated
interactions and opportunities for further studies and practical
applications.

VOCs IN MICROBE–MICROBE
INTERACTION

Bacteria–Bacteria
Bacterial VOCs can have direct antagonistic effects against other
bacteria. For instance, the sesquiterpene albaflavenone produced
by Streptomyces albidoflavus revealed activity against Bacillus
subtilis (Gürtler et al., 1994) and the emission of dimethyl
disulphide by two rhizospheric bacteria, Pseudomonas fluorescens
and Serratia plymuthica, showed bacteriostatic effects against
two plant bacterial pathogens Agrobacterium tumefaciens and
Agrobacterium vitis (Dandurishvili et al., 2011). Pseudomonas
fluorescens WR-1 produces volatiles such as benzothiazole
and 1-methyl naphthalene with bacteriostatic effects against
the tomato pathogen Ralstonia solanacearum (Raza et al.,
2016a). In fact, many species of Pseudomonas and Bacillus
that are used as biocontrol agents against plant pathogens,
have been reported to produce VOCs with antibacterial
activity (Raza et al., 2016a,b,c; Xie et al., 2016; Rajer et al.,
2017; Tahir et al., 2017a,b). For instance, a recent study
revealed that VOCs produced by Bacillus spp., including
benzaldehyde, 1,2-benzisothiazol-3(2 H)-one and 1,3-butadiene,
had strong inhibitory activity against R. solanacearum, the
causal agent of bacterial wilt disease (Tahir et al., 2017a).
The mVOCs altered the transcriptional expression levels of
several genes involved in motility and pathogenicity (e.g.,
global virulence regulator PhcA, type III secretion system, and
extracellular polysaccharide [EPS] production) and induced
systemic resistance by plants, which resulted in a decrease of wilt
disease.

Several reports describe the effect of VOCs in bacterial
virulence. For instance, 2,3 butanediol and acetoin are required
for full virulence in Pectobacterium carotovorum. The same
compounds can increase the production of virulence factors in
Pseudomonas aeruginosa (Audrain et al., 2015).

In contrast, VOCs produced by some bacteria can also have
positive effects on the growth of other neighboring bacteria in
the rhizosphere. For instance, VOCs from Collimonas pratensis
and S. plymuthica are able to induce the growth of P. fluorescens
Pf0-1 (Garbeva et al., 2014a). These VOCs induced expression of
genes involved in motility in P. fluorescens Pf0-1 and provoked
an increase in the production of secondary metabolites with
antibacterial activity against Bacillus (Garbeva et al., 2014a). This
suggests that C. pratensis and S. plymuthica may be attracting and
promoting the growth of P. fluorescens in a collaborative attempt
to increase their chances against different bacterial competitors or
soil fungal pathogens. Another example of the growth-promoting
effect of VOCs was reported recently by Schulz-Bohm et al.
(2015) which showed that VOCs released by mixtures of root
exudate-consuming bacteria stimulated the activity and growth
of distant nutrient-limited bacteria.

In addition to exerting antagonistic effects toward other
bacteria, VOCs can also modify the behavior of other bacteria and
modulate their resistance to antibiotics. Bacterial volatiles such
as ammonia, trimethylamine, hydrogen sulfide, nitric oxide, and
2-amino-acetophenone can alter biofilm formation or dispersal
or affect motility of bacteria (Audrain et al., 2015; Raza et al.,
2016a). Bacteria often make use of their motility to move to
other areas with more resources and/or less competitors. In
Streptomyces venezuelae, a new mode of development, so-called
exploration, has been recently discovered that allows non-motile
bacteria to access regions with more nutrients (Jones et al., 2017).
S. venezuelae is able to produce hydrophilic fast growing non-
branching vegetative hyphae, triggered by glucose depletion and
a rise in pH, to presumably escape from poor nutrient areas.
Interestingly, explorer cells can release signals for long distance
communication with other members of the species to induce their
exploratory growth. One of these signals is trimethylamine, which
works not only as a signal to communicate with distantly located
Streptomyces and induce exploratory growth but also displays
antibacterial activity against B. subtilis and Micrococcus luteus,
probably by rising the pH of the medium (Jones et al., 2017).

Fungi–Bacteria
Fungal VOCs can play an important role in long distance fungal–
bacterial interactions and can lead to different phenotypical
responses in the interacting partners. For example, VOCs
emitted by Trichoderma atroviride increased the expression of
a biocontrol gene (phlA) in P. fluorescens that encodes the
biosynthesis of 2,4-diacetylphloroglucinol (Lutz et al., 2004).
A few recent studies demonstrated that the growth of some
bacterial species can be suppressed by fungal VOCs (Werner
et al., 2016) such as the VOCs that exhibit inhibitory effects
on B. cereus and B. subtilis produced by the oyster mushroom
Pleurotus ostreatus (Pauliuc and Botǎu, 2013).

Recently, Schmidt et al. (2015) screened the phenotypic
responses of soil bacterial strains to volatiles emitted by
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several fungal and oomycetal soil strains under different
nutrient conditions during different growth stages. Out of
the phenotypical responses tested such as growth alteration,
antimicrobial activity, biofilm formation or motility, motility
of bacteria (both swimming and swarming) was significantly
positively or negatively affected by fungal and oomycetal
VOCs. This finding could, therefore, reflect a potential strategy
employed by the fungus to attract mutualistic bacteria toward
itself and to repel competitors by manipulating their motility
through the use of VOCs (Piechulla et al., 2017). Transcriptomics
and proteomics analyses of S. plymuthica PRI-2C exposed to
VOCs emitted by the fungal pathogen Fusarium culmorum,
showed that S. plymuthica PRI-2C responded to the fungal VOCs
with changes in gene and protein expression related to motility,
signal transduction, energy metabolism, cell envelope biogenesis,
and secondary metabolite production (Schmidt et al., 2017). The
metabolomic analyses of S. plymuthica PRI-2C exposed to the
fungal VOCs, the gene cluster comparison, and the heterologous
co-expression of a terpene synthase and a methyltransferase
revealed the production of the unusual terpene named sodorifen
(Kai et al., 2010; Von Reuß et al., 2010) in response to fungal
VOCs. These findings support the suggested importance of VOCs
(and in particular terpenes) as signaling molecules in fungal–
bacterial interactions.

Many soil bacteria can produce VOCs with antifungal effects
and thus contribute to the phenomenon known as soil fungistasis
where fungal propagules are restricted in their ability to grow
or germinate (Garbeva et al., 2011). Recently, Cordovez et al.
(2015) revealed that VOCs produced by Streptomyces spp.
exhibit antifungal properties against Rhizoctonia solani and
may contribute to plant disease suppressiveness. Ossowicki
et al. (2017) showed that VOCs from the tomato rhizosphere
isolate Pseudomonas donghuensis P482 have strong antifungal
and anti-oomycete activity which suggests that the antagonistic
capabilities of this strain against plant pathogens are due to
their volatile potential (Ossowicki et al., 2017). This effect of
bacterial VOCs against oomycetes is not an isolated case and
other Pseudomonas strains have been reported to have anti-
oomycete activities (De Vrieze et al., 2015; Hunziker et al., 2015).
In a recent report, VOCs produced by several Lysobacter strains
growing in a protein-rich medium showed anti-oomycete activity
whereas non-antagonistic VOCs were produced by these strains
when grown on a sugar-rich medium. This indicates that the
production of volatiles is highly dependent on growth conditions
and nutrient availability (Lazazzara et al., 2017).

Fungi–Fungi
The 1-octen-3-ol, one of the most prominent fungal VOC,
known as the mushroom smell, is produced by a wide range
of filamentous fungi and can function as a development signal
among fungi (Miyamoto et al., 2014). The same compound
was described to function in Penicillium paneum as a self-
inhibitor signal in spore germination (Chitarra et al., 2004). As
developmental signals during population establishment, certain
fungal VOCs act in a concentration-dependent manner to
regulate conspecific mycelial growth and spore germination
(Nemčovič et al., 2008; Stoppacher et al., 2010).

Fungal VOCs can have inhibitory effects and drive
antagonistic interactions among fungi. For example, the
endophytic fungi Muscodor albus and Oxyporus latemarginatus
can strongly inhibit the growth of several plant pathogenic fungi,
including Botrytis cinerea and Rhizoctonia solani (Strobel et al.,
2001). VOCs emitted by Trichoderma spp. have a strong effect
against plant pathogenic fungi such as Fusarium oxysporum,
Rhizoctonia solani, Sclerotium rolfsii, Sclerotinia sclerotiorum,
and Alternaria brassicicola (Amin et al., 2010). Similarly,
VOCs such as 5-hexenoic acid, limonene, octanoic acid and
3,4-2H-dihydropyran produced by the non-pathogenic fungus
F. oxysporum CanR-46 could inhibit mycelial growth of 14 fungal
species including the pathogenic Verticillium dahlia (Zhang
et al., 2015). Recently, a proteomic study demonstrated that
fungal VOCs can interfere with essential metabolic pathways to
prevent fungal growth (Fialho et al., 2016).

Some fungal species can detoxify the antifungal compounds
produced by their microbial competitors. For example, Fusarium
graminearum can detoxify the toxic compound 6-pentyl-alpha-
pyrone, emitted by Trichoderma harzianum (Cooney et al.,
2001). Fungal VOCs can be important carbon sources for
fungi colonizing carbon-limited environments (Cale et al.,
2016). Conversely, for fungi colonizing a more carbon-rich
environment, VOCs may act, in a concentration-dependent
manner, as semio-chemicals to mediate antagonistic and
beneficial interactions between fungi.

Protists–Bacteria
A very diverse and abundant group of soil microorganisms are
protists (Protozoa) (Fierer and Jackson, 2006; Geisen et al., 2015).
Due to their grazing activities, protists play an important role in
the soil food web and significantly affect carbon allocation and
nutrient-cycling in the soil-plant-interphase (Geisen et al., 2016).
Most soil protists are known to be key predators of bacteria and
can shape bacterial communities by selective feeding (Griffiths
et al., 1999; Bonkowski and Brandt, 2002; Rosenberg et al., 2009;
Glücksman et al., 2010). Reaching suitable prey is very energy
consuming (Jousset, 2012). Thus, sensing their prey over long
distances in the porous soil matrix would be very beneficial
for protists. A recent study by Schulz-Bohm et al. (2017)
revealed that volatile organic compounds can play a key role in
long-distance bacterial–protists interactions. By testing various
volatile-mediated interactions between phylogenetically different
soil bacteria and protists and comparing those with direct trophic
interactions, they demonstrated that specific bacterial volatiles
can provide early information about suitable prey. In particular, it
was shown that terpenes such as β-linalool, β-pinene, germacrene
D-4-ol or δ-cadinene produced by C. pratensis Ter91 (Song et al.,
2015b) can stimulate protist activity and motility suggesting
that terpenes can be key components in VOCs-mediated
communication between protists and bacteria (Schulz-Bohm
et al., 2017). Interestingly, soil protists such as Dictyostelium
discoideum (Chen et al., 2016) produce volatile terpenes. These
terpenes might be involved in defense mechanisms, for example,
to repel nematode predators. Similarly, it was shown that soil
bacteria can produce specific volatiles to repel protist predators
(Kai et al., 2009; Schulz-Bohm et al., 2017).
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Besides bacterivorous protists, obligate and facultative
mycophageous (fungus grazing) protists are common soil
inhabitants (Geisen, 2016). Mycophageous protists feed mostly
on yeast and fungal spores while some specialists are able to
graze directly on the hyphae of filamentous fungi (Geisen et al.,
2016). It is well known that soil fungi such as yeast produce a
wide set of volatile compounds involved in various belowground
interactions (Effmert et al., 2012; Werner et al., 2016). Thus,
although not demonstrated yet, it is plausible that fungal volatiles
might play an important role in belowground communication
between soil fungi and protists, as well.

VOCs IN MICROBE-PLANT
INTERACTIONS

In recent years, evidence supporting the idea that plants respond
strongly to mVOCs has grown. Most of the research carried
out so far has investigated the impact of microbial VOCs on
the model plant Arabidopsis thaliana. This has revealed that,
without physical contact, microorganisms are able to drastically
alter plant root system development, plant physiology, hormonal
pathways, and biomass production (Ryu et al., 2004; Blom
et al., 2011; Wenke et al., 2012; Bailly et al., 2014; Bitas
et al., 2015; Ditengou et al., 2015; Li et al., 2016; Piechulla
et al., 2017). mVOCs can also function as a direct source of
nutrients for plants (Meldau et al., 2013), induce resistance to
pathogens in plants (D’Alessandro et al., 2014; Kottb et al.,
2015; Song et al., 2015b; Wintermans et al., 2016), affect
plant secondary metabolite production (Santoro et al., 2011),
directly inhibit plant pathogens (Kai et al., 2009; Garbeva et al.,
2014b; De Vrieze et al., 2015; Kottb et al., 2015) and induce
soil fungistasis and suppressiveness (Garbeva et al., 2011; Van
Agtmaal et al., 2015). Moreover, one single mVOC can show
various functions, such as dimethyl disulfide, which improves
plant growth by enhancing the availability of reduced sulfur
(Meldau et al., 2013). It also protects tobacco and corn plants
against Botrytis cinerea and Cochliobolus heterostrophus by
directly inhibiting pathogens and inducing systemic resistance
in plants (Huang C.-J. et al., 2012). Likewise, a characteristic
compound of Trichoderma asperellum, 6-pentyl-pyrone, can
increase plant defense reactions and at the same time decrease
B. cinerea and Alternaria alternata sporulation (Kottb et al.,
2015).

Many independent studies revealed that mVOCs emitted
by beneficial soil microorganisms can affect plant growth but
only few studies focused on how VOCs produced by soil-
borne plant pathogens affect plant growth and development.
These studies suggest that mVOCs from plant pathogens may
modulate the trade-off between plant growth, development
and defense. Bitas et al. (2015) showed that VOCs emitted
by pathogenic F. oxysporum promoted the growth of A.
thaliana and Nicotiana tabacum and affected auxin transport and
signaling. VOCs emitted by the pathogen Alternaria alternaria
enhanced growth, early flowering and photosynthesis rates
of Arabidopsis, maize and pepper by affecting the levels of
plastidic cytocinin (Sanchez-Lopez et al., 2016). A more recent

study showed that the soil-borne pathogen Rhizoctonia solani
produced an array of mVOCs that promote plant growth,
accelerate development, change plant VOCs emission and
reduce insect resistance (Cordovez et al., 2017). This must
be a successful strategy for the pathogenic fungi since with
increased root biomass and stimulation of lateral root formation
there is a greater surface area for fungal colonization and
infection.

When analyzing mVOCs effects on plant growth, it is
important to take into account, that microorganisms can produce
high amounts of CO2 that can promote plant growth (Kai
and Piechulla, 2009; Piechulla et al., 2017). Hence, a good
experimental setup with appropriate controls are required to
avoid artifacts in the results (Piechulla et al., 2017).

Alternatively, plants are able to mediate the belowground
plant–microbe interactions via root-emitted VOCs (Wenke
et al., 2010). Root-derived VOCs may serve multiple roles such
as carbon sources, defense metabolites and chemo-attractants
(Van Dam et al., 2016). Rhizobacteria such as Pseudomonas
fluorescens and Alcaligenes xylosoxidans have been shown to
metabolize α- pinene as their sole carbon source (Kleinheinz
et al., 1999). Del Giudice et al. (2008) also reported that bacteria
associated with the roots of vetiver grass (Vetiveria zizanioides)
use sesquiterpenes as a carbon source. Undoubtedly, plants and
soil microorganisms are engaged via VOCs in long-distance
interactions (Van Dam et al., 2016). However, so far, limited
knowledge exists concerning the role of plant VOCs in attracting
beneficial organisms and how plant-associated microorganisms
affect the quantity and quality of plant volatile emission. Only
recently, using a glass olfactometer system, the attraction of
distant soil bacteria by VOCs emitted by plant roots was
revealed (Schulz-Bohm et al., 2017). Olfactometer systems have
been used successfully to study aboveground plant–herbivores
interactions (Ballhorn and Kautz, 2013) or belowground plant–
nematode interactions (Rasmann et al., 2005). However, this is
the first case to apply an olfactometer to study plant–microbe
interactions. Moreover, the same study revealed that upon fungal
infection, the blend of root VOCs changed and specific bacteria
with antifungal properties were attracted (Schulz-Bohm et al.,
2017).

mVOCs-MEDIATED DIALOG

Several reports describe the chemical dialog between microbes,
plants, and other organisms by the exchange of soluble
compounds (Badri et al., 2009; Lira et al., 2015; Song et al.,
2015a; Liu et al., 2016). Most of the studies reporting mVOCs-
mediated communication belowground focus on the uni-
directional responses and only a few studies reported on bi-
directional mVOCs-mediated interactions. For instance, the
importance of mVOCs in the dialog between the fungal plant
pathogen Verticillium longisporum and its bacterial antagonist
Paenibacillus polymyxa was recently revealed in both in vitro
and in planta experiments (Rybakova et al., 2017). Both
microorganisms responded to one another’s VOCs and this
specific mVOCs-mediated interaction resulted in the inhibition
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of cellular metabolism and growth reduction of the fungal
pathogen.

A VOCs-mediated dialog between bacteria and fungi was also
reported by Spraker et al. (2014) where VOCs of the fungal
plant pathogen Aspergillus flavus reduced the production of
the major virulence factor EPS of the bacterial plant pathogen
R. solanacearum. In parallel, A. flavus responded to VOCs of
R. solanacearum by reducing conidia production and increasing
aflatoxin production.

CONCLUSION AND OUTLOOK

Over the last decades, our understanding of the chemical
complexity of mVOCs produced by many different soil
microorganisms has grown. It is clear that these small and
odorous molecules can modify the behavior and promote or
inhibit growth of neighboring organisms (Figure 1).

Most existing studies on mVOCs are focused on describing the
uni-directional effect of mVOCs produced by a single organism
and the responses of the organisms perceiving them without
considering mVOCs-mediated dialog and the bi-directional
responses to one another. Furthermore, microbial interactions
taking place belowground are far more complex than single
one-to-one interactions and involve more organisms, which
can significantly affect mVOCs emission. For example, fungal-
associated bacteria have been shown to affect the production of
VOCs in fungi (Schulz-Bohm et al., 2015; Splivallo et al., 2015)
and in addition, they can affect the fungal plant-pathogenicity
and repress the expression of fungal virulence genes (Minerdi
et al., 2009). Therefore, a holistic approach considering the
effect of mVOCs on belowground soil community is needed.

For instance, using a metagenomics approach Yuan et al. (2017)
revealed that mVOCs could alter the composition of soil bacterial
and fungal communities and significantly increased the relative
abundance of Proteobacteria, Bacteroidetes, Firmicutes, and
Ascomycota. Furthermore, mVOCs influenced genes involved in
important soil functions such as N-fixation (nif H), nitrification
(amoA), denitrification (nirS) and antibiotic production (NRPS)
(Yuan et al., 2017).

From the current scientific literature, it is clear that the
most studied belowground mVOCs-mediated interactions are
the interactions between bacteria, fungi and plants (Figure 1).
There is a lack of knowledge relating to the emission of VOCs
by protists, archaea or other rhizosphere organisms, such as
nematodes or earthworms, indicating that these groups are
currently understudied with regards to this aspect.

Several VOCs are commonly produced and emitted by both
plant roots, fungi, bacteria and protists and it is possible that
these compounds act as a ‘lingua franca’ for intra- and inter-
kingdom communication between these organisms. Let us take
as an example only one chemical class, the terpenes. Terpenes
are the largest and most diverse class of metabolites known to
date. They are best known to humans as plants metabolites.
However, recent studies revealed that terpenes can be produced
by all kingdoms of life including prokaryotes (Takamatsu et al.,
2011; Yamada et al., 2012, 2015; Song et al., 2015b; Chen et al.,
2016). Recently, Yamada et al. (2015) described a powerful
bioinformatics method based on the use of Hidden Markov
Models (HMMs) and Protein Families Database (PFAM) search
that has allowed the discovery of terpene synthases of bacterial
origin and showed that phylogenetically different bacteria can be
a rich source of terpenes. Both the number, the wide distribution,
and the structural diversity of terpenes provide enormous

FIGURE 1 | Responses in bacteria, fungi, protists and plants caused by microbial volatile organic compounds (mVOCs). The figure shows examples of responses
caused my mVOCs in bacteria, fungi, protists, and plants.
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FIGURE 2 | Terpenes-mediated belowground interactions. The figure shows examples of interactions between different organisms in the rhizosphere that are
mediated by microbial terpenes. Blue arrows indicate intra-kingdom interactions while black arrows indicate inter-kingdom interactions. The numbers in the figure
correspond with the numbers in Table 1.

TABLE 1 | Examples of terpenes involved in belowground microbial interactions.

Origin Nr Compound Biological activity Reference

Fungal 1 α –Humulene Antimicrobial (antifungal) Minerdi et al., 2009

2 β -Caryophyllene Antimicrobial (antibacterial) Minerdi et al., 2011; Huang M. et al., 2012

Plant growth promotion

3 Farnesol Infochemical Hornby et al., 2001; Martins et al., 2007

4 β-Phellandrene Affects motility Schmidt et al., 2017

Bacterial 5 Albaflavenone Antimicrobial (antibacterial) Gürtler et al., 1994

6 β-Pinene Antimicrobial (antifungal, antibacterial) Garbeva et al., 2014b; Song et al., 2015b

7 Volatile terpenes from Collimonas Stimulation of protists activity Schulz-Bohm et al., 2017

Protist 8 (E,E)- α-farnesene β-barbatene Unknown Chen et al., 2016

potential for mediating significant chemical interactions and
communication belowground. Examples of terpene-mediated
microbial interactions are presented in Figure 2 and Table 1,
indicating the ecological importance of terpenes in interactions
between soil micro- and macro-organisms, including plant roots.

Despite the rapid increasing numbers of studies showing
the importance of mVOCs in the long-distance belowground
chemical interactions, we still do not know exactly how VOCs are
recognized and perceived. VOCs receptors or other perception
mechanisms have not been identified in any of the described
cases. The big challenge is to determine whether VOCs are
internalized and transduced by receptor-mediated processes,
whether they interact with the cell membrane to initiate signal
transduction cascades or whether they are simply taken up
by the cell and metabolized (Widhalm et al., 2015; Adebesin
et al., 2017; Tissier et al., 2017). For plants, the current view is
that due to their lipophilic nature, VOCs such as mono- and
sesquiterpenes may interfere with membrane structures, thereby
causing depolarization of the membranes and triggering Ca2+-
signaling in plants (Maffei et al., 2001; Heil and Land, 2014).
For further deciphering of mVOC-mediated microbe-microbe
interactions, the mVOCs microbial perception mechanism needs
to be elucidated. The application of methods for screening
of mutant strains may be useful for that purpose, to identify

microbial genes and proteins that are required for VOCs
perception.

Another big challenge is to determine what concentrations of
mVOCs are produced in soil and at what distances these mVOCs
are eliciting a biological response in other organisms. There is
the possibility that, similar to the roles of antibiotics in nature
(Davies et al., 2006; Yim et al., 2006; Romero et al., 2011), mVOCs
could have concentration-dependent function either as weapons
in intercellular chemical warfare or as signaling compounds when
they are present in low concentrations.

Concerning the implementations of mVOCs, our knowledge
on the potential use of those compounds in large-scale agriculture
and horticulture is still limited. In agriculture systems, mVOCs
have to be applied under open-field conditions, which are
very different from the in vitro conditions currently used in
most studies. There are very few studies assessing the effects
of mVOCs application under open conditions and they have
been summarized in a recent review from Chung et al. (2016).
Since it was discovered that the 2,3-butanediol elicited plant
growth and induced systemic resistance (Ryu et al., 2003, 2004),
several studies have applied this compound or the producing
strains to the soil of open fields to test its effects under
agricultural conditions and have revealed promising results
(Velivelli et al., 2015). Dimethyl disulfide, frequently emitted
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by many bacteria, is another compound used in recent years
in the novel soil fumigant PALADIN R© that targets nematodes
and soil-borne pathogens. However, the research concerning the
application of other mVOCs in agriculture is still in its infancy.
We now live in a time in which the old methods of using
chemicals to protect crops need to be replaced with and, in some
cases, complemented by green solutions. The traditional harmful
synthetic fungicides currently used could be replaced with the
so far under-explored and unique mVOCs for which significant
proof of plant growth promoting effects and plant protection
ability already exists. In spite of the obvious potential of mVOCs
in agriculture, the field suffers from the common ‘translational
gap’ because of a lack of studies evaluating other unexpected
effects of those bioactive molecules on non-target beneficial soil
organisms.
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