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Cronobacter species are important food-borne opportunistic pathogens which have

been implicated in the cause of necrotizing enterocolitis, sepsis, and meningitis in

neonates and infants. However, these bacteria are routinely found in foodstuffs, clinical

specimens, and environmental samples. This study investigated the genetic diversity,

antimicrobial susceptibility, and biofilm formation of Cronobacter isolates (n = 40)

recovered from spices and cereals in China during 2014–2015. Based on the fusA

sequencing analysis, we found that the majority (23/40, 57.5%) of Cronobacter

isolates in spices and cereals were C. sakazakii, while the remaining strains were

C. dublinensis (6/40, 15.0%), C. malonaticus (5/40, 12.5%), C. turicensis (4/40, 10.0%),

and C. universalis (2/40, 5.0%). Multilocus sequence typing (MLST) analysis produced

30 sequence types (STs) among the 40 Cronobacter isolates, with 5 STs (ST4, ST13,

ST50, ST129, and ST158) related to neonatal meningitis. The pattern of the overall ST

distribution was diverse; in particular, it was revealed that ST148 was the predominant

ST, presenting 12.5% within the whole population. MLST assigned 12 isolates to

7 different clonal complexes (CCs), 4, 13, 16, 17, 72, 129, and 143, respectively.

The results of O-antigen serotyping indicated that C. sakazakii serotype O1 and O2

were the most two prevalent serotypes. The antimicrobial susceptibility testing showed

that the 40 Cronobacter isolates were susceptible to most of the antibiotics tested

except for ceftriaxone, meropenem, and aztreona. Of the 40 Cronobacter strains

tested, 13 (32.5%) were assessed as weak bioflim producers, one (2.5%) was a

moderate biofilm producer, one (2.5%) was strong biofilm producer, and the others

(62.5%) were non-biofilm producers. MLST and O-antigen serotyping have indicated that

Cronobacter strains recovered from spices and cereals were genetically diverse. Isolates

of clinical origin, particularly theC. sakazakii ST4 neonatal meningitic pathovar, have been

identified from spices and cereals. Moreover, antimicrobial resistance of Cronobacter

strains was observed, which may imply a potential public health risk. Therefore, the

surveillance of Cronobacter spp. in spices and cereals should be strengthened to

improve epidemiological understandings of Cronobacter infections.
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INTRODUCTION

The Cronobacter genus, belonging to the family
Enterobacteriaceae, includes seven species: C. sakazakii,
C. malonaticus, C. dublinensis, C. muytjensii, C. turicensis,
C. universalis, and C. condimenti (Iversen et al., 2008; Joseph
et al., 2012). Among them, three species in the genusCronobacter,
including C. sakazakii, C. malonaticus, and C. turicensis have
been implicated in fatal neonatal infections resulting in sepsis,
necrotizing enterocolitis and meningitis, with a high mortality
rate and probability of neurological sequelae (Hunter and
Bean, 2013; Ogrodzki and Forsythe, 2015). Although neonatal
infections caused by Cronobacter spp. were highlighted, recent
studies indicated that these bacteria can cause illness in both
infants and adults, especially for newborns, the elderly, and
individuals with weakened immune systems (Patrick et al., 2014;
Alsonosi et al., 2015). Outbreaks of Cronobacter infections have
been reported in many countries in recent years (Friedemann,
2009; Holý et al., 2014; Patrick et al., 2014).

The genus Cronobacter includes many ubiquitous species that
are found in foodstuffs or raw materials, and clinical specimens
as well as environmental samples (Reich et al., 2010; Alsonosi
et al., 2015; Song et al., 2016; Brandão et al., 2017), but the exact
reservoir and routes of transmission has still not been ascertained
(Sani and Odeyemi, 2015). Understanding the transmission
routes (e.g., waterborne, foodborne, or environmental) and
vehicles (e.g., powdered infant formula, vegetables, meat, spices,
or cereals) of a Cronobacter outbreak is of great public health
importance. Thus, evaluation of a wide variety of foods might be
necessary to reveal possible routes for transmission of infections
caused by the genus Cronobacter.

Molecular typing techniques have become an important
tool to study the genetic diversity of Cronobacter spp. and
to trace individual strains that cause human infections. In
recent years, a number of molecular typing techniques such as
MLST (Baldwin et al., 2009), PCR-restriction fragment length
polymorphism (PCR-RFLP) (Vlach et al., 2017), pulsed field gel
electrophoresis (PFGE) (Lou et al., 2014), amplified fragment
length polymorphism (AFLP) (Turcovský et al., 2011), and
random amplified polymorphic DNA (RAPD) (Drudy et al.,
2006), have been established to differentiate these pathogens.
Among these typing techniques, MLST is currently considered
to be the best tool for epidemiological studies of Cronobacter
spp. due to its high reproducibility and discriminatory ability.
Serotyping is another important diagnosis tool widely used for
identifying food-borne pathogens. Recent studies indicated that
Cronobacter spp. have been differentiated into 17 serotypes by
PCR-based O-antigen serotyping assays targeting the wzx (O-
antigen flippase) and the wzy (O-antigen polymerase) genes
(Jarvis et al., 2011, 2013; Sun et al., 2011, 2012a,b). The
development of these molecular techniques is greatly helpful
to distinguish Cronobacter species and may further assist
in epidemiological investigation of outbreaks of Cronobacter
infections.

Owing to the improper and abusive usage of antimicrobial
agents, the emergence and spread of multidrug-resistant strains
have become a serious threat to public health worldwide.

Current studies indicated that Cronobacter spp. seemed to
be less resistance to commonly used antibiotics compared to
other foodborne pathogens such as Listeria monocytogenes,
Campylobacter jejuni, and Salmonella spp. (Wang et al., 2013;
Han et al., 2016; Komora et al., 2017). However, drug resistant
strains of Cronobacter spp. were found in several studies (Lee
et al., 2012; Xu et al., 2015; Fei et al., 2017), some of which were
characterized as multidrug-resistant strains (Kilonzo-Nthenge
et al., 2012). Therefore, it is necessary to investigate the antibiotic
resistance of Cronobacter spp. recovered from various food
samples in order to classify the patterns of resistance and to
formulate an effective strategy to prevent the potential spread of
these strains.

In recent years, attachment and biofilm formation of
foodborne pathogens has become a matter of increasing concern
for food safety research because the high likelihoods of potential
cross-contamination may lead to serious food safety problems
(Simoes et al., 2010). Recently, some researchers have found
that strains of Cronobacter spp. were able to form biofilms on
many kinds of materials such as stainless steel, polyvinyl chloride,
silicone, and polycarbonate (Jo et al., 2010; Park and Kang,
2014). Established biofilms are very difficult to remove due to the
tolerance to sanitizing agents, and thereby pose a potential health
risk to human health because microorganisms within biofilms
might result in a persistent release of bacteria to foods and
environment. The aim of the present study was to investigate
the genetic diversity, by MLST and serotyping, the antimicrobial
susceptibility, and biofilm formation of 40 Cronobacter isolates
from spices and cereals.

MATERIALS AND METHODS

Strain Collection, Culture Condition, and
DNA Extraction
A total of 40 Cronobacter isolates recovered from spices and
cereal food samples in China between September 2014 and June
2015 were analyzed (Table 1). Twenty-one strains were from
spices and 19 from cereals. These strains have been confirmed
as Cronobacter spp. by genus specific PCR confirmation based on
the outer membrane protein A (OmpA) and internal transcribed
spacer (ITS) gene, and 16S rRNA sequencing in our previous
work (Li Y. H. et al., 2016; Li et al., 2017). The bacterial strains
were routinely grown in Tryptic Soy Broth (TSB; QingDao Hope
Bio-technology Co., Ltd, Qingdao, China) at 37◦C overnight
without shaking. Then genomic DNA was extracted with the
EZNA Genomic DNA Isolation Kit (Omega Bio-Tek, Doraville,
USA) according to the manufacturer’s protocols.

Multilocus Sequence Typing and Sequence
Analysis
MLST was performed by PCR amplification and sequencing of
the fragments of typically 7 housekeeping genes (atpD, fusA,
glnS, gltB, gyrB, infB, and ppsA) (Baldwin et al., 2009). Alleles
and STs were assigned in accordance with the Cronobacter
MLST database website (http://pubmlst.org/cronobacter/). The
fusA allele sequence analysis was also performed with the aim to
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TABLE 1 | Molecular identification and biofilm formation profiles of Cronobacter strains used in this study.

Origin Strain IDa fusA allele fusA sequencing STb CC Serotypec Biofilm formation 595 nm Biofilm formation category

SPICES

White pepper XZCRO001 1705 148 C. dublinensis 498 NF 0.141 ± 0.012 Non-biofilm producer

White pepper XZCRO002 1706 8 C. sakazakii 495 Csak O1 0.142 ± 0.004 Non-biofilm producer

White pepper XZCRO003 1707 18 C. sakazakii 136 Csak O2 0.158 ± 0.012 Weak

White pepper XZCRO004 1708 36 C. sakazakii 224 Csak O7 0.141 ± 0.018 Non-biofilm producer

Red pepper powder XZCRO005 1709 20 C. dublinensis 522 Cdub O1 0.145 ± 0.014 Non-biofilm producer

Prickly ash powder XZCRO006 1710 18 C. sakazakii 500 Csak O7 0.143 ± 0.017 Non-biofilm producer

Prickly ash powder XZCRO007 1711 149 C. sakazakii 501 NF 0.174 ± 0.020 Weak

Prickly ash powder XZCRO008 1712 26 C. turicensis 502 Ctur O3 0.129 ± 0.007 Non-biofilm producer

Dried bay leaves XZCRO009 1713 22 C. turicensis 72 72 Ctur O3 0.132 ± 0.003 Non-biofilm producer

Chinese cinnamon XZCRO010 1714 22 C. turicensis 72 72 Ctur O3 0.134 ± 0.007 Non-biofilm producer

Aniseed powder XZCRO011 1715 7 C. malonaticus 504 Cmal O2 0.171 ± 0.020 Weak

Prickly ash powder XZCRO012 1716 68 C. sakazakii 143 143 Csak O3 0.173 ± 0.010 Weak

White pepper XZCRO013 1717 144 C. dublinensis 570 NF 0.202 ± 0.021 Weak

Fennel XZCRO014 1718 146 C. universalis 512 Cuni O1 0.734 ± 0.034 Strong

Red pepper powder XZCRO015 1719 147 C. turicensis 506 NF 0.142 ± 0.017 Non-biofilm producer

Red pepper powder XZCRO039 1743 67 C. sakazakii 148 16 Csak O1 0.139 ± 0.010 Non-biofilm producer

Cumin XZCRO040 1744 67 C. sakazakii 148 16 Csak O1 0.137 ± 0.015 Non-biofilm producer

Black pepper XZCRO041 1745 13 C. malonaticus 511 Cmal O1 0.135 ± 0.017 Non-biofilm producer

Prickly ash powder XZCRO042 1746 17 C. sakazakii 158 Csak O1 0.143 ± 0.012 Non-biofilm producer

CEREALS

Mung bean flour XZCRO016 1720 40 C. malonaticus 371 NF 0.145 ± 0.016 Non-biofilm producer

Red bean flour XZCRO017 1721 20 C. dublinensis 524 Cdub O1 0.177 ± 0.030 Weak

Maize flour XZCRO018 1722 40 C. malonaticus 371 NF 0.135 ± 0.003 Non-biofilm producer

Soybean flour XZCRO019 1723 17 C. sakazakii 158 Csak O1 0.127 ± 0.004 Non-biofilm producer

Buckwheat flour XZCRO020 1724 12 C. sakazakii 17 17 Csak O2 0.155 ± 0.006 Weak

Proso millet XZCRO021 1725 36 C. sakazakii 224 Csak O7 0.126 ± 0.015 Non-biofilm producer

Black soya bean XZCRO022 1726 67 C. sakazakii 148 16 Csak O1 0.123 ± 0.011 Non-biofilm producer

Wheat flour XZCRO023 1727 67 C. sakazakii 148 16 Csak O1 0.175 ± 0.018 Weak

Buckwheat flour XZCRO024 1728 7 C. malonaticus 129 129 Cmal O2 0.172 ± 0.009 Weak

Mung bean flour XZCRO025 1729 20 C. dublinensis 175 NF 0.140 ± 0.009 Non-biofilm producer

Mung bean flour XZCRO026 1730 1 C. sakazakii 4 4 Csak O2 0.146 ± 0.005 Non-biofilm producer

Glutinous rice XZCRO027 1731 1 C. sakazakii 508 Csak O2 0.147 ± 0.015 Non-biofilm producer

Oatmeal flour XZCRO028 1732 12 C. sakazakii 17 17 Csak O2 0.129 ± 0.009 Non-biofilm producer

Black rice XZCRO029 1733 20 C. dublinensis 176 Cdub O1 0.136 ± 0.010 Non-biofilm producer

Maize flour XZCRO030 1734 8 C. sakazakii 50 Csak O1 0.129 ± 0.012 Non-biofilm producer

Wheat flour XZCRO031 1735 18 C. sakazakii 136 Csak O2 0.154 ± 0.008 Weak

Barley flour XZCRO032 1736 8 C. sakazakii 68 Csak O2 0.159 ± 0.005 Weak

Maize flour XZCRO033 1737 1 C. sakazakii 509 Csak O2 0.152 ± 0.003 Weak

Oatmeal flour XZCRO034 1738 146 C. universalis 510 Cuni O1 0.160 ± 0.005 Weak

Wheat flour XZCRO035 1739 14 C. sakazakii 13 13 Csak O2 0.146 ± 0.017 Non-biofilm producer

Soybean flour XZCRO043 1747 67 C. sakazakii 148 16 Csak O1 0.381 ± 0.012 Moderate

Negative control 0.125 ± 0.008

a ID, Strain identification code in the Cronobacter PubMLST database. bNewly determined alleles and STs are in bold type. cNF, Not found.

identify and differentiate the isolates into species as previously
described (Alsonosi et al., 2015; Brandão et al., 2017).

O-Antigen Serotype Analysis
The serotypes of Cronobacter isolates obtained from spices and
cereals in the present study were determined using the PCR-
based O-antigen serotyping technique as previously described

(Sun et al., 2012a,b; Jarvis et al., 2013). Primers and PCR cycling
conditions used for serotyping of Cronobacter strains are listed
in Table 2.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility testing of Cronobacter strains
was investigated by the Kirby-Bauer disk diffusion method
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TABLE 2 | Lists of primers and PCR cycling conditions used for serotyping of Cronobacter strains.

Serogroup Target

gene

Primer sequence PCR cycling conditions Amplicon

size (bp)

References No. of strains

spices cereals

CsakO1 wzy CCCGCTTGTATGGATGTT 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

364 Sun et al., 2012b 4 5

CTTTGGGAGCGTTAGGTT

CsakO2 wzy ATTGTTTGCGATGGTGAG 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

152 Sun et al., 2012b 1 8

AAAACAATCCAGCAGCAA

CsakO3 wzy CTCTGTTACTCTCCATAGTGTTC 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

704 Sun et al., 2012b 0 1

GATTAGACCACCATAGCCA

CsakO4 wzy ACTATGGTTTGGCTATACTCCT 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

890 Sun et al., 2012b 0 0

ATTCATATCCTGCGTGGC

CsakO5 wzy GATGATTTTGTAAGCGGTCT 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

235 Sun et al., 2012b 0 0

ACCTACTGGCATAGAGGATAA

CsakO6 wzy ATGGTGAAGGGAACGACT 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

424 Sun et al., 2012b 0 0

ATCCCCGTGCTATGAGAC

CsakO7 wzy CCCGCTTGTATGGATGTT 95◦C, 5min; (94◦C, 30 s; 53◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 7min

364 Sun et al., 2012b 2 1

CTTTGGGAGCGTTAGGTT

CmalO1 wzx AGGGGCACGGCTTAGTTCTGG 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x 25; 72◦C, 5min

323 Jarvis et al., 2011 1 0

CCCGCTTGCCCTTCACCTAAC

CmalO2 wzx TGGCCCTTGTTAGCAAGACGTTTC 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x 25; 72◦C, 5min

394 Jarvis et al., 2011 1 1

ATCCACATGCCGTCCTTCATCTGT

CdubO1 wzx TCGTTTTGATGCTCTCGCTGCG 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x 25; 72◦C, 5min

435 Jarvis et al., 2013 1 2

ACAAATCGCGTGCTGGCTTGAA

CdubO2 wzx CTCGGTTCATGGATTTGCGGC 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x 25; 72◦C, 5min

227 Jarvis et al., 2013 0 0

CAGCGTGAAAACAGCCAGGT

CturO1 wzx AGGGGCACGGCTTAGTTCTGG 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x 25; 72◦C, 5min

323 Jarvis et al., 2013 0 0

CCCGCTTGCCCTTCACCTAAC

CturO2 wzy TTTCTTGTTATTGCCTGTGT 95◦C, 5min; (94◦C, 30 s; 50◦C,

30 s; 72◦C, 1min) x 30; 72◦C, 5min

438 Sun et al., 2012a 0 0

AACAAAATCAGCGAGACTAA

CturO3 wzx GCATCCCTTCAGAGTAGCGCA 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x25, 72◦C, 5min

236 Jarvis et al., 2013 3 0

ACCACCTGCCATTGTCCTACTG

CuniO1 wzx CATTCTCGCTTCCGCAGTTGC 95◦C, 2min; (95◦C, 30 s; 55◦C,

30 s; 72◦C, 1min) x25, 72◦C, 5min

145 Jarvis et al., 2013 1 1

CCCAACCATCATTAGGGCCGAG

Uncertain – – – – 4 3

Total 21 19

using Mueller-Hinton agar (Hangzhou Microbial Reagent Co.,
Ltd, Hangzhou, China) according to the recommendations
of the Clinical and Laboratory Standards Institute (CLSI,

2012). Thirteen antibiotics were tested: ampicillin (10µg),
ticarcillin-clavulanic acid (75:10µg), cefixime (5µg), amikacin
(30µg), gentamicin (10µg), tetracycline (30µg), ciprofloxacin
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(5µg), nitrofurantoin (300µg), chloramphenicol (30µg),
meropenem (10µg), aztreonam (30µg), ceftriaxone (30µg),
trimethoprim (5µg). All Cronobacter isolates and the two quality
control strains (Escherichia coli ATCC 29522 and Staphylococcus
aureus ATCC 29213) were grown in nutrient agar plates
(Hangzhou Microbial Reagent Co., Ltd, Hangzhou, China) at
37◦C overnight during antimicrobial susceptibility testing.

Biofilm Formation Assay
Microtiter plate assays (MPA) were performed to investigate
the biofilm-forming ability of Cronobacter strains with minor
modification, as previously described (Lee et al., 2012). Briefly,
overnight cultures (1ml) of Cronobacter strains (n = 40) were
transferred to fresh TSB at 37◦C for about 2 h in a shaking
incubator. Subsequently, 200µl of cell suspension (OD600 ≈

0.3) was transferred into sterile 96-well flat bottom polystyrene
microplates (Corning Inc., Corning, NY, USA). The plates were
incubated statically at 37◦C for 48 h. Then the microtiter plates
were gently washed three times with 250µl of sterile distilled
water and dried at room temperature. The biofilm was stained
with 200µl of 0.1% crystal violet solution for 30min and washed
three times with 250µl sterile water. After drying, the crystal
violet was liberated by 200µl of 95% ethanol following 10min
incubation at room temperature. Finally, the sterile TSB was used
as negative control and the optical density (OD) value of each
well was measured at 595 nm with a microplate reader (Bio-
Tek Instruments, Winooski, VT, USA). All the experiments were
performed three times.

The cutoff OD (ODc) was defined as three standard deviations
(SD) above the mean OD of the negative controls. Based on the
ODc, the Cronobacter isolates were classified into four categories:
(1) non-biofilm producers: OD of test isolate ≤ ODc; (2) weak
biofilm producers: ODc < OD of test isolate ≤ (2 × ODc);
(3) moderate biofilm producers: (2 × ODc) < of test isolate ≤

(4 × ODc); (4) strong biofilm producers: OD of test isolate >

(4× ODc).

Statistical Analysis
Fisher’s exact test was used to compare serotypes, antimicrobial
susceptibility rates, or biofilm-formation abilities between
Cronobacter isolates from spices and cereals. Statistical analysis
was performed using the SPSS version 17.0 software package
(SPSS Inc, Chicago, IL, USA). A P-value of< 0.05 was considered
statistically significant.

RESULTS

Species Identification
A total of 40 Cronobacter strains previously isolated from
spices and cereal food samples were characterized by the fusA
allele sequences analysis, and then all the allele sequences were
submitted to the Cronobacter PubMLST database. A total of 21
fusA alleles (1, 7–8, 12–14, 17–18, 20, 22, 26, 36, 40, 67–68,
100, 144, and 146–149) were identified using the Cronobacter
PubMLST database, four of which (146–149) were previously
unreported (Table 1). Based on the fusA allele sequences analysis,
a high diversity of Cronobacter species was observed, with
five species of Cronobacter identified (Tables 1, 3). The most
frequently observed isolates were C. sakazakii (n = 23), followed
by C. dublinensis (n = 6), C. malonaticus (n = 5), C. turicensis
(n = 4), and C. universalis (n = 2). No strains of C. muytjensii
or C. condimenti were identified. The phylogenetic tree based
on the fusA allele sequences demonstrates a very clear clustering
across the genus Cronobacter with the 40 strains in five out of the
seven species (Figure 1), which is in agreement with the results
obtained from fusA allele sequences analysis.

Multilocus Sequence Typing
A total of 30 different STs among the 40 isolates were found, 14
(ST495, ST498, ST500-ST502, ST505, ST506-ST512, and ST570)
of which were novel to the Cronobacter PubMLST database
(Tables 1, 3). The most frequent STs in our study were ST148,
identified five times, followed by ST17, ST72, ST136, ST158,
ST224, ST371, and ST524 that included two isolates each, while
the remaining 22 STs were identified only once. Of these frequent
STs, the ST136, ST148, ST158, ST224, and ST524 were found
in both spices and cereal samples; whereas ST17 and ST371
could only be found in cereal samples and ST72 found in spices
samples. MLST assigned 12 isolates into 7 different CCs: CC4
(n = 1), CC13 (n = 1), CC16 (n = 1), CC17 (n = 1), CC72
(n= 1), CC129 (n= 1), and CC143 (n= 1), while the remaining
28 isolates were not assigned (Table 1).

Serotyping by PCR
Of the 40 Cronobacter isolates, 33 (82.5%) were clearly identified
by PCR-based O-antigen serotyping methods, while seven
(17.5%) isolates were undefined since O-antigen gene could not
be amplified. O-antigen serotyping classified these strains into 9
serotypes: C. sakazakii serotype O1 (n= 9), C. sakazakii serotype

TABLE 3 | Summary of fusA alleles, MLST sequence types, and serotypes among different Cronobacter species.

Bacterial species No. of strains fusA allelesa MLST sequence typesa Serotypes

C. sakazakii 23 1, 8, 12, 14, 17, 18, 36, 67, 68, 149 4, 13, 17, 50, 68, 134, 136, 143, 148,

158, 224, 495, 500, 501, 508, 509

CsakO1, CsakO2, CsakO3, CsakO7

C. malonaticus 5 7, 13, 22, 40 129, 371, 504, 511, CmalO1, CmalO2

C. dublinensis 6 20, 100, 144, 148 175, 176, 498, 524, 570 CdubO1

C. turicensis 4 22, 26, 147 72, 502, 506 CturO3

C. universalis 2 146 510, 512 CuniO1

aNew alleles and new STs are indicated in bold character.

Frontiers in Microbiology | www.frontiersin.org 5 December 2017 | Volume 8 | Article 2567

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Li et al. Diversity, Characterization of Cronobacter spp.

FIGURE 1 | Maximum likelihood tree based on the fusA alleles (438 bp) for the differentiation of Cronobacter species in this study. This tree is drawn to scale using the

ClustalX (V.2.0) and the MEGA (v.7.02) with 1,000 bootstrap replicates.
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O2 (n = 9), C. sakazakii serotype O3 (n = 1), C. sakazakii
serotype O7 (n = 3), C. dublinensis O1 (n = 3), C. malonaticus
O1 (n = 1), C. malonaticus O2 (n = 2), C. turicensis O3 (n = 3),
and C. universalis O1 (n= 2) (Tables 1, 2).

The serotype distribution of isolates from spices and cereals is
shown in Table 2. A significant difference in the distribution of
Cronobacter serotypes was observed between spices and cereals
(P < 0.05). Analysis of the relationship between serotypes and
MLST profiles revealed a connection between ST and serotype.
For example, all strains genotyped as C. sakazakii ST158 were
identified as C. sakazakii serotype O1, and C. sakazakii ST148
identified as C. sakazakii serotype O2. In contrast, isolates of the
same serotype but different STs were found in this study. For
example, isolates belonging to ST50, ST148, ST158, and ST495
were characterized as C. sakazakii serotype O1. Similarly, isolates
belonging to ST4, ST13, ST17, ST68, ST136, and ST509 were
characterized as C. sakazakii serotype O2.

Antimicrobial Susceptibility Testing
All of the 40 Cronobacter isolates were susceptible to 10 of
the 13 antibiotic agents tested including ampicillin, cefixime,
amikacin, gentamicin, tetracycline, ciprofloxacin, nitrofurantoin,
chloramphenicol, trimethoprim, and ticarcillin-clavulanic
acid. However, 70.0% (28/40) of the strains were resistant to
ceftriaxone, amongwhich 27.5% (11/40) of the strains were found
in spices and 42.5% (17/40) of the strains were found in cereals.
Besides ceftriaxone, 25.0% (10/40) of the strains were resistant
to meropenem, eight (XZCRO006:ST500, XZCRO007:ST501,
XZCRO011:ST504, XZCRO012:ST143, XZCRO013:ST570,
XZCRO014:ST512, XZCRO015:ST506, and XZCRO042:ST158)
of which were detected in spices, while the remaining 2 isolates
(XZCRO019:ST158, and XZCRO020:ST17) in cereals. In
addition, 2 isolates (XZCRO009:ST72, and XZCRO040:ST148)
from spices and only 1 isolate (XZCRO027:ST508) from cereals
were resistant to aztreonam (Table 4). No multidrug resistance
(isolates resistant to three or more antimicrobial agents)

TABLE 4 | Antimicrobial susceptibility of the 40 Cronobacter strains recovered

from spices and cereals by agar disc diffusion method.

Antibiotic No. of resistant strains (%)

Spices (n = 21) Cereals (n = 19) Total (n = 40)

Ampicillin 0 0 0

Cefixime 0 0 0

Amikacin 0 0 0

Gentamicin 0 0 0

Tetracycline 0 0 0

Ciprofloxacin 0 0 0

Nitrofurantoin 0 0 0

Chloramphenicol 0 0 0

Trimethoprim 0 0 0

Ticarcillin-clavulanic acid 0 0 0

Aztreonam 2 (5.0) 1 (2.5) 3 (7.5)

Meropenem 8 (20.0) 2 (5.0) 10 (25.0)

Ceftriaxone 11 (27.5) 17 (42.5) 28 (70.0)

strains were observed in both spices and cereals. Majority of
Cronobacter isolates with the same ST showed a similar drug-
resistance profile. However, isolates with the same ST sometimes
showed different drug-resistance profile. For example, the 5
strains (XZCRO022, XZCRO023, XZCRO039, XZCRO040,
and XZCRO043) of Cronobacter belonged to ST148, but only
one strain was resistant to aztreonam (XZCRO040:ST148).
When susceptibility results were compared according to their
sources, there was no significant difference in the prevalence of
antimicrobial resistance between isolates from spices and cereals
for any of the agents tested (P > 0.05).

Biofilm-Formation Ability of Cronobacter
spp.
The biofilm-formation ability among the 40 isolates was detected
by the MPA, and the results were shown in Table 1. Overall,
a wide variation was found among the Cronobacter strains in
the quantity of biofilm produced. The results indicated that
15 (37.5%) of the 40 tested isolates, belonging to 12 of the
30 previously identified STs, were capable to produce biofilm
on polystyrene microtiter plates (Table 1). Using the proposed
cutoff criteria, a cutoff value of 0.149 at OD595 nm was used to
categorize the test strains as non-biofilm, weak, moderate, and
strong biofilm producers. According to the result of microtiter
plate test, one isolate belonging to ST512 scored as the most
efficient biofilm producer, one isolate belonging to ST148 as
moderate biofilm producer, and the other 13 isolates as weak
biofilm producers (Table 1). However, no correlation between
biofilm formation and STs was observed. Cronobacter strains
identified as the same ST sometimes showed different biofilm-
formation ability. For example, 5 strains (XZCRO22, XZCRO23,
XZCRO39, XZCRO040, and XZCRO043) of Cronobacter were
identified as ST148 in our study, only 1 of which (XZCRO043)
was categorized as moderate biofilm producer, and 2 (XZCRO39
and XZCRO040) as weak biofilm producer, whereas the other
2 isolates (XZCRO22 and XZCRO23) were categorized as non-
biofilm producers. In addition, there was no significant difference
(p> 0.05) in the amount of biofilm detected for Cronobacter spp.
between spices and cereals.

DISCUSSION

Cronobacter spp. have been isolated from many kinds of
foodstuffs including plant materials such as vegetables, flours,
herbs, and spices (Huang et al., 2015; Brandão et al., 2017),
however the prevalence of Cronobacter spp. in such foodstuffs
varied greatly among different studies. In a study of the
prevalence of Cronobacter spp., these bacteria were detected
in 26.7% (12/45) of herbs and spices in India (Singh et al.,
2015). In another study, the prevalence of Cronobacter spp. was
particularly low in spices samples (3.6%, 1/28) and dry cereals
(4.9%, 6/123) in Netherlands (Kandhai et al., 2010). Cronobacter
spp. was detected in herbs and spices, cereal mixes for children
in Brazil (Brandão et al., 2017), where its prevalence was 36.7%
(11/30) and 23.3% (7/30), respectively. In our previous studies,
the overall prevalence of Cronobacter spp. in spices and cereals
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was determined to be 29.7% (19/64) (Li et al., 2017) and 21.0%
(21/100) (Li Y. H. et al., 2016), respectively. However, in most
of these studies, the MLST profiles of strains isolated from
spices and cereals were not demonstrated. This study describes
the genetic diversity, antimicrobial susceptibility, and biofilm
formation of Cronobacter spp. recovered from spices and cereals
in China during 2014–2015.

Based on the fusA sequence analysis, we found that the
majority (57.5%) of Cronobacter isolates recovered from spices
and cereals were C. sakazakii. The remaining strains were
C. dublinensis (15.0%), C. malonaticus (12.5%), C. turicensis
(20.0%), and C. universalis (5.0%). These findings are in
agreement with previous studies which showed that C. sakazakii
was the predominant Cronobacter species in different sources
(Fei et al., 2015; Sulaiman et al., 2016; Brandão et al., 2017).
Recent studies indicated that C. sakazakii, C. malonaticus,
and C. turicensis were the three pathovars of Cronobacter
spp. that associated with several neonatal infections and adult
infections (Hunter and Bean, 2013; Ogrodzki and Forsythe,
2015). Unfortunately, these three pathovars of Cronobacter
spp. were identified from spices and cereals in this study.
These results underline the importance of sanitary-hygienic and
epidemiological surveillance in spices and cereals to reduce the
risk of Cronobacter infections.

The application of MLST analysis of Cronobacter isolates
would be helpful to better understanding the genetic diversity,
virulence, and epidemiology of genus Cronobacter. In this study,
a total of 40 Cronobacter strains were genotyped with the 7-
loci MLST scheme. MLST analysis revealed 16, 4, 5, 3, and 2
STs in C. sakazakii, C. malonaticus, C. dublinensis, C. turicensis,
and C. universalis, respectively (Table 3). This finding was in
agreement with previous studies reporting that the majority of
STs were identified in C. sakazakii (Xu et al., 2015; Brandão et al.,
2017). At the time of writing (August 2017), the Cronobacter
PubMLST database contained 2097 isolates and consisted of
609 defined STs, with 225 clinical isolates belonging to 53 STs.
The most frequent STs of clinical relevance in the Cronobacter
PubMLST database were C. sakazakii ST4 (88/225), followed
by C. malonaticus ST7 (30/225) and C. sakazakii ST8 (14/225).
Among the 30 STs identified in our study, only 5 STs (ST4, ST13,
ST50, ST129, and ST158) were of clinical origin, with 4 (ST4,
ST13, ST50, and ST158) and 1 (ST129) ST(s) for C. sakazakii, and
C. malonaticus, respectively. Among these 5 STs we identified,
ST158, corresponding to C. sakazakii, was found in both spice
(prickly ash powder) and cereal (soybean flour) samples, while
ST4, ST13, ST50, and ST129 could only be found in cereal
samples from mung bean flour, wheat flour, maize flour, and
buckwheat flour, respectively. These findings underline that
spices and cereals can also be potential sources of Cronobacter
infections, which might pose great risks to human health.

Recent studies indicated a strong association between
C. sakazakii CC4 (such as ST4, ST 15, ST97, and etc.) and
neonatal infections as well as C. malonaticus CC7 (such as
ST 7, ST 84, ST 159, and etc.) and adult infections (Joseph
and Forsythe, 2011; Hariri et al., 2013; Forsythe et al., 2014).
Moreover, a goeBURST analysis of 1007 Cronobacter isolates
performed in 2014 indicated that 19.4% (n = 195) and 5.7%

(n = 58) of strains in the Cronobacter PubMLST database
were C. sakazakii CC4 and C. malonaticus CC7, with 45.1%
(88/195) and 56.9% (33/58) strains obtained from clinical
sources, respectively (Forsythe et al., 2014). These findings
remark the importance of surveillance of Cronobacter belonging
to C. sakazakii CC4 and C. malonaticus CC7, which are the
dominant pathovars of Cronobacter associated with neonatal,
pediatric and adult infections. However, these two CCs are not
only found in powdered infant formula and related products but
also in many other kinds of foodstuffs. For instance, in a study
of the prevalence of Cronobacter contamination in 90 samples
of retail foods in Brazil, two strains isolated from maize flour
were characterized as C. sakazakii CC4 (Brandão et al., 2017).
In another study, 4 C. sakazakii CC4 isolates were recovered
from rice flour, noodle and potable water, and 10 C. malonaticus
CC7 isolates from rice flour, dried shrimp, chocolate, cookie,
and potable water (Cui et al., 2014). In our study, only one
C. sakazakiiCC4 isolate was obtained from cereals, and no strains
of C. malonaticus CC7 were found in both cereals and spices.

For serotyping, a total of nine serotypes were found among
the 40 isolates, including nine serotypes from spices and six
from cereals. Among the nine serotypes found, C. sakazakii
serotype O1 (n = 9) and O2 (n = 9) were the most two
frequently observed serotypes, which was in accordance with
previous studies (Alsonosi et al., 2015; Fei et al., 2015). Most
Cronobacter isolates (n = 33) were clearly serotyped in this
study, except for 3, 2, 1, and 1 isolate(s) in C. dublinensis,
C. malonaticus, C. sakazakii, and C. turicensis, respectively.
Previous studies also suggested that serotyping of Cronobacter
strains were sometimes uncertain. For instance, 51 Cronobacter
strains were isolated from hospitalized patients, one of which
(identified as C. muytjensii ST28) could not be determined
when the PCR serotyping scheme was carried out (Alsonosi
et al., 2015). In another study, a total of 111 Cronobacter
isolates from Chinese ready-to-eat foods were serotyped based
on the O-antigen serotyping, two of which (one identified as
C. malonaticus and the other as C. dublinensis) were uncertain
(Xu et al., 2015). The appearance of unidentified serotypes
may be due to the high genetic diversity of Cronobacter spp.,
which may result in a failure determination when the serotyping
methods were performed in such studies. Recently, Ogrodzki
and Forsythe established a new capsular typing scheme based
on sequencing of gnd and galE genes, which would be greatly
helpful in distinguishing between Cronobacter species (Ogrodzki
and Forsythe, 2015).

The increasing emergence of antibiotic resistant foodborne
pathogens has been of great concern to public health in recent
years. Results of the present study showed that frequency of
antibiotic resistance in Cronobacter isolates recovered from
spices and cereals was lower than strains of other foodborne
pathogens such as L. monocytogenes, C. jejuni, and Salmonella
spp. (Wang et al., 2013; Han et al., 2016; Komora et al., 2017).
However, more attention should be paid to the inspection and
control of strains of Cronobacter spp. because the resistance of
these bacteria to many kinds of antimicrobial agents has been
reported (Kilonzo-Nthenge et al., 2012; Li et al., 2014; Fei et al.,
2017), even though the antimicrobial susceptibility profiles may
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vary in different studies performed in various samples collected
from different locations.

Antimicrobial susceptibility testing revealed that the 40
isolates were susceptible to most antibiotics tested, except for
ceftriaxone, meropenem, and aztreonam. Cephalosporins, the
commonly used antimicrobial agents worldwide, were sometimes
categorized into “generations” by their antimicrobial properties.
The results of the present study suggested that a high resistance
(70%) of Cronobacter spp. particularly C. sakazakii to ceftriaxone
(third generation), whereas all isolates were sensitive to cefixime
(third generation). Compared to our study, a little lower
incidence (65%) of resistance to ceftriaxone was reported by
Zhang et al. (2013) in imported dairy products; in contrast,
antimicrobial resistance was not observed in another study
performed by Li Z. et al. (2016) in retail milk-based infant and
baby foods. Besides ceftriaxone, resistance of Cronobacter spp.
to other cephalosporins, including cefazolin (first generation),
cephalothin (first generation), and cefoxitin (second generation),
has been reported in Iraq (Mossawi and Joubori, 2015) and
UK (Gosney, 2008). The different performance of antimicrobial
resistance on Cronobacter spp. among various cephalosporins
might be due to extensive use or misuse of these antimicrobial
agents which increased drug resistance of these bacteria. In our
study, a total of 10 (25%) Cronobacter isolates were resistant
to meropenem; in contrast, all of the tested isolates from dairy
products including powdered infant formula in China, Iraq, and
Japan were susceptible to meropenem (Oonaka et al., 2010; Pan
et al., 2014; Li Z. et al., 2016). Apart from isolates originating
from food, several clinical isolates were found susceptible to
meropenem in Taiwan (Tsai et al., 2013).

In contrast to previous studies whereas resistance of
Cronobacter spp. to ampicillin has been reported (Oonaka et al.,
2010; Li et al., 2014; Fei et al., 2017), ampicillin-resistant strains
were not found in this study. Besides ampicillin, Cronobacter
isolates showed 100% susceptibility to tetracycline, ciprofloxacin
and chloramphenicol, whereas the other researchers reported a
high resistance of Cronobacter spp. to these antibiotics (Kilonzo-
Nthenge et al., 2012). In one study conducted in the USA, high
resistance of C. sakazakii isolated from domestic kitchens to
tetracycline (66.6% of isolates) and ciprofloxacin (57.1%) was
observed. In another study in South Korea, Lee et al. (2012)
reported that 3.4 and 1.8% ofCronobacter isolates recovered from
various types of foods were resistant to chloramphenicol and
tetracycline, respectively.

In the present study, 37.5% of the Cronobacter isolates from
spices and cereals were able to form biofilm on polystyrene

surfaces; however majority of these isolates (32.5%) were weak
biofilm producers and less weremoderate (2.5%) or strong (2.5%)
biofilm producers. Similar results have been reported earlier in
Mexico wherein 26% of Cronobacter spp. was capable of forming
biofilms (Cruz et al., 2011). In contrast, a high proportion of
biofilm-producing isolates of Cronobacter spp. recovered from
various food in South Korea was observed (Lee et al., 2012).
Differences in biofilm formation between various Cronobacter
isolates could be due to strain variations that recovered from
different sources and geographical locations. Moreover, the
capacity of biofilm formation of Cronobacter strains is generally
influenced by environmental conditions such as culture media
and carbon source, and storage humidity levels (Jung et al., 2013).

CONCLUSION

In conclusion, the present study demonstrated a high genetic
diversity of Cronobacter isolates recovered from spices and
cereals, providing useful information on molecular epidemiology
of Cronobacter infections. MLST analysis revealed that
C. sakazaki was the most common species recovered from
spices and cereals, followed by C. dublinensis C. malonaticus,
C. turicensis, and C. universalis. The presence of isolates of
clinical relevance including C. sakazakii ST4 (CC4) revealed that
spices and cereals are likely to be the potential sources for human
infection with Cronobacter spp. Although most Cronobacter
strains were susceptible to the antimicrobial agents used in this
study, further studies on the antimicrobial resistance of these
foodborne pathogens are important to ensure effective treatment
of human infections caused by Cronobacter spp.
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