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Microbial mats are complex biofilms in which the major element cycles are represented
at a millimeter scale. In this study, community variability within microbial mats from
the Camargue wetlands (Rhone Delta, southern France) were analyzed over 3 years
during two different seasons (spring and autumn) and at different layers of the mat
(0–2, 2–4, and 4–6 mm). To assess bacterial diversity in the mats, amplicons of the
V1–V2 region of the 16S rRNA gene were sequenced. The community’s functionality
was characterized using two approaches: (i) inferred functionality through 16S rRNA
amplicons genes according to PICRUSt, and (ii) a shotgun metagenomic analysis.
Based on the reads distinguished, microbial communities were dominated by Bacteria
(∼94%), followed by Archaea (∼4%) and Eukarya (∼1%). The major phyla of Bacteria
were Proteobacteria, Bacteroidetes, Spirochaetes, Actinobacteria, Firmicutes, and
Cyanobacteria, which together represented 70–80% of the total population detected.
The phylum Euryarchaeota represented ∼80% of the Archaea identified. These results
showed that the total bacterial diversity from the Camargue microbial mats was not
significantly affected by seasonal changes at the studied location; however, there were
differences among layers, especially between the 0–2 mm layer and the other two
layers. PICRUSt and shotgun metagenomic analyses revealed similar general biological
processes in all samples analyzed, by season and depth, indicating that different layers
were functionally stable, although some taxa changed during the spring and autumn
seasons over the 3 years. Several gene families and pathways were tracked with the
oxic-anoxic gradient of the layers. Genes directly involved in photosynthesis (KO, KEGG
Orthology) were significantly more abundant in the top layer (0–2 mm) than in the lower
layers (2–4 and 4–6 mm). In the anoxic layers, the presence of ferredoxins likely reflected
the variation of redox reactions required for anaerobic respiration. Sulfatase genes
had the highest relative abundance below 2 mm. Finally, chemotaxis signature genes
peaked sharply at the oxic/photic and transitional oxic-anoxic boundary. This functional
differentiation reflected the taxonomic diversity of the different layers of the mat.

Keywords: Camargue microbial mats, 16S rRNA amplicon sequencing, shotgun metagenome, diversity,
functionality
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INTRODUCTION

Extant microbial mats are valid equivalents of some of the
Earth earliest Archaean ecosystems, which form lithified (e.g.,
Shark Bay, Western Australia) as well as non-lithified (e.g., Ebro
Delta, north-eastern Spain) structures (Dupraz and Visscher,
2005; Wierzchos et al., 2006; Ruvindy et al., 2016). Among their
features is their visible lamination, result of physicochemical
gradients (e.g., light, oxygen and sulfide) along the vertical
axis that allows the creation of microenvironments at a
millimeter scale within the mat and justify its taxonomically
and functionally heterogeneity (Guerrero and Berlanga, 2013;
Harris et al., 2013; Wong et al., 2015; Saghaï et al., 2017).
Microbial mats contain diverse groups of microorganisms,
such as producers (e.g., photosynthetic bacteria), heterotrophs
(e.g., aerobic/anaerobic respirators, especially sulfate-reducing
species, and fermenters), and chemolithotrophs (notably, sulfur-
oxidizing species) (Bolhuis et al., 2014).

Microorganisms do not exist in isolation (as axenic culture)
but form complex ecological interaction webs, such as food-
webs, by combining metabolic pathways flows (Faust and Raes,
2012; Sachs and Hollowell, 2012; Guerrero and Berlanga, 2016).
Microbial mats are an extraordinary example of microbial
interaction, where all possible connections (commensalism,
mutualism, competition, predation, or parasitism) among
microorganisms may be possible. Elucidating competitive and
cooperative relationships is a challenge in describing a microbial
interaction network, and interpretation of such networks is
not straightforward. Population interactions, such as metabolic,
physical, or signaling regulations, may determine temporal
changes in the composition, function, or spatial organization
of the microbial community (Widder et al., 2016). Modeled
networking is a versatile tool for predicting relationships that can
be due to genes (Christian et al., 2007; Großkopf and Soyer, 2014)
or OTUs’ presence/absence and abundance (Weiss et al., 2016).
Those models can generate hypotheses on what interactions
could be biologically relevant. In addition, interactions may be
studied through laboratory experimental work. For instance,
Long et al. (2012) tested antagonistic interaction between
heterotrophic bacteria isolates from microbial mats as regulators
of the community structure.

According to Liebig’s law of the minimum, growth is
regulated by the amount of the scarcest nutritional element
available; thus, among biotic conditions, the availability of food
regulates microorganismal biomass (Guerrero and Berlanga,
2006). According to Shelford’s law of tolerance, each organism
requires certain abiotic conditions to survive and develop
(Guerrero and Berlanga, 2006). The abiotic factors influencing
the distribution and function of microbial populations are
principally the diel fluctuations in the concentrations of oxygen,
sulfide, and other chemical nutrients and the cyclic seasonal
fluctuations of inundating and desiccation (Bolhuis et al., 2014).
During the day, in microbial mats can be distinguished three
main chemical zones: the oxic/photic (∼0–2 mm depth) zone, the
low-sulfide or transitional oxic-anoxic zone (∼2–4 mm depth),
and the high-sulfide/anoxic zone (∼5 mm and deeper). At night,
however, the mats become anoxic and high in hydrogen sulfide

concentration, as a result of continuing sulfate reduction in the
absence of oxygenic photosynthesis (Ley et al., 2006; Villanueva
et al., 2007; Nielsen et al., 2015; Guerrero and Berlanga, 2016).

Microbial mats are present in several habitats such as coastal
zones (e.g., Guerrero Negro, Baja California, Mexico), athalassic
wetlands (e.g., Salar de Atacama, north of Chile), diverse
geothermal environments (hot springs), and in polar regions.
Camargue and Ebro Delta microbial mats are coastal estuarine
not lithified mats from the Western Mediterranean. Camargue
microbial mats were usually permanently flooded and contained
more salinity concentration than Ebro Delta mats, although
season temperature and latitude were similar in both microbial
mats (Berlanga et al., 2008). The microbial mats in the area of
Salins-de-Giraud, in the Camargue (04◦ 11′ E to 04◦ 57′ E; 43◦
40′ N to 44◦ 40′ N), are located inside commercial salterns, which
are being mined for salt. These salterns are a succession of water
concentration ponds at the final part of the main mouth of the
Rhone River. In the first series of ponds, seawater is concentrated
to a total salinity of 50–130h. This pond has a depth of the
water column that never exceed 20 cm. In the second series,
water is concentrated to salinities in the range of 130–300h,
while in the final series of ponds the salinity is increased to 340–
350h (Fourçans et al., 2004; Guerrero and Berlanga, 2013). The
vertical structure and temporal variation of microbial mats from
the Camargue were previously revealed by combining molecular
approaches, lipid analyses, and microscopy (Fourçans et al., 2004,
2008; Villanueva et al., 2007; Berlanga et al., 2008).

The aim of this study was to decipher the phylogenetic
composition of the Camargue microbial mat community and
to interpret its functional potential complexity using next-
generation sequencing (NGS) methods at temporal level through
three consecutive years (two season) at the same sampling
place. The NGS studies used in this work included amplicon
sequencing (for variant identification and phylogenetic surveys)
and random-genome shotgun sequencing (for metagenomics
analysis). Core samples of microbial mats from the Camargue
were analyzed in detail over 3 years (2011–2013), during two
different seasons, spring and autumn, and at different layers
(0–2 mm, 2–4 mm, and 4–6 mm) to study the community
variability of the mat.

Winter and summer seasons in the area of Salins-de-Giraud,
in the Camargue had “extreme” temperature conditions, colder
and warmer respectively, when compared to spring and autumn
seasons. We supposed that spring and autumn had “transitional”
conditions respect to temperature between those extremes.
Indeed, temperature between spring and autumn in analyzed
years was similar. Salinity in Camargue microbial mats was
similar in all seasons through years analyzed (55–65h). During
winter, ambient temperatures are lower and daily temperature
variations (day–night) are less pronounced than in summer, so
less pronounced daily temperature variation in winter may have
favored the adaptation of the microbial population to lower
temperatures. We speculated that if there were changes in the
microbial composition by temperature (cold or warm), it would
be interesting to study if microbial communities could reach
similar populations in spring and autumn seasons, although
the initial population may be different from populations “cold
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adapted” in winter and populations “warm adapted” in summer.
Results could reflect the “capacity of resilience” of the Camargue
microbial mat system after a perturbation such as a cold
period (observed on spring samples) and after a warm period
(autumn samples). The adaptation of populations to different
temperatures may help to provide homeostasis within a mat
community (Ward et al., 2006; Wieland and Kühl, 2006; Berlanga
et al., 2008). In addition, the results will shed light on how shifts
in community taxonomy may affect the relationship between
biodiversity and ecosystem function. As such, they significantly
enhance our understanding of the community structure of the
Camargue microbial mats, their contributions to element cycling
and other fundamental processes that are ongoing within the mat
that are critical to the function of this ecosystem.

MATERIALS AND METHODS

Sample Collection
Samples analyzed in this study were collected at noon (12.00 h)
in May (spring, SP) and November (autumn, AU) during three
consecutive years (2011–2013). Environmental temperatures in
May and November ranged from 15–18◦C and 13.5–15◦C,
respectively. The mats in all cases were flooded. The salinity of
the water covering the mats was 58–62h in May and 55–65h in
November. Mat samples were collected in cores (1 cm × 3 cm)
and frozen in liquid nitrogen immediately. Then, cores were
stored in the lab at −80◦C until DNA extraction. We collected
three cores as in previous works (Armitage et al., 2012; Harris
et al., 2013), separated by 10 cm each, for each year and season.
Our samples were taken each year at the same location. Dillon
et al. (2009) sampled cores across 1 km. They observed that
population structure diverged with increasing distance between
sample sites, but positional replicates were highly similar among
samples < 1 m distance. We pooled the extracted DNA for the
three samples corresponding to year/season and layer to obtain
a representative sample for each year/season/layer. We expected
that if there were differences in microbial composition it could
be due to seasonal environmental variables and not to location of
sampling.

DNA Extraction and Amplification
The frozen cores were sliced with a sterile blade in aseptic
conditions horizontally in 2-mm increments (from the top to a
depth of 6 mm): 0–2 mm (layer 1, oxic/photic layer), 2–4 mm
(layer 2, oxic-anoxic transition layer), and 4–6 mm (layer 3,
anoxic layer). A fresh blade was used at each interface. Then,
pieces of microbial mat of approximately 3 mm3 were cut from
each slice and suspended in 100 µl of TE buffer in 2.0-ml
vials containing a capful of 0.1-mm glass beads. The mixture
was homogenized for 1 min in a Mini-BeadBeater-8 (Biospec
Products, Bartlesville, OK, United States), and centrifuged at
high speed for 2 min. While avoiding transfer of the beads,
∼500 µl from each sample was pipetted into sterile 1.5-ml
Eppendorf tubes. DNA was extracted using a phenol-chloroform
mixture and precipitated in the cold using 95% ethanol. Three
DNA extractions corresponding to every year, season and layer

were performed. The DNAs obtained were mixed to correct for
potential local heterogeneity effects to obtain a representative
sample for each year, season and layer.

For years 1, 2, and 3, we performed amplicon sequencing of
the bacterial 16S rDNA gene. The primers used for multiplex
Roche 454 GS FLX pyrosequencing, contained a 25 nucleotide
sequence adapter, 10-base-pair molecular barcode (multiplex
identifier), and the universal bacterial sequence for the region
V1–V2, 8F-338R (5′-AGAGTTTGATCCTGGCTCAG-3′ and
5′-TGCTGCCTCCCGTAGGAGT-3′) (Armitage et al., 2012;
Harris et al., 2013; Yang et al., 2013). We used three
different barcodes (each one for 0–1 mm, 2–4 mm, and
4–6 mm; ACGAGTGCGT, ACGCTCGACA, AGACGCACTC,
respectively). Samples analyzed were: SP1-1, SP1-2, SP1-3;
AU1-1, AU1-2, AU1-3; SP2-1, SP2-2, SP2-3; AU2-1, AU2-2,
AU2-3; SP3-1, SP3-2, SP3-3; AU3-1, AU3-2, AU3-3 (SP and AU
indicated the season analyzed; the first number, the year, and
the second number, the layer). A PCR from each DNA was
performed. The cycling conditions were 94◦C for 3 min, followed
by 30 cycles of 94◦C for 30 s, 56◦C for 40 s, 68◦C for 40 s,
and a final extension step at 68◦C for 6 min. The resulting
product was checked for size and purity on an agarose-SYBR
Safe DNA gel that was subsequently stained (Invitrogen, San
Diego, CA, United States). The amplicons were purified using
a Pure Link kit (Invitrogen, San Diego, CA, United States) and
quantified using Qubit and Bioanalyzer (Berlanga et al., 2016).
A pool of amplicons was mixed in equimolar amounts (e.g.,
spring 1st year, amplicons obtained for 0–2, 2–4, and 4–6 mm),
and then prepared for 454-pyrosequencing according to the
manufacturer’s instructions. Pyrosequencing coverage (depth
sequencing) resulted in 99,216 total raw reads that after quality
control processing resulted in 44,787 reads (see bioinformatic
analyses section) for the 18 samples.

Shotgun metagenomic analysis was performed on samples
belonging to the third year (SP3-1, SP3-2, SP3-3; AU3-1, AU3-2;
AU3-3). We repeated the DNA extraction several times to reach
the approximate concentration of 500 ng to 1 µg of DNA for
each sample. Random shotgun metagenomics was performed in
the Unity of Genomics of Scientific and Technological Centers,
University of Barcelona (CCiTUB). Number of sequences ranged
from 61370 to 140208. Major scaffold distribution lengths were
390–470 bp.

We combined 16S rRNA amplicons, PICRUSt and shotgun
metagenomics using the best of each method to obtain the
maximal information to try to describe precisely the taxonomical
structure and functionality of the samples. The advantages of
using 16S rRNA amplicons sequencing had normally better
taxonomic resolution than shotgun metagenomics (Tessler et al.,
2017), and the availability of bioinformatic tools for prediction
of functions (PICRUSt) is particularly attractive to microbial
ecologists as it allows them to study the genes (functions) of
complex microbial communities with reasonable accuracy at a
high taxonomic resolution (Mukherjee et al., 2017). Random
shotgun sequencing of environmental DNA provides a direct
and potentially less biased view of the functional attributes
of microbial communities (Klatt et al., 2013). 16S rRNA gene
regions recovered from the shotgun metagenomic data can span
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the entire length of the genes; the PCR-based amplicon approach
only targets the V1–V2 region. Therefore, the two approaches
may not necessarily give identical results (Fierer et al., 2012).

Bioinformatics Analyses
For 16S rRNA amplicons, the raw data of each sample was
preprocessed for demultiplex and quality control using a pipeline
implemented in GPRO version 1.1 (Futami et al., 2011). Raw
reads that contained < 150 nucleotides in size, ambiguities > 1,
homopolimer > 8, as well as redundant sequences were
removed from each metagenome dataset using screen.seqs and
unique.seqs by Mothur1.31.2 (Schloss et al., 2009). Sequences
were taxonomically classified using Silva database1 (Quast et al.,
2013). CD-HIT-EST from the CD-HIT 4.5.4 package (Fu
et al., 2012) was used to define clusters of clones within each
metagenome with a distance threshold of 0.03 (resulting in a
cutoff at the species level). Alpha and beta diversity analyses
of all samples were performed at 97% distance level of OTU.
For diversity we rarified (normalized) samples to compare all
the samples. Weighted UniFrac metrics was used to measure
beta-diversity and to generate principal coordinates analysis
plots, using the normalized OTU table. For the heatmap we
used the OTU table at 0.10% genetic distance level (resulting
in a cutoff at the family level) (Yarza et al., 2010), and
make_otu_heatmap.py, and the script was modified by Stamp
program. Hierarchical cluster analysis used for similarity measure
was Pearson’s correlation, and for the clustering algorithms,
Ward’s linkage.

Core microbiota was determined using compute_core_
microbiome.py in qiime2 (Caporaso et al., 2010). Core OTUs
were defined as the OTUs that are present in at least 90% of
the samples. From the set of OTUs that could be considered
the core, we performed an ecological network of interactions.
Ecological network was achieved by Molecular Ecological
Network Approach (MENA)3 (Deng et al., 2012). Ecological
network worked with RMT (random matrix). To visualize the
network it was used Cytoscape 3.5.1.

Metagenomes were predicted from the 16S rRNA
data using PICRUSt (Langille et al., 2013) for samples
corresponding to years 1, 2, and 3. This was prepared
by the predict_metagenomes.py script against functional
database of KEGG Orthology. Functional contributions of
various taxa to different KOs were computed with the script
metagenome_contributions.py (Mukherjee et al., 2017). For
the third-year samples, gene annotation of the shotgun method
was analyzed by the United States Department of Energy Joint
Genome Institute4 (Nordberg et al., 2014).

The DOE-JGI Metagenome Annotation Pipeline (MAP)
supports the annotation of metagenomic sequences and it
is organized in three stages: sequence data pre-processing,
structural annotation, functional annotation and phylogenetic
lineage prediction. Some of the processing methodology used by

1http://www.arb-silva.de
2http://qiime.org/scripts/compute_core_microbiome.html
3http://ieg2.ou.edu/MENA
4http://www.jgi.doe.gov/

MAP was as follows: Unassembled 454 reads containing more
than five occurrences of ‘N’s are removed. Sequences shorter than
150 bp after trimming are also removed. When two or more
sequences are at least 95% identical, with their first 3 bp being
identical as well, those sequences are considered to be replicates
and only the longer copy is retained. For genomic assembler
it is used the Velvet algorithm package. A good kmer size is
just over half a read length, which prevents sequencing errors
from forming bubbles. Ribosomal RNA genes (5S, 16S, 18S, 23S)
are predicted using hmmsearch tool from the package HMMER
3.1b2. The pipeline runs against curated models, derived from
full-length genes within IMG, while keeping the best scoring
models. The identification of protein-coding genes is performed
using a consensus of four different ab initio gene prediction
tools: prokaryotic GeneMark.hmm (v.2.8), MetaGeneAnnotator
(v. Aug 2008), Prodigal (v. 2.6.2) and FragGeneScan. Protein-
coding genes with translations shorter than 32 amino acids are
deleted. Assignment was made at 90% of the KO gene sequence
that was covered by the alignment (Huntemann et al., 2016).

The numbers of the analysis projects in the JGI were
Ga0197827, Ga0197828, Ga0197830, Ga0197833, Ga0197836,
Ga0197838. For the 16S rRNA amplicons, sequence data were
deposited on the NCBI database by the Bioproject PRJNA416849.

RESULTS

Phylogenetic Stratigraphy in the
Camargue Microbial Mats
Camargue microbial mats composition of Bacteria, Archaea
and Eukarya were based on data obtained by shotgun
metagenomics. Microbial communities were dominated by
Bacteria (92.4–94%), while Archaea and Eukarya represented
4–5% and 1–1.6%, respectively. The distribution of Archaea
phyla in spring and autumn was similar but there were
several differences across the three depths sampled (0–2, 2–
4, and 4–6 mm). Thus, Archaeal relative abundances at
those depths were 4.2, 4.6, and 5.1%, respectively. The major
phyla were Euryarchaeota (80.6%), followed by Crenarchaeota
(8%), Candidatus Micrarchaeota (3.9%), and Thaumarchaeota
(ammonia-oxidizing archaea, 2.8%).

The eukaryotic diversity of the Camargue microbial mats
was sparse, in contrast to the vast bacterial diversity. This was
probably due to the broad metabolic capabilities of Bacteria,
which enable them to occupy a broad range of chemical
niches, whereas the metabolic versatility of eukaryotes is more
limited, despite their ability to survive under high sulfide,
fermentative, and anoxic conditions. Eukarya represented 1% of
the total relative abundance of microorganisms from the mat,
with the most representative eukaryotes those related to algae
(Chlorophyta), plants (Streptophyta), fungi (Ascomycota), and
Arthropoda (insects, mainly Anopheles). This result contrasts
with the findings in the Guerrero Negro microbial mats, where
the dominant eukaryotic organisms are bacterivorous nematodes
(Feazel et al., 2008).

More than 30 phyla of Bacteria were recovered from
amplicon sequencing of the 16S rRNA gene and shotgun

Frontiers in Microbiology | www.frontiersin.org 4 December 2017 | Volume 8 | Article 2619

http://www.arb-silva.de
http://qiime.org/scripts/compute_core_microbiome.html
http://ieg2.ou.edu/MENA
http://www.jgi.doe.gov/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02619 December 22, 2017 Time: 16:34 # 5

Berlanga et al. Microbial Mats from the Camargue

FIGURE 1 | Relative abundances of bacterial phyla from the Camargue microbial mats. Samples SP1-1, SP1-2, SP1-3; AU1-1, AU1-2, AU1-3; SP2-1, SP2-2,
SP2-3; AU2-1, AU2-2, AU2-3; SP3-1, SP3-2, SP3-3; AU3-1, AU3-2; AU3-3. SP and AU indicate the season analyzed; the first number, year 1, 2, or 3; and the
second number, the layer (1, 0–2 mm; 2, 2–4 mm; 3, 4–6 mm). Samples for the third year were accompanied by a and s, amplicons and shotgun, respectively.

metagenomics isolated from the Camargue microbial
mats. Among the distinguished phyla, there were six that
dominated: Proteobacteria (40.2–75.2%), Bacteroidetes (2.6–
16.6%), Firmicutes (1.2–21.5%), Actinobacteria (1.0–10.4%),
Cyanobacteria (1.2–36.6%), and Spirochaetes (1.4–6.6%)
(Figure 1). The use of shotgun metagenome analysis in the
3rd-year samples did not yield additional phyla compared to the
16S rRNA amplicons analyzed using Silva database. However,
it did detect a relatively high abundance of Actinobacteria,
Bacteroidetes, and Firmicutes, and a lower relative abundance
of Proteobacteria. The distributions of several phyla and their
families depended on the layer analyzed and the season (Figure 2
and Supplementary Figures S1A,B). Cyanobacteria were
more abundant in the upper layer (0–2 mm) and in autumn.
Alphaproteobacteria were the most abundant Proteobacteria,
followed by Gammaproteobacteria and Deltaproteobacteria.
Alphaproteobacteria, especially the family Rhodobacteraceae,
were abundant in the upper layers (0–2 and 2–4 mm) and
in the spring. Gammaproteobacteria were represented, in
order descendent of relative abundance, by Chromatiaceae,
Ectothiorhodospiraceae, and Pseudoalteromonadaceae. The
Chromatiaceace family was present in all layers with a slightly
increased abundance at 2–4 and 4–6 mm, but no difference
between spring and autumn. Ectothiorhodospiraceae were
more abundant in the upper layer (0–2 mm) than in the

other, deeper layers. Pseudoalteromonadaceae were detected
only in the autumn samples. Among the Deltaproteobacteria,
Desulfobacteraceae was the most abundant family detected and
their distribution in the different layers and in the two seasons
was similar. Chloroflexales (phylum Chloroflexi) were more
abundant in the autumn samples and in the upper layer. Several
genera, such as Thioalkalivibrio, Desulfotigum, Roseovarius, etc.,
were detected through the years analyzed, but their distribution
depended on the layer (Figure 2).

In the rarefaction curves for samples with respect to depth
and season, at 0.03 similarity the samples did not reach
an asymptote, suggesting their insufficient sequencing depths
(Supplementary Figure S2). In our analyses we used the
abundance estimator Chao1 and abundance-based coverage
estimator (ACE), Shannon and Simpson diversity indexes, and
Berger-Parker dominance index (Table 1). The highest diversity
was found in the third layer (4–6 mm). The surface layer in
all samples exhibited the lowest diversity, with a few strongly
dominant OTUs, especially photosynthetic bacteria. A principal
component analysis indicated that the population community
structure of the upper layer (oxic/photic layer) differed from
that of the transitional oxic-anoxic layer (2–4 mm) and the
anoxic layer (4–6 mm), which were relatively close together
(Figure 3A). These results were independent of the season and
the sampling year. Samples for the oxic/photic layer (0–2 mm)
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FIGURE 2 | Heatmap and dendogram of the relative abundance of OTU respect to families identified in the Camargue microbial mats. OTUs’ table was done at
0.10% genetic distance level (Yarza et al., 2010). Several representative OTUs could be classified at genus level.

had the most distant community distribution, probably due to
the high relative abundances of Cyanobacteria and Chloroflexi.
The phylogenetic P-test in Unifrac indicated that the microbial
communities were not significant different (P > 0.05). But
pairwise significance tests using the t-Student based on taxa
detected showed significant differences between oxic/photic layer
and the other layers (transition oxic-anoxic layer and anoxic

layer). Significant differences between two samples were based
on a 95.0% confidence level. P < 0.05 was considered to
indicate statistical significance. No significant differences were
observed between samples from the same layer. In addition, we
could observe a clear difference in distribution respect of the
functional annotation KO metagenomes to layers (data from
shotgun metagenome for the third year samples) (Figure 3B).
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TABLE 1 | Diversity and richness indexes at 0.03 distance.

Samplea Raw reads Clean reads No. OTUs Chao 1 Ace Bergerparker Shannon Simpson

SP1-1 7811 4114 205 634.04 856.45 0.127 4.51 0.0330

SP1-2 6656 3453 325 1206 1634.46 0.0588 5.33 0.0126

SP1-3 8285 3664 397 1387.5 1939.02 0.0392 5.71 0.0082

AU1-1 2825 1156 265 505.01 777.53 0.1203 4.38 0.0392

AU1-2 3053 1313 272 566.25 778.05 0.0422 4.89 0.0137

AU1-3 5361 1432 336 839.25 1148.86 0.0616 5.20 0.0121

SP2-1 3560 2042 291 896.01 1197.66 0.0929 5.02 0.0193

SP2-2 5393 2366 316 876.16 1113.66 0.0605 5.26 0.0119

SP2-3 8054 2866 454 1501.38 2265.98 0.0348 5.91 0.0058

AU2-1 3924 1859 282 711.37 1049.50 0.2478 4.13 0.0805

AU2-2 6022 2778 365 923 1190.00 0.0552 5.40 0.0118

AU2-3 4673 2405 463 1757 2591.69 0.0602 5.79 0.0082

SP3-1 3103 1151 423 765 1325.63 0.0417 5.28 0.0045

SP3-2 6728 3252 390 621 1678.86 0.0147 5.68 0.0009

SP3-3 6919 3130 401 878 1693.39 0.0078 5.86 0.0002

AU3-1 4989 2092 412 808 2188.89 0.0147 5.63 0.0011

AU3-2 5269 3053 433 774 1468.0 0.0104 5.81 0.0004

AU3-3 6591 2661 429 962 2188.9 0.014 5.89 0.0005

aSP and AU indicate the season analyzed; the first number, year 1, 2, or 3; and the second number, the layer (1, 0–2 mm; 2, 2–4 mm; 3, 4–6 mm).

FIGURE 3 | Principal component analysis of the community distribution by year, season and layer from the Camargue microbial mats. (A) β-Diversity coupled with
principal coordinates analysis was used to compare the bacterial composition in Camargue microbial mats by season and layer. Unifrac weighted was implemented
in the QIIME program (Caporaso et al., 2010). Red squares represented the oxic/photic layer; Blue triangles, oxic-anoxic transition layer; Orange, anoxic layer. The
phylogenetic P-test in Unifrac, indicated that the microbial communities were not significant different (P > 0.05). But pairwise significance tests using the t-Student
showed significant differences between oxic/photic layer and the other layers (transition oxic-anoxic layer and anoxic layer). (B) Principal coordinates analysis of
functional annotation of shotgun metagenomes processed in the JGI database [http://www.jgi.doe.gov/]. To compare the genomes (third year samples), we used the
KO genes as a row with significant hits, and with a minimal function gene count for 5. The PCA analysis showed that the PC1 the percent of variation was explained
by 18.7% and the PC2, 26.57%. The t-Student had similar results than for the taxonomical results in A.

The t-Student from taxonomical data showed the same results
that those just mentioned.

Functional Stratigraphy in the Camargue
Microbial Mats
To understand the metabolic potential of the Camargue
microbial mats and identify their many different functional
features, we used PICRUSt (based on 16S rRNA gene amplicon)
and random shotgun metagenomics methodologies. The
predicted proteins were classified as KEGG orthologs (KOs).

The nearest sequence taxon index (NSTI) values is a measure of
how closely related the OTUs in each sample are to the reference
genomes in the database. In our case, the “nearest sequence
taxon index” (NSTI) values per sample ranged for 0.072–0.172.
The taxonomical classification could be accurate at family level,
in few cases to genera level, but it was difficult to achieve the
species level. This result could explain the values observed at
NSTI. Respect to the shotgun metagenomics, KEGG pathways
via KO (percentage) ranged from 14.85 to 17.17%; and KO genes
ranged from 24.97 to 29.30% respect to the number of sequences
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FIGURE 4 | Relative abundances of genes in KEGG classified by biological
functional category from the Camargue microbial mats. Functional categories
studied were: “metabolism,” “cellular processes,” “environmental information,”
and “genetic information processing.” SP and AU indicate the season
analyzed; the first number, year 1, 2, or 3; and the second number, the layer
(1, 0–2 mm; 2, 2–4 mm; 3, 4–6 mm). For the third year, only data obtained
from the shotgun (e.g. SP3-1s, etc.) has been represented.

(total sequences analyzed ranged from 61,370 to 140,208), and
assignment was made at 90% of the KO gene sequence that was
covered by the alignment (Huntemann et al., 2016).

The biological processes identified were essential for
sustaining prokaryotic life in the environment. They include
transcription and translation functions (8.7–9.8% relative
abundance genes, based on the total number of genes detected
in the sample) and replication and repair functions (9–10.2%).
Other functional processes were related to cellular processes
such as cell motility (4.3–5.9%). Genes related to membrane
transport (17.2–19.5%) and to metabolic functions (56.3–58.4%),
which included the metabolism of carbohydrates, lipids, amino
acid, cofactors and vitamins, xenobiotic biodegradation, and
energy metabolism. PICRUSt and shotgun metagenomic analyses
revealed similar functional biological processes in all samples
analyzed, except of carbohydrate metabolism and energy
metabolism, which contained more genes detected by shotgun
than by PICRUSt analyses (Figure 4).

Gene content analysis provides a basis for inferring the
possible metabolic functions of dominant populations present in

the community. Cell motility, represented by chemotaxis genes,
such as cherA, cheBR, motA, mcp, pixJ, etc., peaked at the oxic-
anoxic transition zone, but they were also important in the
oxic/photic zone. These genes were associated to phototrophic
organisms (Cyanobacteria, Alpha-Gammaproteobacteria, and
Chloroflexi), but also to heterotrophic members, such as
Bacteroidetes and Spirochaetes. Ferredoxins have a negative
redox potential act as electron distributors in various metabolic
pathways. The genes that codify different ferredoxins were
detected in all layers, but they were especially abundant in
the oxic-anoxic transition zone. Ferredoxins likely reflected
diversification of redox reactions required for respiration
(Supplementary Table S1). Osmotic regulation is required for
microbial survival in hypersaline environments. Accumulation
of osmoprotective molecules, in particular glycine betaine, is
an adaptive mechanism to pawn the high salinity conditions.
We searched for genes implicated on the glycine-betaine
biosynthesis, such as betA, betB, gbsA (Wong et al., 2015). These
genes were distributed through the layers (especially on the
oxic/photic layer), and they were associated with different taxa,
showing that the microbial mat community could be adapted to
salinity conditions (Supplementary Table S1).

Genes associated to oxygenic photosynthesis and
bacteriochlorphylls were detected in the upper layer (photic
zone) in autumn and spring samples (Table S1). Regarding
the photosynthetic reaction center in the anoxygenic photho-
breaksystem, pufL and pufM genes were detected and they
belonged to Gammaproteobacteria (purple sulfur bacteria,
Chromatiaceae). The possibility of alternative light energy usage
by (bacterio)rhodopsin in different prokaryotic members of the
mat cannot be confirmed because we could not detect related
genes, even though retinal-based phototrophy could contribute
as energy source in layers with low irradiance (Thiel et al., 2017).

In the studied metagenomes we identified the four known
autotrophic carbon fixation pathways (the Calvin-Benson
cycle, the reverse tricarboxylic acid cycle, the Wood–Ljundahl
pathway, and the 3-hydroxypropionate bi-cycle) (Hügler
et al., 2002, 2005; Ragsdale and Pierce, 2008; Berg, 2011;
Thiel et al., 2017), which suggested the occurrence of a
relatively diverse autotrophic community (Supplementary
Table S1). Debris of predated bacteria by Bdellovibrionaceae and
viruses may be another carbon source for other heterotrophs.
Bdellovibrionaceae represented 1–9% of the relative abundance
of Deltaproteobacteria. Bdellovibrionaceae are predatory bacteria
upon a variety of Gram-negative bacteria. Viruses in the mat
could be also involved in cell-lysis processes, based on CRISPR
systems detected in the metagenomes.

Regarding nitrogen metabolism, we detected genes associated
to nitrogen fixation. The oxic/photic zone contained the
more diverse and abundant amount of nitrogen fixation
genes (Supplementary Table S1). For the ammonium
oxidation in nitrification, the main enzyme is the ammonia
monooxygenase (amoA) that is present in both ammonia-
oxidizing archaea and ammonium-oxidizing bacteria (Fan
et al., 2015). However, amoA was not identified in the studied
metagenomes. Nitritification provides the oxidant for anaerobic
ammonium oxidation (anammox). We examined hzoA/hzoB
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FIGURE 5 | Network showing potential interactions among microbial members of the Camargue microbial mats. Network was constructed by the in base of the
“core” community using the Molecular Ecological Network Approach (MENA). Matrix similarity used the Pearson correlation coefficient. Nodes represented the
representative OUT, and the size, their relative abundance. The thickness of the lines represented the strength of the correlation between different taxa. These
positive interactions were partially marked in the figure with a purple line. Green, orange and blue circles indicated the layer (oxic/photic; oxic-anoxic transition and
anoxic layers, respectively) where microorganisms were detected.

genes because their ubiquity and high expression in anammox
bacteria (Planctomycetes) (Hirsch et al., 2011), but no records of
those genes were found, although the phylum was detected in the
Camargue microbial mats.

Sulfate reduction genes were present in the metagenome
dataset and distributed similarly through the different layers
(Supplementary Table S1). They affiliated to Deltaproteobacteria
and Gammaproteobacteria. Sulfur oxidation activity was also
found in the Camargue microbial mats, based upon the presence
of the enzyme sulfide:quinone oxidoreductase (sqr gene).

Finally, to identify potential biotic interactions within the
dominant, prokaryotic communities in the Camargue microbial
mats, we constructed a network based on the core OTUs
(Figure 5). The core OTU were determined by the shared
OTUs at 90% in all samples. Several minority populations
were not included as the “core community,” and probably
they could play important functions. Core community was
performed by layer. We observed that there were no significant
differences for one layer (e.g., 0–2 mm or 2–4 mm or 4–6 mm)
among years and season. In the upper layer (oxic/photic zone),
the core microbiota were represented Alphaproteobacteria
(Rhodobacterales), Gammaproteobacteria (Marinicellales and
Chromatiales—Ectothiorhodospiraceae) and Cyanobacteria,
(Coleofasciculus [formerly, Microcoleus], Oscillatoriales). In
the middle layer (transition oxic-anoxic zone), there were
OTUs belonging to Alphaproteobacteria (Rhodobacterales),
to Gammaproteobacteria (Marinicellales, Chromatiales,
Thiotrichales), to Deltaproteobacteria (Desulfobacterales),

to Bacteroidetes (Flavobacteriales and Cytophagales),
to Spirochaetes, and to Cyanobacteria (Oscillatoriales,
Coleofasciculus). In the bottom layer (anoxic zone), taxons were
represented by Alphaproteobacteria (Rhodobacterales), OTUs
to Gammaproteobacteria (Marinicellales and Chromatiales),
Deltaproteobacteria (Desulfobacterales), Bacteroidetes
(Flavobacteriales. Bacteroidales and Cytophagales), Spirochaetes,
Planctomycetes, and Gemmatimonadetes. The network obtained
showed that interactions among taxa could be done through
different layers (Figure 5). The network was probably incomplete
because there were not represented other populations, such as
Firmicutes, Actinobacteria, Archaea, or other minor population
with less than 0.1% of relative abundance (Planctomycetes,
Nitrospinae, Saccharibacteria, etc.), which they could contribute
and participate on metabolically interactions within the microbial
mat. Cyanobacteria stablished the more diverse interactions with
different population’s members of the microbial mat. Positive
correlations based the thickness of the lines (in the figure marked
by a purple line) and were observed between Cyanobacteria
and Deltaproteobacteria; Cyanobacteria and Bacteroidetes;
Cyanobacteria and Rhodobacterales; and Spirochaetes and
Deltaproteobacteria.

DISCUSSION

Microbial diversity within an ecosystem has most often been
estimated based on the amplification of specific gene targets
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(e.g., 16S rRNA) and random shotgun sequencing (Klatt et al.,
2013; Warden et al., 2016; Cardoso et al., 2017). Our results
shed light on the diversity of microbial communities, such as
Bacteria (92.4–94% relative abundance), Archaea (4–5%) and
Eukarya (1–1.6%), present in the Camargue microbial mats.
Although an intrinsic bias of the method cannot be ruled out,
as already noted by other authors (Amend et al., 2010; Zhou
et al., 2011). Cardoso et al. (2017) found differences in taxonomic
assignment based on whether the variable region of 16S rRNA
V1–V3 vs. 16S rRNA V3–V4 sequences derived from the DNA
template. They detected a higher abundance of Proteobacteria
using the V1–V3 than the V3–V4 region, whereas the abundances
of Bacteroidetes, Chloroflexi, and, particularly, some rare phyla
were lower using the V1–V3 dataset. Nonetheless, the amplicon
sequencing and shotgun metagenomics data obtained in this
study confirmed the importance and numerical dominance of
Proteobacteria in the Camargue microbial mats as well as in mats
from elsewhere in the world (Ley et al., 2006; Ruvindy et al.,
2016; Warden et al., 2016; Cardoso et al., 2017). Proteobacteria
participate in the sulfur cycle, especially the purple sulfur
bacteria belonging to the Gammaproteobacteria, purple non-
sulfur bacteria belonging to the Alphaproteobacteria, and the
sulfate-reducing bacteria belonging to the Deltaproteobacteria
(Bolhuis et al., 2014; Ruvindy et al., 2016).

The distribution of Archaea phyla in spring and autumn
was similar but there were several differences across the three
depths. Euryarchaeota at the surface were dominated by the
classes Halobacteria and Methanomicrobia, and in the deeper
layers by Methanobacteria, Halobacteria, Methanomicrobia, and
Methanococci (in order of their relative abundances). The
dominance of Euryarchaeota was also described for other
hypersaline microbial mats, except Guerrero Negro, which is
dominated by Crenarchaeota (Robertson et al., 2009; Schneider
et al., 2013; Fernandez et al., 2016; Wong et al., 2017).

Eukarya represented 1% of the total relative abundance of
microorganisms present in the mat. The eukaryotic diversity
of the Camargue mat was sparse, in contrast to the vast
bacterial diversity. This was probably due to the broad metabolic
capabilities of Bacteria, which enable them to occupy a broad
range of chemical niches, whereas the metabolic versatility
of eukaryotes is more limited. Also, some environmental
factors such as salinity, oxygen and sulfide gradients could
be limiting factors for the eukaryotic diversity. Halophiles are
found in all three domains of life and they are components
of brine communities. Within the Bacteria: Cyanobacteria,
Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and
Bacteroidetes. Within the Archaea: Halobacteria, and for
eukaryotes, Alveolates (ciliates and dinoflagellates), several
Fungi (e.g., Wallemia, Trimmatostroma, Hortaea), chlorophytes,
Euglenozoans, shrimp (e.g., Artemia) (Oren, 2008). Salinity
(only) probably is not a limiting environmental factor for the
development of eukaryotes, but their combination with daily
changes in oxygen and sulfide may affect their survival in
microbial mats.

Cyanobacteria were detected in the Camargue microbial
mats in relative low numbers and they were dominated by
the species Coleofasciculus (formerly Microcoleus) chthonoplastes

(Oscillatoriales). This result may be a consequence of the
methodology used, as the efficiency of cell lysis strongly varies
among different microorganisms. Filamentous Cyanobacteria are
heavily encapsulated by exopolysaccharides (EPS) and therefore
they are difficult to lyse. Moreover, even when lysis is successful,
nucleic acids may become trapped in the EPS and thus
inaccessible for PCR and sequencing (Bolhuis et al., 2014).
Ramos et al. (2017) reported that studies using Cyanobacteria-
specific primers rendered high cyanobacterial diversity. However,
the scarcity of cyanobacteria and their low diversity have been
described in several mats (Ley et al., 2006; Fernandez et al.,
2016).

In microbial mats, the import and export of microorganisms
are low and the community composition is accordingly
stable (Cardoso et al., 2017). The environmental conditions,
including temperature and salinity, during the sampling period
were not sufficiently different to significantly modify the
microbial communities. Rather, vertical gradients of light and
redox (oxic-anoxic) conditions were the likely determinants
of mat community structure. In the presence of oxygen
land high light intensity (oxic/photic zone, 0–2 mm), the
prokaryotic communities in the surface layers were mainly
composed of Cyanobacteria and anoxygenic phototrophs
(Alphaproteobacteria, represented mainly by purple non-
sulfur bacteria, Rhodobacterales, and Rhodospirillaceae).
However, while Rhodobacterales species may prosper in the
surface layer of the mat, most Rhodospirillaceae prefer anoxic
conditions (Schneider et al., 2013). Archaea in the surface layer
were represented by Candidatus Micrarchaeota, ammonia-
oxidizing Thaumarchaeota, and Euryarchaeota (Halobacteria).
Halobacteria uses bacteriorhodopsin to transform light energy
into chemical energy by a process unrelated to chlorophyll-based
photosynthesis. Chemotaxis and motility genes were assigned to
phototrophs, such as Cyanobacteria, purple sulfur bacteria, and
purple non-sulfur bacteria, consistent with the ability of these
microorganisms to search for optimal environmental conditions,
including light. The surface layer in all samples exhibited the
lowest diversity, with a few strongly dominant OTUs, especially
photosynthetic bacteria as observed by other authors (Armitage
et al., 2012; Al-Najjar et al., 2014; Bolhuis et al., 2014). Upper
layers can have extreme physicochemical conditions if the mat
is desiccated, during the day it may have high light irradiance,
temperature, and high salinity due to water evaporation. In our
case, mats were flooded all seasons (cover by ca. 10–20 cm of
water). Cyanobacteria were the major phylum at the top layer
and they may be adapted to those conditions (Bolhuis et al., 2014;
Al-Najjar et al., 2014; Pade and Hagemann, 2015).

The transition zone (2–4 mm) contained Alphaproteobacteria
(purple non-sulfur bacteria), Gammaproteobacteria
(Chromatiaceae —such as Thiohalocapsa and Halochromatium—
were more abundant than Ectothiorhodospiraceae —such as
Thioalkalivibrio—), Candidatus Chlorothrix, which was the most
abundant genus of green non-sulfur bacteria of Chloroflexales
(Chloroflexi), Deltaproteobacteria (sulfur reducing bacteria), and
heterotrophic fermenting bacteria. In the anoxic zone (4–6 mm),
Deltaproteobacteria and fermenters, especially Spirochaetes,
comprised the major part of the bacterial community.
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Microorganisms detected through layers could interact
metabolically by the different genes detected that worked
in carbon, nitrogen and sulfur nutrients cycles, being a
self-sustaining system. Producers, such as photosynthetic
microorganisms contributes to the nourishment of heterotrophs
members of the community. Cyanobacteria (mainly
Coleofasciculus) must provide a source of carbon to the
heterotrophs, and a source of H2 for sulfate-reducing bacteria
(Deltaproteobacteria, such as Desulfonema, Desulfotigum,
Desulfococcus, Desulfonile) (Lee et al., 2014). In the dark,
cyanobacteria fermented their carbon reserves excreting low-
molecular-weight organic acids and hydrogen (Hoffmann
et al., 2015). Hydrogen can be utilized as electron donor by
the anoxygenic photosynthetic bacteria (Nielsen et al., 2015).
Nutritional interdependence among microbial populations
is exemplified by an anaerobic community operating from
hydrolytic to fermenting primary anaerobes, then to syntrophic
bacteria and to homoacetocetic, methanogenic, or sulfidogenic
secondary anaerobes. In diverse anoxic environments,
spirochetes occupy an intermediate trophic level between the
hydrolytic bacteria and these secondary anaerobes; this is because
the main compounds produced by spirochete are acetate, H2,
and CO2, which are normally consumed by sulfate-reducing
bacteria and methanogens (Blazejak et al., 2005; Berlanga et al.,
2008). In microbial mats, sulfate-reducing bacteria outcompete
methanogens because of the high concentration of sulfate in the
seawater.

Members of Bacteroidetes (such as Psycroflexus, Robiginitalea)
were present in all samples. Bacteroidetes are able to grow
under a wide range of physicochemical conditions (Farías et al.,
2014; Wong et al., 2016) and to degrade polymeric compounds
(Fernández-Gómez et al., 2013; Hania et al., 2017). Therefore,
Bacteroidetes may play a key role in the degradation and cycling
of mat carbon compounds. The family Rhodothermaceae, and
especially the genus Salinibacter, has been detected in abundance
in the upper oxic/photic zone in several microbial mats because
the respective genera are halophilic and can use light as an
additional energy source for growth (Sahl et al., 2008; Schneider
et al., 2013). However, in the Camargue microbial mats their
relative abundance was low.

Identifying microbes responsible for particular environmental
functions is challenging. Microbial mats harbor different
microbial symbiont populations with specialized functionalities.

In this analysis, we described metabolic potentials and putative
interactions among mat community members, leading to an
initial overview of the metabolic potential of the entire mat
community.
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FIGURE S1 | Relative abundance of families respect on their phyla. (A) Relative
abundance of Families detected in Bacteroidetes and relative abundance of
subphyla from Proteobacteria. (B) Relative abundance of several families
belonged to Alphaproteobacteria, Deltaproteobacteria and Gammaproteobacteria.

FIGURE S2 | Rarefaction curves from 16S rRNA amplicons from 18 samples.
Rarefaction was done at 97% identity, and it was normalized by the number of
sequences of the smaller dataset.

TABLE S1 | Key enzymes for functionality metagenomes.
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