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MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression

and thereby have a large influence on the resulting phenotype. We have previously shown

that miRNAs may be involved in the communication between Toxoplasma gondii and its

hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known

about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs

directly from the type II ME49 genome and filtered them. For the confident hairpins,

we predicted the location of the mature miRNAs and established their target genes.

To add further confidence, we evaluated whether the hairpins and their targets were

co-expressed. Such co-expressedmiRNA and target pairs define a functional interaction.

We extracted all such functional interactions and analyzed their differential expression

among strains of all three clonal lineages (RH, PLK, and CTG) and between the two

stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found

∼65,000 expressed interactions of which ∼5,500 are differentially expressed among

strains but none are significantly differentially expressed between developmental stages.

Since miRNAs and target decoys can be used as therapeutics we believe that the list of

interactions we provide will lead to novel approaches in the treatment of toxoplasmosis.

Keywords: Toxoplasma gondii, microRNA, regulation, miRNA target, miRNA-mRNA interactions, expression

analysis, differential expression

INTRODUCTION

It is estimated that more than 30% of the world population are chronically infected with
the protozoan parasite Toxoplasma gondii. Upon infection with either oocysts or tissue cysts
containing bradyzoites, the parasite converts into the replicative tachyzoite stage that may cause
harm especially in fetuses (Jones et al., 2003; de Moraes et al., 2011) and immunocompromised
patients (Contini, 2008). In contrast, infection is mostly asymptomatic in immunocompetent
individuals, where reconversion into the bradyzoite stage results in the formation of persistent
tissue cysts. These are mainly located in neurons and skeletal muscle cells (Schlüter et al.,
2014). The interconversion between the bradyzoite and tachyzoite stages is based on a complex
interaction between the parasite and its host cell and involves, besides others, immunologic,
epigenetic, and cell cycle factors (Sullivan and Jeffers, 2012; Swierzy and Lüder, 2015). Most
recently, two stress-induced ApiAP2 transcription factors have been identified which have
opposite functions in bradyzoite development (Hong et al., 2017). So far, existing treatment
has major limitations and targets only the replicative tachyzoite stage by mainly inducing
tachyzoite-bradyzoite conversion thereby promoting parasite persistence (Montazeri et al., 2017).
MicroRNAs (miRNAs) have been established as disease targets (Avci and Baran, 2014) and
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miRNA mimics as drugs (Wang, 2011) and they may be
of use to target toxoplasmosis. MicroRNAs are short non-
coding sequences involved in post-transcriptional regulation
of protein expression. We and others previously analyzed the
possible miRNAs of T. gondii (Cakir and Allmer, 2010; Wang
et al., 2012) and how they could be useful to modulate host
protein abundance (Saçar Demirci et al., 2014, 2016). Here we
employ the state of the art in pre-miRNA detection from the
T. gondii genome and also establish putative mRNA targets as
well as miRNA and mRNA expression. Thereby, we establish
expressed interactions (∼65,000) from overall ∼2,500 expressed
miRNAs and ∼8,500 expressed mRNAs. MicroRNAs are only
functional when co-expressed with their targets and, therefore, it
is important to focus on expressed interactions and this is the first
time these have been established in T. gondii. Such interactions
convey function and thus can provide leads for disease markers
and drugs to tackle this global disease.

MATERIALS AND METHODS

Data
The majority of human clinical cases of toxoplasmosis in Europe
and North America are caused by type II strains (Sibley et al.,
2009). The reference genome for T. gondii type II strains
(ToxoDB-25_TgondiiME49) was downloaded from toxodb.org
(Gajria et al., 2007) along with its annotation for known genes
and transcripts.

T. gondii RNA-Seq data (Croken et al., 2014) was downloaded
from the sequence read archive (Leinonen et al., 2011). Accession
numbers for the downloaded data ranged from SRR1542919
to SRR1542936 (Table 1). The study contained samples from
three different T. gondii strains representing the three most
abundant clonal types I, II, and III (RH, PLK, and CTG). For each
strain tachyzoites and bradyzoites were measured in triplicates
induced in cell culture by pH 7 and 8 (Croken et al., 2014),
respectively. Previously described mature miRNAs (Wang et al.,
2012) were downloaded from their supplementary data and were
used to obtain their corresponding hairpins sequences and to
train suitable pre-miRNA detection models.

Pre-miRNA Detection
The hairpins obtained in a previous work by fragmenting the
whole genome of T. gondii (Saçar Demirci et al., 2016), were used
for this analysis. Features of hairpins were calculated on AWS
(Amazon Web Services) using an in-house java package; but
could also be calculated using online services (Yones et al., 2015;
Bağci and Allmer, 2016). For creatingmodels specific to T. gondii,
the izMiR framework (Allmer and Saçar Demirci, 2016) was used
at 1,000-fold Monte Carlo Cross Validation (Xu and Liang, 2001)
with 70% data for training and 30% data for testing, sampled
at equal amounts. Six hundred and eighty three putative pre-
miRNAs from our previous studies (Saçar Demirci et al., 2016)
containing the published 339 known mature miRNAs (Wang
et al., 2012) were used as positive examples during the training
of the classifier while pseudo pre-miRNAs (Ng andMishra, 2007)
were applied as negative ones. For obtaining the positive dataset,
pre-miRNAs of T. gondii were extracted from its genome by

extending known mature miRNA sequences by 50 nucleotides
to both directions and thereby extracting pre-miRNAs. The new
models and the existing izMiR models based on human miRNA
data, were applied to all of the extracted hairpins from the
Toxoplasma genome ME49.

Mature miRNA Detection
Since only few (339) mature miRNAs have been proposed
for T. gondii (Wang et al., 2012), a general prediction model
was created by using all mature miRNAs listed in miRTarBase
(Release 6.0) which corresponded to 4316 mature miRNA
sequences in miRBase. A negative data set was created by
shifting the mature sequences by half of their length within the
hairpin sequences (Gkirtzou et al., 2010).To describe mature
miRNAs 101 features were calculated: start and end positions
of mature sequence (2), central loop start and end points (2),
hairpin length, miRBase hairpin length, stem length, mature
length, maximum loop length (5), number of matches and
mismatches in the mature sequence region (2), single nucleotide
counts (4), dinucleotide counts (16), trinucleotide counts (64),
distances of start and end positions to 3′, 5′, loop start and
loop end (6). These data sets were used to train a random
forest learner using 1,000-fold MCCV and 70% (learning) to 30%
(testing) ratio (Supplementary Figure 1). The model with the
highest accuracy score (0.932) was applied to predicted miRNA
hairpins.

MicroRNA Targeting
MicroRNAs function by providing a complementary sequence
to parts of their target mRNA. This can be predicted by diverse
computational tools. Here, psRNATarget (2011 release) (Dai and
Zhao, 2011) was used to establish miRNA—mRNA interactions
using default settings. While psRNATarget originally focused on
plant miRNA targeting, it now also includes metazoan mRNAs
for targeting as well as the possibility to provide miRNAs and
putative targets directly. MicroRNA regulation seems to be
metazoan like in T. gondii (Braun et al., 2010) and, therefore,
psRNATarget seemed suitable for this analysis and the default
settings were used for the analysis of T. gondii. All of the genes
of the available transcript annotations for T. gondii were used as
target sites since UTRs have not been established.

Expression Analysis
Gene Expression
The RNA-seq data downloaded from the sequence read
archive (SRA) at NCBI concerned the accessions ranging from
SRR1542919 to SRR1542936 (Table 1). Reads in the associated
measurements were first cleaned by removing adapters, low
quality regions, or complete reads using Cutadapt (Martin, 2011)
and Sickle (Joshi and Fass, 2011). The quality score cutoff was
set to 30 in respect to quality trimming, and the minimum
length of read threshold was set to 30. Following cleaning of
the reads, they were mapped to the human reference genome
(GRCh38) using Tophat (v1.4.1) (Trapnell et al., 2009) to filter
out any human contaminant reads. Then, unmapped reads were
mapped onto the T. gondii reference genome ME49. Because
of the colorspace characteristics of the samples, a large amount
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TABLE 1 | Sequencing reads statistics for all 18 samples downloaded from SRA.

Samples Raw reads Cleaned reads Max. clean read length Deleted reads (%) Reads mapped on human (%) Toxo mapped reads (%)

SRR1542919 58,730,137 2,077,159 50 96.46 1.05 84.49

SRR1542920 43,055,026 11,581,307 50 73.10 0.91 72.09

SRR1542921 44,958,415 14,617,199 75 67.49 0.70 75.73

SRR1542922 43,264,535 1,375,655 50 96.82 0.75 85.54

SRR1542923 53,074,533 13,476,636 50 74.61 1.01 69.58

SRR1542924 55,077,053 18,329,562 75 66.72 0.77 76.15

SRR1542925 36,994,224 1,423,290 50 96.15 3.27 88.33

SRR1542926 48,595,529 12,544,189 50 74.19 1.25 77.00

SRR1542927 55,934,799 17,482,709 75 68.74 1.12 81.83

SRR1542928 74,716,539 2,727,669 50 96.35 3.20 89.18

SRR1542929 51,517,301 12,437,480 50 75.86 2.61 79.16

SRR1542930 41,089,401 13,451,657 75 67.26 1.42 83.09

SRR1542931 211,425,021 7,886,857 50 96.27 1.89 87.22

SRR1542932 44,043,513 9,678,918 50 78.02 2.06 68.16

SRR1542933 248,076,128 80,172,404 75 67.68 1.88 78.25

SRR1542934 51,790,061 1,704,048 50 96.71 2.26 83.78

SRR1542935 55,535,624 14,076,802 50 74.65 4.72 71.03

SRR1542936 38,718,995 13,031,003 75 66.34 3.74 75.64

Mean 69,810,935 13,781,919 58 80 2 79

The number of reads before and after pre-processing, final average read length as well as mapping ratios to human and T. gondii present important information to assess the quality of

the measurement. Additional details can be found in Supplementary Table 1.

of reads were filtered and an older version of Tophat had
to be used instead of current version v2.1.1. The annotation
file for the T. gondii genome (ToxoDB-25_TgondiiME49) was
downloaded from toxodb.org along with its genome. An in-house
script was used to count mapped reads (https://github.com/
erkinacar5/SortedNucleotideCounter). Genes with less than five
reads mapped onto them were considered as not expressed and
filtered accordingly. A new normalization method, nucleotide
normalization (see “Normalization” section), was adopted to
normalize mapped read counts. Normalized counts were further
filtered by their expression among strains and developmental
stages. Genes that were not expressed in at least 70% of
the samples of their respective strain or developmental stage
were filtered out. The R platform (R Core Team, 2016) was
used to establish expression differences between strains and
developmental stages as well as to perform statistical analysis (see
below).

MicroRNA Expression
A custom annotation file for pre-miRNAs predicted in this
study was created from the pre-miRNA locations in the genome.
With this annotation file it became possible to employ standard
workflows to establish miRNA abundance (see gene expression).
Counting was done by the mentioned in-house java code.
Normalization was done by nucleotide normalization method
(see “Normalization” section). Due to lower amount of mapping
to miRNA regions, miRNAs with lower than two reads mapped
onto them were considered as not expressed and were discarded.
Similar to gene expression, if a miRNA was not expressed

in at least 70% of the samples in their respective strains or
developmental stages it was filtered out.

MicroRNA mRNA Interactions
An interaction, in this study, is defined as a miRNA co-expressed
with at least one of its target mRNAs in the same sample.
MicroRNAs often originate from genes and these source genes
can be used to extend the interaction to the gene level by
associating them with metabolic or regulatory pathways. Thus a
complete interaction is defined by the source gene, miRNA, and
its target gene(s). MicroRNAs that did not come from a known
gene were filtered out in this study. Biologically, these miRNAs
may be of interest, however, it cannot be shown that they lead to
expressed interactions which are of prime interest for this study.
Future research may shed light on miRNAs that derive from their
own loci.

Normalization
Generally, RPKM (reads per kilobase per million mapped
reads) or FPKM (fragments per kilobase per million mapped
reads) are used to allow comparison of transcript expression
among measurements. However, the source data showed
large differences in average read length. Therefore, it was
necessary to take into account the actual amount of mapped
nucleotides as well as transcript lengths in terms of nucleotides
per kilobase of transcript per million nucleotides mapped
(NKMN). An in-house java code (https://github.com/erkinacar5/
SortedNucleotideCounter) allowed mapped reads to be counted
including their read length.With this information, it was possible
to calculate total nucleotides mapped onto specific regions of
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a genome. Using the annotation files, for all the samples, total
nucleotides of each transcript (gene or miRNA) were calculated
as well as total amount of nucleotides mapped to each transcript.
Normalization was done by total mapped nucleotides per gene
or miRNA divided by total nucleotide number of corresponding
gene or miRNA and total nucleotides in the sample. Since
the ratio was aimed to show per kilobase per million, it was
multiplied by a billion to bring the values into an intuitive range:

6(Mapped nucleotides on gene or miRNA)× 1.000.000.000

6(Nucleotides of gene or miRNA) × 6(Nucleotides in sample)

For the interactions, an interaction ratio was computed by
dividing target gene expression amount by targeting miRNA
expression amount. Then, this interaction ratio was normalized
by the sample median for interaction ratios. After this, the
median value of all medians was taken and each normalized
sample was divided by median of median values for final
normalization.

Differential Expression Analysis
Differential expression analyses for gene and miRNA expression,
as well as for interactions was done in R. Ratios of normalized
expression values between strains (RH vs. PLK, RH vs. CTG,
and PLK vs. CTG) and between developmental stages (tachyzoite
vs. bradyzoite) were converted to log2 fold changes. Student’s t-
test was performed in R for each gene, miRNA or interaction
among different strains and developmental stages. P-values were
derived from these tests and adjusted according to Benjamini
and Hochberg (1995). The average read length was different
among samples (Table 1) and this affected miRNA expression.
Thus, counts and their normalization (Supplementary Figure 2),
expressions of their source genes were used to represent their
abundance in interactions. Moreover, to assess interactions,
the ratio between targeted gene expression and source gene
expression was established. Interaction ratios were calculated on
a per sample basis if both source and target expressions were
larger than zero and had at least five reads.

Annotation of Genes and MicroRNAs
The gene annotations for T. gondii were downloaded from
toxodb.org and they contained gene names in form of
a combination of strain and accession number (e.g., gene
TGME49_293600). To make annotations clearer, unigene
identifiers were used where possible. In cases where a protein is
synthesized from multiple genes, gene accessions (e.g., 293600)
were added to the end of the protein name (e.g., RPL27_293600).
For genes that did not have known protein products, BLAST
(v2.4.0+) (Camacho et al., 2009) was used to align these genes
with genes of other T. gondii strains. Similarity above 80%
(with mismatch and gap <4) were accepted as annotated.
Those with no similarity and no known proteins were left
unchanged and the toxodb.org accession was used. Predicted
miRNAs were annotated with their source strand (Pos for
positive and Neg for negative), genomic start position and their
respective chromosome, super contig, or contig name (e.g.,
Neg_263687_TGME49_chrII). Further annotation was done by

aligning all miRNAs in miRBase and the 339 T. gondii specific
previously detected mature miRNAs to our predicted pre-
miRNAs using BLAST. For similarity above 75%, names of
the aligned pre-miRNAs were cross annotated. Our accession
numbers were added to these miRNAs to be able to track their
sources. MicroRNAs below 75% similarity were left unchanged.
To be able to differentiate among mature miRNAs originating
from different genomic regions, a number was attached to their
identifier (e.g., Neg_263687_TGME49_chrII_2).

RESULTS AND DISCUSSION

MicroRNA Detection
In a previous study (Saçar Demirci et al., 2016) we folded the
T. gondii ME49 genome and extracted all hairpin like structures
(∼5 million). Since many of these hairpins are unlikely to be
pre-miRNAs, we trained a machine learning model using our
izMiR framework (Allmer and Saçar Demirci, 2016) and used
it for the assessment of the putative hairpins. In total, 1,227,917
hairpins were analyzed and these were filtered by their confidence
scores (>0.99) using the izMiR model. This filtering resulted
in 4,589 confident pre-miRNAs. We further required the pre-
miRNAs to be part of a gene and did not take into account
intergenic pre-miRNAs. About 300 candidate pre-miRNAs were
affected by this filtering leaving 4,240 hairpins for further
analyses. Expression with at least two mapped reads in at least
one of the samples was the final requirement for pre-miRNAs
and 2,484 passed this filtering step (Supplementary Table 2).
Pre-miRNAs are further processed into mature miRNAs in
the miRNA genesis pathway and this process was mimicked
by fragmenting the 4,589 confident candidate hairpins into
24 nucleotide (nt) long sequences with 6 nt overlaps. Since
the length of mature sequences is generally smaller or equal
to 24, the majority of mature sequences should be in the
generated candidate pool. This pool is too large for further
analysis and, therefore, a machine learningmodel was established
to discriminate among candidates. Mature candidates with a
minimum of 15 nt long sequences and a model prediction score
of at least 1.0 were used for further analysis. 4,234 mature
sequences passed the filtering by the machine learned model
(Supplementary Table 3). Among these, 973 mature sequences
overlap with the hairpin loop and were removed while 89 include
the complete loop and were retained as loop-miRs (Winter et al.,
2013). 1,058 mature miRNAs are located on the 5′ arm while
2,114 are located on the 3′ one. The confident pre-miRNA
candidates were compiled into a genome feature format file to
enable their expression analysis using standard workflows. In
the following gene expression and miRNA expression among
various T. gondii strains and developmental stages will be
discussed.

Gene Expression
For the expression analysis of T. gondii genes and miRNAs,
a set of RNA-seq samples was acquired (Croken et al., 2014).
Pre-processing of the downloaded RNA-Seq samples produced
varying average read lengths (Table 1). This difference in length
needed to be taken into account during normalization and
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nucleotide mapping rather than merely considering read or
transcript mapping rates. After the normalization process, the
general distribution of gene expression appeared similar among
samples despite variation in average read length indicating
the effectiveness of the NKMN normalization approach

(Supplementary Figure 3). This normalized expression among
samples was compared (Supplementary Table 4) and the most
expressed 50 genes (top 50 of the average of all 18 samples)
are presented in Figure 1. The process of picking the genes
most expressed on average identifies the genes that are similarly

FIGURE 1 | Heatmap showing the 50 genes with largest average expression among samples. The strains (type I RH: blue, type II PLK: brown, and type III CTG: pink)

and developmental stages (bradyzoite: dark green and tachyzoite: mint) can be seen on top of the genes. Gene identifiers are provided on a per row basis on the right

and sample accessions are provided below the heatmap. Rows and columns have been clustered and expression amount is plotted in log2 scale using the pheatmap

package in R.
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expressed in all samples. This is confirmed by the heatmap in
Figure 1. There is no significant expression difference between
developmental stages of T. gondii among the most expressed 50
genes. Samples from strains cluster together which reveals that
among these genes that are highly expressed in all samples they
are more uniformly expressed on a per strain basis than on a per
developmental stage basis. Unfortunately, six samples present
a slightly different behavior (SRR15429[19,22,25,28,31,34]).
Investigation into the origin of this revealed that the outliers have
the shortest average read length and the largest percentage of
deleted reads after pre-processing (Table 1). However, the overall
trend of strain before stage is not influenced by these differences
(Figure 1). Furthermore, in both cases cluster analysis shows
that PLK and RH have a more similar gene expression among
the top 50 genes than CTG.

Figure 1 shows extreme average expression among samples
which summarizes the genes that are highly expressed in all
of them. This information is useful to detect important genes
and perhaps to develop strain/stage independent biomarkers.
Differential gene expression in contrast is important to analyze
differences among strains and stages.

Differential Gene Expression
Differential expression analysis was done in R using the
NKMN normalized gene expression and employing t-test with
Benjamini-Hochberg correction. Only genes expressed in at least
70% of the samples were considered for differential expression

analysis. Out of a total of 8,920 annotated genes in T. gondii,
7,834 genes (RH), 8,047 genes (PLK), and 7,853 genes (CTG)
passed the 70% criteria. For the developmental stages 7,949
genes (tachyzoite) and 7,954 genes (bradyzoite) were available for
differential expression analysis after filtering. For the comparison
between stages and strains, only these expressed genes in both
of them were taken into account, which resulted in a further
decrease of comparable genes: 7,790 genes (RH vs. PLK), 7,679
genes (RH vs. CTG), 7,781 genes (PLK vs. CTG), and 7,863 genes
(tachyzoite vs. bradyzoite). The log2 transformed distribution of
differential expression among strains and stages is displayed in
Figure 2.

The distribution of differential expression is most compact
and centered on zero for tachyzoites vs. bradyzoites (Figure 2)
although the largest number of genes were available for
comparison. This is confirming the previous transcriptome
analysis of Croken et al. (2014) from which the data for this
study was acquired. Distribution of differential expression is
similar for RH vs. CTG and PLK while somewhat different
for PLK vs. CTG (Figure 2). This further confirms the finding
that the type I RH strain and type II PLK strain are closer
related in respect to their expressed genes than the type III CTG
strain that originates from a cat (Figure 1). Calculated log2 fold
changes and adjusted p-values were used to further filter the
genes for these comparisons. Selected significance threshold for
p-value was <0.05 and for the log2 fold change (l2fc), gene
expressions with log fold changes <−2 or >2 were applied.

FIGURE 2 | Distribution of differential gene expression (log2 transformed) between strains and developmental stages. Gene expressions falling into the shaded area

(violet) were not considered to be differentially regulated. Red dots outside the shaded area also pass the 0.05 p-value significance threshold. The number of

differentially regulated genes is 529 for PLK vs. CTG, 328 for RH vs. CTG, 613 for RH vs. PLK, and 0 between stages. See Supplementary Table 5 for the list of

gene expression.

Frontiers in Microbiology | www.frontiersin.org 6 January 2018 | Volume 8 | Article 2630

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Acar et al. The Expressed MicroRNA–mRNA Interactions of Toxoplasma gondii

While most genes were not differentially expressed given these
criteria, 529 genes in the PLK vs. CTG comparison were found
to be differentially expressed, whereas differentially expressed
genes for RH vs. CTG amounted to 328 and for RH vs. PLK
to 613. There was no significantly differentially expressed gene
for the comparison between tachyzoite and bradyzoite stages.
P-values and log fold change values for all comparisons and
filtered (by p-value and log2 fold change) genes are available in
Supplementary Table 5.

For each pair of strains, the five most differentially expressed
genes per strain were chosen (Figure 3). Only for RH vs. CTG,
the differential expression clusters developmental stages while for
PLK vs. CTG and RH vs. PLK the stages do not cluster at all.
Overexpressed genes in RH are not as strongly overexpressed
as for CTG and PLK. For developmental stages, which did not
have any significantly differentially expressed genes, the heatmap
(Figure 3, bottom right) does not display the expected clustering
for strains or developmental stages.

Many of the differently expressed genes are encoding
hypothetical proteins making it difficult to draw any conclusion.
However, with the ROP18 gene, our analysis showed a significant
stronger expression of the rhoptry protein ROP18 in RH
and PLK than in CTG confirming previous studies that
showed altered ROP18 gene expression in type III strains
(Taylor et al., 2006). As has been described, this difference
is linked to gene polymorphism and an additional DNA

segment upstream of the ROP18 gene in type III strains (Boyle
et al., 2008). ROP18 is accepted as an important virulence
factor; it acts as a serine-threonine kinase that phosphorylates
immunity-related GTPases (IRGs) thereby blocking interferon-
gamma-mediated immune responses and preserving integrity
of the parasitophorous vacuole membrane especially in mouse-
virulent type I and to a lesser extend in type II strains
(Fentress et al., 2012; Hermanns et al., 2016; Simpson
et al., 2016). Importantly, our finding of strain-specific
ROP18 gene expression also serves as proof-of-principle for
the in-silico analysis of microRNA—mRNA interactions of
T. gondii.

Another such example is our finding of the NTPase I gene
(S8G1H2) being strongly expressed in type I RH strain, but not
in the type II PLK strain. In the RH strain, the encoded enzyme
exists as a mixture of two isoenzymes termed NTPase I and
NTPase II. Whereas, the NTPase II gene is present in all strains of
T. gondii, the NTPase I gene is restricted to virulent type I strains
only. A slower hydrolyzation rate of ADP to AMP for NTPase
I in comparison to NTPase II was identified as the functional
difference between both isoforms (Asai et al., 1995). This early
observation of strain-specific expression of the NTPase I gene
has recently also been confirmed by reverse genetic analysis.
This technique also allowed to exclude an impact of NTPase
I or II on virulence in the mouse model (Olias and Sibley,
2016).

FIGURE 3 | Heatmaps showing the five most overexpressed genes per strain (RH: blue, PLK: brown, CTG: pink) and developmental stage (bradyzoite: dark green,

tachyzoite: mint). Each pair presents 10 genes of which 5 are overexpressed in one of the strains/stages and 5 in the other. Genes are hierarchically clustered based

on the expression among replicates. Overexpression was analyzed with pooled replicates, but for a better overview, all measurements are shown in columns including

their hierarchical clustering. Supplementary Table 5 contains all differential expression results and additional functional annotation.
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Finally, using our in-silico analysis, we identified a calcium-
translocating P-type ATPase, PMCA-type protein (S8EZ59) with
strain-dependent expression levels. A strain-specific expression
of enzymes belonging to these systems has not been described,
so far. These systems are involved in signaling by regulation of
calcium homeostasis and release (Nagamune et al., 2008). With
TgPMA1 and TgPMA2, a P-type ATPase has been identified
in T. gondii that exists in two isoforms; whereas TgPMA1 is
restricted only to bradyzoites, TgPMA2 is expressed also in
tachyzoites (Holpert et al., 2001).

MicroRNA Expression
For the expression analysis of miRNAs, pre-miRNAs were
compiled into an annotation file to enable usage with
standard expression analysis workflows. The same NKMN
normalization was applied to miRNA expression analysis. Due to
aforementioned differences in average read lengths, raw miRNA
counts varied greatly among samples even though normalization
was performed and despite the normalization being effective for
genes (Supplementary Figure 2). We hypothesize that perhaps
mature miRNAs are more likely to be sampled by shorter reads

FIGURE 4 | Heatmap showing the 50 miRNAs with largest average expression among samples. The strains (RH: blue, PLK: brown, CTG: pink) and developmental

stages (bradyzoite: dark green, and tachyzoite: mint) can be seen on top of the genes. Gene identifiers are provided on a per row basis on the right and sample

accessions are provided below the heatmap. Rows and columns have been clustered and expression amount is plotted in log2 scale using the pheatmap package

in R.

Frontiers in Microbiology | www.frontiersin.org 8 January 2018 | Volume 8 | Article 2630

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Acar et al. The Expressed MicroRNA–mRNA Interactions of Toxoplasma gondii

which is further confirmed by the lower mapping ratio of samples
with longer reads (Table 1).

In a similar fashion to gene expression analysis, the on average
most expressed 50 miRNAs were identified for a general idea of
expression among miRNAs and samples (Figure 4). A similar
picture emerges for miRNAs as for genes with the exception
that similarity between strains is not as clear as in the gene
expression analysis. CTG and PLK seem closer related in terms
of expression for some part of the data and for another part of
the data RH and PLK are closer related which is according to
expectation (Figure 4). The same samples which were outliers
for genes (overall less expression, Figure 1) show the opposite
behavior for miRNAs (overall more expression, Figure 4). Also,
these samples confirm the closer relationship between RH and
PLK seen for genes. Similarly, to gene expression, neither
the development stage nor the strain show significant overall
differences in expression for the 50 most expressed genes (on
average). It is noteworthy, that among the on average most
expressed 50 miRNAs, 43 were novel miRNAs predicted in this
study whereas only seven of them show high similarity to known
miRNAs (Figure 4).

Differential MicroRNA Expression
From initial 1,227,917 predictedmiRNAwith amodel confidence
score >0.99, 4,589 miRNAs remained for further analysis.
Similar to what was done during gene differential expression
analysis, miRNAs were required to be expressed in at least

70% of the samples. For the T. gondii strains, this lead to 398
miRNAs (RH), 515 miRNAs (PLK), 401 miRNAs (CTG); and
for the developmental stages 448 miRNAs (bradyzoite), and
447 miRNAs (tachyzoite), remained. These numbers further
decreased for comparison groups: 272 miRNAs (RH vs. PLK),
258 (RH vs. CTG), 289 (PLK vs. CTG), and 328 (tachyzoite vs.
bradyzoite).

For these miRNAs, Benjamini-Hochberg corrected t-test was
applied and log2 fold changes were calculated using R. The
same threshold values as for the differential gene expression
analysis (p-value < 0.05, l2fc > 2 or l2fc < −2) were applied
to differential miRNA expression analysis. Only 2 miRNAs were
found to be differentially expressed between PLK and CTG,
another 2 miRNAs between RH and CTG and 5 in RH vs. PLK.
No significantly differentially expressed miRNAs were found for
tachyzoite vs. bradyzoite stages which is in-line with the findings
for the above gene expression analysis. The distribution of log2
fold changes for miRNAs can be seen in Figure 5, and the list of
miRNAs with their p-values and log2 fold changes is available in
Supplementary Table 6.

The log2 fold change distributions among strains and stages
is quite similar for miRNAs (Figure 5) with the exception of
differential expression for tachyzoites vs. bradyzoites which
shows a very small inter quartile range (Figure 5).

Clustering of strains is dominating clustering in respect
to developmental stage (Figure 6). Four of the miRNAs were
annotated via similar sequences in miRBase, but unfortunately,

FIGURE 5 | Distribution of differential miRNA expression (log2 transformed) between strains and developmental stages. MicroRNA expressions falling into the shaded

area (violet) were not considered to be differentially regulated. Red dots outside the shaded area also pass the 0.05 p-value significance threshold. The number of

differentially regulated miRNAs is 2 for PLK vs. CTG, 2 for RH vs. CTG, 5 for RH vs. PLK, and 0 between stages. See Supplementary Table 6 for the list of miRNA

expression.
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they are either of plant origin or their targets are not annotated
so that a cross annotation is not possible in this case. Many of
the significantly differentially expressed miRNAs were detected
in this study. While differential miRNA and gene expression
are topics for complete manuscripts, we believe that instead
miRNA—mRNA interactions which define the regulatory process
are more worthy of discussion.

MicroRNA—mRNA Interactions
For miRNAs to be functionally active, they need to be co-
expressed with their target mRNAs. It is, therefore, prerogative
to ensure that both miRNA and target(s) are expressed in the
same sample to enable any conclusion about miRNA regulation.
Above, pre-miRNAs andmaturemiRNAs were detected and their
expression was confirmed. Gene expression was also established
for the same samples. Therefore, it is possible to analyze miRNA
and mRNA co-expression in this study. As a caveat, even
though miRNA expression was explored in this study, generally
miRNA expression analyses require specifically prepared libraries
(Eminaga et al., 2013). However, the samples used in this study
were prepared to detect mRNAs rather than miRNAs which led
to low detection of miRNAs and almost no detection of their
differential expression. To overcome this challenge, all miRNAs
that do not originate from an annotated gene were discarded.
For the remaining miRNAs (4,240) the expression of their source
genes was used to represent their expression. Naturally, more

reads will be mappable to mRNAs than to much shorter miRNAs
which makes the approach chosen here more robust, as well.
Thus, an interaction for this study is defined by a source gene
and a target gene connected by via miRNA and co-expressed in
the same sample.

Overall, 4,240 miRNAs and 8,920 (all annotated T. gondii
mRNAs) were available for interaction analysis. Theoretically,
∼40 million such interactions are possible given these data. The
first restriction applied to the data was that any interaction
considered here needed to have the miRNA and its target co-
expressed in at least one sample. Out of a total of 161,970
interactions 65,602 were found to be co-expressed in this manner
(Figure 7).

For the analysis of the differential expression of interactions,
the ratio of target gene expression divided by source gene
expression was used. Interactions needed to exist in at least 70%
of the samples in order to qualify for differential expression
analysis.

Out of the total 65,602 interactions found, 63,120 of them
were expressed in the samples of the RH strain. PLK had 63,778,
CTG strain 62,494, bradyzoite stage 62,994, and tachyzoite stage
62,369 interactions in their respective samples. As before, when
considering differential expression of interactions, these numbers
further trimmed down to 62,867 (RH vs PLK), 61,923 (RH
vs. CTG), 62,441 (PLK vs. CTG), and 61,874 (tachyzoite vs.
bradyzoite).

FIGURE 6 | Heatmaps showing all differentially expressed microRNAs for pairs of strains (RH: blue, PLK: brown, CTG: pink) and developmental stages (bradyzoite:

dark green, tachyzoite: mint). MicroRNA expression is hierarchically clustered based on the expression among replicates. Overexpression was analyzed with pooled

replicates, but for a better overview, all measurements are shown in columns including their hierarchical clustering. Supplementary Table 6 contains all differential

expression results and additional functional annotation.
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FIGURE 7 | Putative functional interactions. All of the co-expressed interactions found in this study are shown as a network. This network will be further analyzed in

future work to draw better and specific conclusions about T. gondii miRNA-based regulation. Further information can be found in Supplementary Table 8, where all

targets of miRNAs are listed.

FIGURE 8 | Distribution of differential expression of interactions (log2 transformed) between strains and developmental stages. Expressed interactions falling into the

shaded area (violet) were not considered to be differentially regulated. Red dots outside the shaded area also pass the 0.05 p-value significance threshold. The

number of differentially regulated interactions is 4502 for PLK vs. CTG, 5488 for RH vs. CTG, 6508 for RH vs. PLK, and none between stages. See

Supplementary Table 7 for the list of expressed interactions.
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T-test and log2 fold change calculations were performed
for the remaining interactions. Thresholds were kept the same
(p < 0.05, l2fc < −2 or l2fc > 2) for the assessment of differential
expression among strains and development stages. As can be
seen in Figure 8, log2 fold changes between developmental stages
did not vary significantly which is similar to the findings for
differential expression of genes and miRNAs. The distributions
look similar to the distributions of differential gene expression
(Figure 2) as can be expected since an interaction is defined by
the ratio of the expression of a pair of genes. After significance
filtering, 4,502 interactions were found to be differentially
expressed in PLK vs. CTG, 5,488 (RH vs. CTG), 6,508 (RH
vs. PLK), and none for bradyzoites vs. tachyzoites. The list of
these interactions, log2 fold change, and p-values is available in
Supplementary Table 7.

Most of the top differentially expressed interactions are new
detections in this study. For the comparison between RH and
CTG, however, more than half of the top differentially expressed
interactions involve miRNAs similar to mouse examples. The
comparison among strains leads to clustering of strains before
stages (Figure 9). This is different for comparison between
developmental stages where the clustering is not as expected
which may be due to missing of actual significant differential
expression. The complete list of interactions, available in
Supplementary Table 7, may path the way for new findings
about regulation within T. gondii.

It is interesting to note, that 10s of miRNAs, 100s of
genes, and 1000s of interactions were significantly differentially
expressed among strains but not between developmental stages.

TABLE 2 | Differential expression values for selected genes.

Differential expressions

Gene name LDH1 LDH2 GRA5

L2fc p adjusted L2fc p adjusted L2fc p adjusted

PLK vs. CTG −0.919 0.0455 0.254 0.8707 −0.860 0.2811

RH vs. CTG −0.225 0.4964 −4.576 0.0056 0.429 0.2957

RH vs. PLK 0.694 0.1023 −4.830 0.0030 1.289 0.1026

Tachy vs. Brady −0.034 0.9135 −1.380 0.9919 0.140 0.9474

Gene name ROP18 S8G1H2 S8EZ59

L2fc p adjusted L2fc p adjusted L2fc p adjusted

PLK vs. CTG 6.862 0.0003 −0.597 0.5698 −1.431 0.0677

RH vs. CTG 6.758 0.0005 4.664 0.0030 −7.431 0.0009

RH vs. PLK −0.103 0.9251 5.260 0.0010 −6.000 0.0004

Tachy vs. Brady 0.317 0.9135 0.362 0.9830 0.436 0.9849

Listed genes in this table were found to be differentially expressed in other studies. While

this was not the case in our study for all of them, it was found that some of the genes still

show such differences (LDH2, ROP18, and S8G1H2).

FIGURE 9 | Heatmaps showing the five most overexpressed interactions per strain (RH: blue, PLK: brown, CTG: pink) and developmental stage (bradyzoite: dark

green, tachyzoite: mint). Each pair presents 10 interactions of which five are overexpressed in one of the strains/stages and 5 in the other. Interactions are

hierarchically clustered based on the expression among replicates. Overexpression was analyzed with pooled replicates, but for a better overview, all measurements

are shown in columns including their hierarchical clustering. Supplementary Table 7 contains all differential expression results and additional functional annotation.
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The interactions consist of co-expressed miRNAs and genes.
From these results it can be deduced that few miRNAs and
genes can lead to a wide variety of expressed (including
differentially expressed) interactions which may have a large
influence on the resulting phenotype. To the best of our
knowledge, this is the first study investigating expressed
interactions.

Throughout this analysis it was found that tachyzoites and
bradyzoites were extremely similar. This is in contrast to
previous findings. For example, LDH1 has been described to
be expressed only in tachyzoites and LDH2 only in bradyzoites
(e.g., Abdelbaset et al., 2017) while our results imply that
LDH1 is uniformly expressed and LDH2 only slightly and
not significantly differentially expressed between developmental
stages (Table 2). No significant evidence for GRA5 dysregulation
could be found although it has been reported to be upregulated
in RH bradyzoites and downregulated in PLK bradyzoites (Cleary
et al., 2002).

Our results do confirm a slight downregulation of GRA5
in bradyzoites, albeit, without significance (Table 2). The
data used in this study derived from Croken et al. (2014)
and they also identified no significant expression differences
between developmental stages. This is in agreement with a
recent study performing principle component analysis which
led to a close grouping of tachyzoites and bradyzoites
stages (Behnke et al., 2014). Further works, which must
also proof the proper induction of bradyzoites, are necessary
to be able to better understand differential gene, miRNA,
and miRNA interaction expression between developmental
stages.

CONCLUSION

Little is known about the miRNA-based regulation in T. gondii.
Therefore, pre-miRNAs, their associated mature miRNAs, and
their mRNA targets were predicted from the ME49 genome. A
publicly available RNA-seq dataset investigating three T. gondii
strains (RH, PLK, and CTG) and two developmental stages
(tachyzoite and bradyzoite) was used to analyze expression of the
detected miRNAs and their targets. In an attempt to add further
confidence, miRNAs and their targets were analyzed together in
form of putative interactions. 65,602 expressed interactions were
found between the 4,240 miRNAs and 8,920 annotated mRNAs.
Previously, 339 miRNAs have been described for T. gondii of
which we previously disputed 47 out of 339 (Saçar Demirci
et al., 2016). Here we present 4,240 miRNAs (containing 305
of the 339 known ones) and their targets co-expressed in the
same sample (Supplementary Table 8). It is our contention, that
interactions have a higher confidence than considering merely
miRNAs. These interactions are likely to represent interesting
drug targets. For instance, miRNA mimics (Wang, 2011) can be
used to target the targeting-side of interactions while miRNA
decoys (Bak et al., 2013) can be designed to target the miRNAs
themselves. The former introduces miRNAs which reduce the
amount of available protein of their targets and they may be
mimics of existing T. gondii miRNAs, but can also be designed

de novo. The latter reduces the impact of intrinsic miRNAs by
providing an abundance of target sequences effectively reducing
the amount of interactions with mRNAs. Such approaches have
been tested for example in human (Avci and Baran, 2014) and
since T. gondii exchanges vesicles with its hosts (Romano and
Coppens, 2013), drugs may be delivered to the parasite via
the host system. Knowledge about the interactions in different
stages of T. gondii development and within different hosts will
enable the design of miRNAmimics and decoys by showing their
availability and differential distribution.
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Supplementary Table 1 | Statistics of reads. All of the mapped, unmapped, and

deleted reads can be seen in their respective columns.

Supplementary Table 2 | List of pre-miRNAs. From 0.99 confidence to all

filtering steps, lists of pre-miRNAs are provided in their respective sheets.

Supplementary Table 3 | List of all mature miRNAs. Mature miRNAs that passed

the filtering after machine learning process are given with their sequences.

Supplementary Table 4 | Raw and normalized gene and miRNA counts. All of

the count values are presented in their respective samples in columns, in 4

different sheets for raw and normalized values.

Supplementary Table 5 | List of differentially expressed genes. All of the

comparisons are given in different excel sheets and the significant differential

expressions are gathered in extra sheets for each comparison.

Supplementary Table 6 | List of differentially expressed miRNAs. All of the

comparisons are given in different excel sheets and the significant differential

expressions are gathered in extra sheets for each comparison.

Supplementary Table 7 | List of differentially expressed interactions. All of the

comparisons are given in different excel sheets and the significant differential

expressions are gathered in extra sheets for each comparison.
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Supplementary Table 8 | List of mature sequences and their target candidates.

For the formed network, all of the targeted genes for each mature miRNA (that

survived the filtering) were presented.

Supplementary Figure 1 | Score distributions of 1,000 machine learned models

established using 1,000-fold Monte Carlo cross validation.

Supplementary Figure 2 | Distribution of normalized miRNA expressions.

Normalization method that was employed to genes were applied to miRNA

expressions. It was seen that median values were varying between samples but

closer among similar mean read lengths.

Supplementary Figure 3 | Distribution of normalized genes. The values shown

on the y-axis is the resulting numbers from the formula presented in normalization

method. Normalization was done for each gene in each sample and the

distribution of mapped nucleotides were found to have closer median values than

raw counts.
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