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The ability to use structure-based design and engineering to control the molecular

shape and reactivity of an immunogen to induce protective responses shows great

promise, along with corresponding advancements in vaccine testing and evaluation

systems. We describe in this review new paradigms for the development of a B

cell-based HCV vaccine. Advances in test systems to measure in vitro and in vivo

antibody-mediated virus neutralization include retroviral pseudotype particles expressing

HCV E1E2 glycoproteins (HCVpp), infectious cell culture-derived HCV virions (HCVcc),

and surrogate animal models mimicking acute HCV infection. Their applications have

established the role of broadly neutralizing antibodies to control HCV infection. However,

the virus has immunogenic regions in the viral envelope glycoproteins that are associated

with viral escape or non-neutralizing antibodies. These regions serve as immunologic

decoys that divert the antibody response from less prominent conserved regions

mediating virus neutralization. This review outlines the immunogenic regions on E2,

which are roughly segregated into the hypervariable region 1 (HVR1), and five clusters of

overlapping epitopes designated as antigenic domains A-E. Understanding themolecular

architecture of conserved neutralizing epitopes within these antigenic domains, and how

other antigenic regions or decoys deflect the immune response from these conserved

regions will provide a roadmap for the rational design of an HCV vaccine.

Keywords: hepatitis C virus, vaccine design, epitopes, virus neutralization, antigenic domains, human monoclonal

antibodies

INTRODUCTION

Chronic hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver failure and
hepatocellular carcinoma (Mohd Hanafiah et al., 2013). The virus has infected 3% of the global
population with an annual rate of 3–4 million new infections. The number of deaths associated
with HCV infection in the United States has been increasing, and it is the primary indication for
liver transplantation in the Western world (Rosen, 2011; Ly et al., 2016). While advances in HCV
treatment with direct-acting antivirals (DAA) have led to cure rates over 90% with HCV treatment,
high costs limit access to these drugs in developing and in developed countries (Cox and Thomas,
2013; Callaway, 2014; Chung and Baumert, 2014). Diagnosis of HCV infection often occurs at a
late stage and successful DAA treatment will not alter the risk for cancer. DAA treatment is also
less successful with genotype 3 infection, decompensated liver disease and transplant recipients. In
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addition, reinfection remains a problem even after successful
treatment in subjects with continued at risk behavior such as
injection drug use. For these reasons, an effective prophylactic
vaccine is needed.

The genetic diversity of HCV of at least seven HCV genotypes
that differ up to 30% in nucleotide sequence, which can be
further subdivided into 67 subtypes (Tarr et al., 2015), poses a
major challenge to develop a pan-genotypic vaccine (Walker,
2017). Another hurdle is that immune correlates of protection
have yet to be defined for HCV. Nonetheless, B cell immunity
contributes to the host defense against HCV infection, although
it is more complex than sterilizing immunity as observed for
hepatitis A, B and E vaccines (Walker, 2017). During acute
infection, a robust neutralizing antibody response correlates
with spontaneous resolution of infection (Saito et al., 1990;
Lavillette et al., 2005; Pestka et al., 2007; Dowd et al., 2009;
Lawitz et al., 2013; Osburn et al., 2014; Walker and Grakoui,
2015). Passive immunization with anti-HCV antibodies before
HCV challenge prevented infection in animal models (Farci
et al., 1996; Law et al., 2008; Dorner et al., 2011; Morin
et al., 2012; Bukh et al., 2015). However, passive immunization
of chimpanzees with antibodies that neutralized infectivity of
several HCV genotypes in cell culture only delayed infection
with homologous virus challenge and failed to protect against
heterologous virus strains (Bukh et al., 2015). Other complicating
factors for vaccine development include viral envelope proteins
of low immunogenicity as suggested by a slow antibody response
during acute infection (Logvinoff et al., 2004; Dowd et al., 2009;
Liang, 2013) and antibody responses directed at regions of the
viral envelope that have a highmutational rate of change (Weiner
et al., 1992; Shimizu et al., 1994). In addition, antibody responses
in an infected individual tend to lag behind the contemporaneous
strains of virus in circulation (von Hahn et al., 2007).

Making it more challenging, accessibility to specific antigenic
regions and the induction of neutralizing antibodies to these
regions can be hindered by glycan shielding (Helle et al.,
2007, 2010). Moreover, direct cell-to-cell transmission of the
virus, circulating virions in complex with lipoproteins and
downregulation of major histocompatibility complex (MHC)
expression are other mechanisms for the virus to escape
protective immunity (For review see, André et al., 2002; Cashman
et al., 2014; Dunlop et al., 2015; Pierce et al., 2016a). Development
of an effective vaccine for HCV must consider these factors.

CHALLENGES OF ANTIGENICALLY
VARIABLE VIRUSES

The genetic diversity of HCV is high and commensurate with
other antigenically variable viruses. Based on alignments of
amino acid reference sequences (represented as phylogenetic
trees in Figure 1), HCV shows 23% median sequence divergence
within genotypes and 33% divergence across genotypes. In
contrast, HIV gp120/gp41 (env) has moderately lower sequence
variability with 21%median divergence within subtypes and 28%
across subtypes, while influenza A virus hemagglutinin has lower
variability within hemagglutinin subtype (5%), and much higher

sequence variability across subtypes (58%).While specific percent
divergence values can vary somewhat based on composition of
reference sets, there are clear distinctions in overall glycoprotein
sequence diversity among these viruses. Within an infected host,
HCV actively avoids immune surveillance (von Hahn et al., 2007)
and evolves into a large number of quasispecies through error-
prone replication (Tarr et al., 2015) that have up to 10% sequence
variations (Simmonds et al., 2005). The lack of proofreading
capacity by the viral polymerase leads to a mutational rate of
10−5-10−4 nucleotides per replication cycle that is a magnitude
higher than that for HIV and HBV (Duffy et al., 2008).

Critical to the development of an effective vaccine is
the identification and characterization of conserved epitopes
associated with viral neutralization, particularly in the E1 and E2
glycoproteins that are the primary neutralizing antibody (nAb)
targets (Ball et al., 2014). The E1 and E2 glycoproteins form a
heterodimer (E1E2) (Vieyres et al., 2014), and recent evidence
suggests that E1 forms trimers on the virion, mediated by the
E1 transmembane region, resulting in higher order assemblies
containing three E1E2 heterodimers (Falson et al., 2015). These
glycoproteins are associated with viral entry via interactions with
several cellular receptors, including scavenger receptor class B
type 1 (SR-B1) (Scarselli et al., 2002; Fauvelle et al., 2016) and
the tetraspanin CD81 (Pileri et al., 1998), as well as fusion with
the endosomal membrane once the virus has been internalized
by clathrin-mediated endocytosis (Lindenbach and Rice, 2013).
The underlying genetic variability occurs despite the requirement
for essential interactions between the envelope glycoproteins and
cellular receptors necessary for viral entry, and such interactions
have been mapped to highly conserved residues in the E2 protein
(Drummer et al., 2006; Owsianka et al., 2006; Grove et al., 2008;
Rothwangl et al., 2008).

The sequence variability of E1 and E2 is not uniform within
the protein coding regions (Pierce et al., 2016a). As shown in
Figure 2, E1 and E2 include pronounced regions of high amino
acid conservation, as well as other regions with considerable
sequence variability; the latter category includes hypervariable
region 1 (HVR1, aa 384-410), hypervariable region 2 (HVR2,
aa 460-485), and intergenotypic variable region (igVR, aa 570-
580) on E2. HVR1 (highlighted in Figure 2) is located at the
N-terminus of E2 and is under constant immunological pressure.
HVR1 serves as a major “immunologic decoy” of the virus
(Weiner et al., 1992; Dowd et al., 2009). Other regions of E2
exhibit moderate to complete sequence conservation such as
residues 412-423 (antigenic domain E, highlighted in Figure 2)
which contains linear epitopes targeted by well-characterized
broadly nAbs (Owsianka et al., 2005; Broering et al., 2009; Keck
et al., 2013), and residues 441-443 and 523-535 which have been
reported to be important for recognition of host entry receptors
and broadly neutralizing antibodies (Keck et al., 2008, 2012).

MAPPING ANTIGENIC DETERMINANTS OF
BROAD VIRUS NEUTRALIZATION

Cross-competition analyses and epitope mapping of broadly
neutralizing human monoclonal antibodies (HMAbs) derived
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FIGURE 1 | Sequence variability of HCV in comparison with other viruses. Phylogenetic trees of HCV E1E2 (A), HIV env (gp41/gp120; B), and influenza hemagglutinin

(HA; C) are shown. E1E2 amino acid reference sequences (N = 204) were downloaded from the LANL HCV database (Kuiken et al., 2005), HIV env reference

sequences (N = 39) were downloaded from the LANL HIV database (http://www.hiv.lanl.gov), and influenza A HA clones were from Corti et al. (2011), with amino acid

sequences downloaded from the Influenza Research Database (Zhang et al., 2017). Multiple sequence alignments were performed using MAFFT software (Katoh and

Standley, 2013). Phylogenetic trees were built using the neighbor joining method, and visualized using the APE package (Paradis et al., 2004) in R. Sequence names

are labeled, and are colored according to HCV genotype (A), HIV subtype (B), and influenza group (C; red = group 1, blue = group 2). Scale bar represents 5%

sequence divergence.

from B cells of subjects with chronic HCV infections have
identified at least seven clusters of overlapping epitopes on HCV
E1E2. Four clusters, designated as antigenic domains A-D, are
composed of conformational epitopes on E2 (Table 1) (Keck
et al., 2012). Two additional clusters, designated as antigenic
regions (AR) 4 and 5, are composed of conformational epitopes
on E1E2 (Kong et al., 2012); representative antibodies AR4A

and AR5A had binding determinants mapped to residues in
both E1 and E2 using alanine scanning, and did not engage
soluble E2 or denatured E1E2 (Kong et al., 2012). It should
be noted that the major antigenic region on E2, designated as
AR3, overlaps substantially with antigenic domain B by cross-
competition and epitope mapping studies (Law et al., 2008).
Interestingly, AR5 overlaps with an antigenic domain C HMAb,
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FIGURE 2 | Amino acid sequence variability of HCV envelope glycoproteins E1 and E2 Sequence logos (Crooks et al., 2004) were generated using a multiple

sequence alignment of approximately 400 complete E1E2 amino acid sequences downloaded from the Los Alamos HCV database (Kuiken et al., 2005). This gives

amino acid propensities at each E1 and E2 position (residues 192-383 and 384-746, respectively, based on the H77 isolate numbering), with total height at each

position representing sequence conservation (more variable positions have lower height). Hypervariable regions of E2 are shown in red boxes, and hypervariable

region 1 (HVR1; aa 384-410) is highlighted. Antigenic domain E (aa 412-423) is shown in blue box and highlighted. Figure adapted from Pierce et al. (2016a).

TABLE 1 | E2 antigenic domains, representative monoclonal antibodies, and

representative structures of antibody-epitope complexes in the Protein Data Bank

(PDB) (Rose et al., 2011).

Antigenic

domain

Residues Antibodies PDB structures

HVR1 384-410 H77.16 –

A 581-584,

627-633

CBH-4D, CBH-4G,

CBH-20

–

B 431-439,

529-535

HC-1, HC-11, CBH-5,

AR3C

4MWF (Kong et al., 2013)

C 544-549 CBH-7, CBH-23 –

D 420-428,

441-443

HC84.1, HC84.26 4JZN (Krey et al., 2013), 4JZO

(Krey et al., 2013)

E 412-423 HCV1, AP33, HC33.1 4DGY (Kong et al., 2012), 4GAJ

(Potter et al., 2012), 4XVJ (Li

et al., 2015)

CBH-7, by competition analysis and epitope mapping, although
CBH-7 binds to E2 and does not require E1 (Giang et al., 2012).
A seventh cluster of broadly neutralizing antibodies contains
overlapping linear epitopes that are located adjacent to HVR1
on E2. This cluster is designated as antigenic domain E and
encompasses amino acids 412-423 (Keck et al., 2014). In addition,
there are several sites on E1 alone that have been identified as
epitopes of neutralizing monoclonal antibodies, including the E1
N-terminus (aa 192-202) which is targeted by antibody H-111
(Keck et al., 2004), and a separate site (aa 313-328) targeted by
HMAbs IGH505 and IGH526 (Meunier et al., 2008), the latter

of which was characterized structurally in complex with its E1
epitope (Kong et al., 2015b).

Global alanine scanning of E2 has recently been reported
using E2-binding HMAbs and site-directed mutagenesis of the
E1E2 coding sequence, and ELISA readout assays to compare
mutant binding levels to wild-type (Figure 3; Pierce et al., 2016b).
This analysis provided many new insights into the E2 3D
structure and determinants of antibody recognition. Although
some key binding residues were located on the E2 surface, a large
portion of them were buried in E2 core structures (Kong et al.,
2013; Khan et al., 2014), including cysteines in disulfide bonds
and large hydrophobic residues. These residues are not likely to
contact the antibodies directly but rather influence recognition
through effects on E2 local or global stability. Computational
alanine scanning using the E2 core crystal structure (Kong et al.,
2013) to predict E2 stability determinants largely agreed with key
E2 sites from global alanine scanning (Pierce et al., 2016b), and
also highlighted several positions in a dynamic region targeted
by neutralizing antibodies and CD81. Correlations between
residues from global alanine scanning were used to predict
possible contacts between E2 residues in the native structure;
these predictions may be useful in computational modeling of
the full E2 and E1E2 glycoprotein structures (recent studies
in this regard are noted below). Epitope mapping by alanine
substitution studies identified two highly conserved E2 residues
Gly530 and Asp535 that are required for binding by all antigenic
domain B HMAbs (Keck et al., 2008). Additional residues were
identified, Gly523 and Trp529, that are also required for binding
by some, but not all, of these antibodies. Importantly, Trp529,
Gly530, and Asp535 were previously reported to participate
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FIGURE 3 | Global E2 alanine scanning, shown as heat map. E2 alanine

mutants are on the vertical axis, while HMAbs are on the horizontal axis,

colored by antigenic domain (domain A, red; domain B, magenta; domain C,

cyan; domain D, green; domain E, blue). Heat map colors represent measured

affinity compared with wild-type (H77) E2 as detailed in the legend. Figure

adapted from Pierce et al. (2016b).

in the interaction of E2 with CD81 (Owsianka et al., 2006).
Thus, the broad neutralizing activity of antigenic domain B
HMAbs is mediated by competing with CD81 for binding to
conserved residues on E2 that are necessary for virus entry.
Similarly, three highly conserved residues form a core region

for antigenic domain D epitopes at Leu441, Phe442, and Tyr443
(Keck et al., 2012). Leu441 and Tyr443 are absolutely conserved
among all known HCV isolates. Phe442, however, is only 60%
conserved. Similar to domain B, the domain D region is also
involved in interaction with CD81. For AR4- and AR5-specific
epitopes that require association of the E1E2 heterodimer,
antibodies binding to this region do not mediate neutralization
by inhibiting E2 interaction with CD81, but rather potentially
block E1E2 engagement with another co-receptor and/or prevent
the necessary conformational change in the E1E2 structure
required for virus entry (Giang et al., 2012). With the elucidation
of the E2 core structure (Kong et al., 2013), the vast majority of
these antibodies, antigenic domain B and D, and AR3, are located
on the neutralizing face (Figure 4).

Not all broadly neutralizing antibodies share the same anti-
viral characteristics. In virus co-culture studies, some antigenic
domain B antibodies are associated with viral escape, with and
without compromising viral fitness, and others are resistant to
viral escape. For instance, at a critical antibody concentration,
HC-1, a domain B HMAb, can eliminate infectious virions in cell
culture with no viral escape mutants detected. Other antibodies,
such as CBH-2 andHC-11 that target the same antigenic domain,
permitted viral escape through specific mutations in a region of
domain B after repeated passages in the presence of increasing
concentrations of the antibodies (Keck et al., 2011). Antibodies to
antigenic domain E (aa 412-423) are also associated with different
patterns of viral escape. Escape from virus neutralization with
AP33 and HCV1 nAbs occurs when there is an N-glycan shift
from Asn417 to Asn415 (Chung et al., 2013). This glycan shift,
however, does not affect neutralization by other antigenic domain
E HMAbs, such as HC33.1 (Keck et al., 2014). Interestingly,
escape from antigenic domain D HMAbs has not been observed
in co-culture studies even though a critical residue, Phe442, is
only 60% conserved (Pierce et al., 2016b). Structural studies
provided an explanation of the lack of viral escape in that three
residues, located at 441-443, form a hydrophobic protrusion that
serves as the binding site for domain D HMAbs (Pierce et al.,
2016b). When there is a mutation from F442I or F442L, the
interaction with the paratope formed by the heavy chain CDRs
leads to a decrease in binding energy of the complex that can be
compensated by increasing the antibody concentrations. Taken
together, functional and biochemical characterization of broadly
reactive nAbs creates a high-resolution database and functional
map of neutralizing epitopes that can be strategically used in
rational vaccine design.

HCV ENVELOPE STRUCTURE AND
ANTIBODY RECOGNITION

As noted previously, the E1 and E2 glycoproteins form a
heterodimer (OpDe Beeck et al., 2000), though E2 is the primary,
albeit not the exclusive, target of the antibody response. This
suggests that E2 is more exposed than E1 in the context of
the virion. E2 is heavily glycosylated, typically containing 11
N-glycans at specific sites, while E1 has up to 5 N-glycans
(Vieyres et al., 2014). These N-glycans have been characterized
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FIGURE 4 | Antigenic domains mapped to the surface of E2. Antigenic domains are colored and labeled on the neutralizing (front layer; A) and non-neutralizing (back

layer; B) face of the E2 core structure (PDB code 4MWF), with key epitope residues shown in space-fill and a subset of those residues labeled. Basic N-glycans were

modeled at all 10 sites present in the E2 core structure (N1-N4, N6-N11) using the GlyProt web server (Bohne-Lang and von der Lieth, 2005), and are shown as

orange sticks. As the E2 core structure does not include coordinates for the majority of domain E (residues 412-423; of which 412-420 are not present), the domain E

coordinates from the domain E-HCV1 complex structure (PDB code 4DGY) were modeled at that site. Hypervariable region 1 (HVR1), which is located at the

N-terminus of E2 and also is not represented in the E2 core structure, is shown as a black line for reference. Figure adapted from Fauvelle et al. (2016).

using mass spectroscopy (Iacob et al., 2008), and a number of
studies have shown that glycans modulate antibody recognition
of E2 in vitro (Falkowska et al., 2007; Helle et al., 2007) and
in vivo (Li et al., 2016; Ren et al., 2016). Notably, one E2 N-
glycan (N3; position Asn 430) interacts directly with a broadly
neutralizing antibody (AR3C), albeit in the interface periphery,
in the crystallographic structure of the AR3C-E2 complex (Kong
et al., 2013). Additionally, there are four predicted O-glycans on
E2, two of which are located in HVR1 (Bräutigam et al., 2013).

Over the past 5 years, a number of studies have helped to
elucidate structural features of E1 and E2, as noted in recent
reviews (Khan et al., 2015; Kong et al., 2015a; Pierce et al.,
2016a). These have collectively shown that key epitopes targeted
by broadly neutralizing antibodies on the “front layer” of E2,
which corresponds to the CD81 binding face, exhibit structural
heterogeneity, in particular E2 antigenic domain E (Kong et al.,
2012; Li et al., 2015; Meola et al., 2015), as well as antigenic
domains B and D (Kong et al., 2013; Deng et al., 2014; Keck et al.,
2016b; Vasiliauskaite et al., 2017). This has been underscored
by a recent study, which combined experimental structural and
biophysical characterization with simulations to characterize
mobility of the CD81 binding region of E2 (Kong et al., 2016).

Two independently determined structures of the E2
glycoprotein “core” region, corresponding to truncations of
glycoprotein ectodomains (Kong et al., 2013; Khan et al.,
2014), provide major insights into the tertiary structure of E2.
Despite the use of distinct monoclonal antibodies, engineered
truncations, expression systems, and represented genotypes (1a
and 2a), these structures are highly similar overall (approximately
0.8 Å root mean square distance between Cα residues), revealing
a globular fold stabilized by numerous disulfide bonds. However,
as noted by others in separate reviews (Castelli et al., 2014; Khan
et al., 2015), a number of questions remain largely due to (1)
discrepancy between disulfide bonds between the current E2

core crystal structures, (2) large critical regions of E2 absent
from these structures due to disordered residues or truncation,
including HVR1 (aa 384-410), domain E (aa 412-423), HVR2
and flanking residues (aa 453-485), and the ectodomain C-
terminal region (aa 646-717), and (3) absence of the E1 portion
of the heterodimer. The two studies describing the E2 core
crystal structures did include electron microscopy (Kong et al.,
2013) and small angle x-ray scattering (Khan et al., 2014)
characterization of the larger E2 ectodomains, but their limited
resolution does not permit a view of residue interactions, surface
residues, or secondary structures, which collectively would be of
potential interest for rational vaccine design.

Characterization of the E1 structure has been limited to
nuclear magnetic resonance (NMR) structures of short helical
regions (Op De Beeck et al., 2000; Spadaccini et al., 2010),
an antibody-epitope complex (Kong et al., 2015b), and the N-
terminal region of E1, which displayed an unexpected dimeric
assembly (El Omari et al., 2014); follow up studies on the latter
would help to confirm its representation of the structure of native
E1 on the viral envelope. While the above studies have provided
key details on the structure and dynamics of key sites, high-
resolution structural determination of uncharacterized regions of
E1, E2, and, in particular, the E1E2 heterodimer, will be greatly
informative for rational vaccine design efforts and understanding
of viral assembly.

COMPUTATIONAL MODELING OF E1E2
ASSEMBLY

Due to the absence of experimentally determined structures
of the E1E2 heterodimer, two recent studies have used
computational modeling methods to predict the structure of
this assembly (Castelli et al., 2017; Freedman et al., 2017).
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These models were generated with distinct methods, specifically
residue co-evolution analysis based on E1E2 sequence alignments
(referred to as evolutionary coupling) to infer residue contacts
and guide modeling in one study (Castelli et al., 2017), and a
combination of template-based modeling, folding and docking in
the other (Freedman et al., 2017). The latter work also employed
constraints based on experimental data to guide modeling, and
included a model of the transmembrane regions and the putative
trimeric assembly of E1E2. As neither of these studies published
coordinates of their models, it is not possible to compare directly
the extent of convergence between their predicted structures.
Both of these studies cross-reference their respective E1E2
structural models with measured alanine scanning and epitope
mapping data to provide support, though validation of these
models using, for example, experimental characterization of
previously uncharacterized mutants of residues predicted to be
determinants of E1E2 stability, would provide more conclusive
model confirmation. In fact, one of these studies did present
pairs of key predicted E1 and E2 interacting residues (Freedman
et al., 2017), though no new mutants were tested experimentally
in either study. Cross-validation against experimental findings
from additional studies, for example recent identification of E1
residuesW239, I262, andD263 as putative interface residues with
E2 (Haddad et al., 2017), would also help to validate and refine
such models.

HCV HOST IMMUNE EVASION
STRATEGIES

Mechanisms of HCV evasion from the immune system have been
described in several recent reviews (Cashman et al., 2014; Dunlop
et al., 2015; Pierce et al., 2016a). Extreme levels of viral sequence
variability, leading to millions of quasispecies within infected
individuals, permit the virus to escape antibody and T cell
responses through disruption of immune molecular recognition.
A salient example of this mechanismwas observed during clinical
trials of the HCV1 monoclonal antibody in humans, where
initial viral suppression was followed by rebound where isolates
exhibited specific amino acid variants at residues N415 and N417
(the latter resulting a shift in glycosylation from residue 417
to residue 415). These variants severely disrupted the ability
of HCV1 to bind E2 and neutralize virus, and were rare or
undetectable prior to treatment and in patients receiving placebo
(Chung et al., 2013; Babcock et al., 2014). Other viral escape
mechanisms include epitope shielding by viral glycans, and the
presence of hypervariable “decoy” epitopes that elicit antibodies
that compete with broadly neutralizing antibodies (Keck et al.,
2016a) are summarized in reviews as noted previously.

Recent studies have highlighted the role of E2 co-receptor
recognition in the evasion of the antibody response. Using an
analysis of monoclonal antibody resistance among a large set
of genotype 1 isolates, El-Diwany et al. identified key sites on
E2 that permitted escape through modulation of E2 binding
to SR-B1 (El-Diwany et al., 2017). Another study found that a
set of growth-adapted mutants, isolated from a large library of
genotype 2 clones based on the JFH-1 isolate, exhibited increased

neutralization by monoclonal antibodies and lower dependence
on SR-B1 binding for infectivity (Zuiani et al., 2016). These
findings possibly correlate to the observation of a correlation
of viral infectivity with overall neutralizing antibody resistance
(Urbanowicz et al., 2015).

RATIONAL DESIGN OF AN HCV VACCINE

Approaches for HCV vaccine development have included
production of HCV E2 and E1E2 recombinant envelope proteins
and use of immuno-adjuvant systems to complex engineering
of viral vectors expressing multiple antigens. The rationale for
these approaches has been driven by a requirement to elicit
multiple broadly neutralizing antibodies to achieve sterilizing
immunity to prevent HCV infection and how best to achieve
such immunity. Extensive human and animal studies have been
performed with a recombinant genotype 1a E1E2 vaccine (Frey
et al., 2010; Ray et al., 2010; Wong et al., 2014; Logan et al., 2017).
Houghton and his colleagues showed that recombinant E1E2
proteins adjuvanted with an oil-in-water emulsion (MF59C) is
safe in humans (Frey et al., 2010) and elicits broadly neutralizing
antibodies in both humans and animals (Ray et al., 2010;
Wong et al., 2014), as defined by competition analyses of
immunized sera from goats and mice against well-established
broadly neutralizingMAbs (Wong et al., 2014; Logan et al., 2017).
The problem is that a substantial portion of the human antibody
responses to this vaccine is directed at the hypervariable region-1
on E2 (Ray et al., 2010) and these antibodies, while neutralizing,
are isolate-specific. Taken together, a design approach to direct
the antibody responses against conserved epitopes mediating
virus neutralization will be advantageous.

The correlation of host antibody response to HCV with viral
clearance and recent successes in structure-based vaccine design
for other viruses, such as HIV (Jardine et al., 2013; Correia
et al., 2014), RSV (McLellan et al., 2013), and influenza (Yassine
et al., 2015), suggest that a rationally designed vaccine that
elicits neutralizing antibody responses to conserved epitopes
is a viable route to an effective B cell based HCV vaccine.
Recently, several engineered E1, E2, and E1E2 antigens have been
described, including structure-based epitope designs (He et al.,
2015; Sandomenico et al., 2016; Pierce et al., 2017). Although
the conditions differed for assessing relative immunogenicity in
mice, further studies can define the correlates of the magnitude
of responses and breadth of protection by neutralization assays
for epitope-based and full-length protein-based antigens with
designs to minimize viral escape while exploiting the potential
Achilles heel of conserved envelope residues. The recent
development of an immune competent mouse model with an
HCV-related hepacivirus presents a possible means to evaluate
and compare such vaccine design strategies (Billerbeck et al.,
2017).

Given recent evidence of mobility of key E2 epitopes
associated targeted by neutralizing antibodies (Deng et al.,
2014; Li et al., 2015; Meola et al., 2015; Kong et al., 2016;
Vasiliauskaite et al., 2017), as noted above, stabilization of these
epitopes is an intriguing option for future vaccine design efforts,
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particularly in light of promising recent studies in this regard
for other viruses. Recent studies on engineering HIV SOSIP
gp140 trimers include designing a stabilized closed protein
conformation while decreasing exposure of non-neutralizing
epitopes (de Taeye et al., 2015), as well as generation of
new “hyperstable” SOSIP designs with engineered disulfide
bonds that elicit improved neutralizing antibodies (Torrents
de la Peña et al., 2017). Stabilized RSV F immunogens were
recently redesigned to further optimize their stability through
iterative structure-based design and experimental biophysical
and immunological characterization, yielding next-generation
RSV immunogens with markedly improved capacity to induce
neutralizing antibodies vs. the original designs (Joyce et al.,
2016). In that work, the authors noted that their structure-
based vaccine design paradigm to optimize antigenic structure
and stability “may have utility in the optimization of other
vaccine antigens”; HCV E2 would be one promising target in this
regard.

CONCLUSIONS

The medical burden of hepatitis C has decreased by the
introduction of effective antiviral therapies. However, control of
this insidious disease will require the successful development
of an effective preventative vaccine. To achieve this goal,
the complex interplay between virus and host during acute
infection that leads to spontaneous clearance needs to be
better understood to provide clues of protective immunity.
The criteria for what constitutes a successful immune response

leading to viral clearance in designing at vaccine that is broadly
cross protective across the genotypes and long lasting will
be the holy grail of such vaccine development efforts. Recent
insights from deep sequencing, antibody-antigen interactions,
structural biology, and immunogenicity studies provide the basis
for novel vaccine designs for this challenging target. While
accounting for the primary mechanisms of viral escape, namely
sequence variability within the viral envelope glycoproteins
including prominent decoy epitopes such as HVR1, immunogens
can be designed to enhance their capacity to induce potent
neutralizing antibodies to conserved epitopes on the viral
envelope. These approaches, combined with novel adjuvant
formulations capable of eliciting robust and long-lasting humoral
and cellular responses, will significantly advance vaccine
development efforts to successfully address this daunting medical
challenge.
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