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Fungi belonging to Fusarium genus can infect crops in the field and cause subsequent

mycotoxin contamination, which leads to yield and quality losses of agricultural

commodities. The mycotoxin zearalenone (ZEN) produced by several Fusarium species

(such as F. graminearum and F. culmorum) is a commonly-detected contaminant in

foodstuffs, posing a tremendous risk to food safety. Thus, different strategies have been

studied to manage toxigenic pathogens and mycotoxin contamination. In recent years,

biological control of toxigenic fungi is emerging as an environment-friendly strategy, while

Trichoderma is a fungal genus with great antagonistic potentials for controlling mycotoxin

producing pathogens. The primary objective of this study was to explore the potentials of

selected Trichoderma isolates on ZEN-producing F. graminearum, and the second aim

was to investigate the metabolic activity of different Trichoderma isolates on ZEN. Three

tested Trichoderma isolates were proved to be potential candidates for control of ZEN

producers. In addition, we reported the capacity of Trichoderma to convert ZEN into its

reduced and sulfated forms for the first time, and provided evidences that the tested

Trichoderma could not detoxify ZEN via glycosylation. This provides more insight in the

interaction between ZEN-producing fungi and Trichoderma isolates.

Keywords: mycotoxins, zearalenone (ZEN), Fusarium, biological control, Trichoderma, modified mycotoxins

INTRODUCTION

Mycotoxins are secondary metabolites produced by fungi with toxic effects on plants, animals
and human (Hussein and Brasel, 2001). Among them, zearalenone (ZEN) is a mycotoxin with
estrogenic potency, and commonly found in agricultural commodities globally (Nielsen et al.,
2014). ZEN is mainly synthesized by a variety of Fusarium species, such as F. graminearum,
F. culmorum, and F. crookwellense, which are plant pathogens capable of infecting crops and
causing crop diseases in the field (Zinedine et al., 2007; Gromadzka et al., 2008). Besides
ZEN, zearalanone (ZAN), α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL),
and β-zearalanol (β-ZAL) (Figure 1) are reduced derivatives of ZEN frequently detected in
contaminated cereal grains or cultures of ZEN-producing Fusarium species (Zinedine et al., 2007).

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02710
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02710&domain=pdf&date_stamp=2018-01-18
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:abwu@sibs.ac.cn
https://doi.org/10.3389/fmicb.2017.02710
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02710/full
http://loop.frontiersin.org/people/335544/overview
http://loop.frontiersin.org/people/335794/overview
http://loop.frontiersin.org/people/252542/overview
http://loop.frontiersin.org/people/446649/overview
http://loop.frontiersin.org/people/492435/overview
http://loop.frontiersin.org/people/253790/overview


Tian et al. Trichoderma Isolates for Controlling ZEN-Producer

As toxic xenobiotics for plants, ZEN, α-ZOL, and β-ZOL can
be bio-transformed into less toxic ZEN-14-glucoside (Z14G),
α-ZOL-14-glucoside (α-ZOL14G) and β-ZOL-14-glucoside (β-
ZOL14G) (Figure 1), which are common detoxification products
in plant defense. Furthermore, some fungi also possess the
capacity to convert ZEN into Z14G by conjugating endogenous
glucose (Kamimura, 1986). The structures of these glycosylated
mycotoxins were changed after modification, so they can’t be
detected by routine analysis, and they are termed as modified
mycotoxins (Berthiller et al., 2013).

Both ZEN and its reduced forms are stable compounds, which
exhibit hepatotoxic, hematotoxic, immunotoxic, and genotoxic
effects. In addition, ZEN-related mycotoxins can competitively
bind the estrogen receptors, causing alterations in genitals and
reproduction disorders, posing a threat to human and animals
health (Zinedine et al., 2007). To protect consumers, prevention
before harvest seems to be an effective strategy for mycotoxin
management (Jard et al., 2011; Tian et al., 2016a). Application
of antagonistic biological control agents for controlling the
toxigenic Fusarium spp., is a promising biological control
based approach to reduce ZEN contamination. As potential
antagonistic microbes, the genus Trichoderma has been widely
studied for their capabilities against plant pathogenic fungi, and
its biological control mechanisms mainly include faster growth
speed and antibiotic production to compete nutrients and living
space with pathogens, mycoparasitism mediated by producing
cell wall degrading enzymes, and the ability to induce plant’s
defense system (Benítez et al., 2004; Sellamani et al., 2016;
Tian et al., 2016a). Two Trichoderma isolates could effectively
decrease the amount of mycotoxin ZEN produced by Fusarium
spp. by a dual-culture assay (Gromadzka et al., 2009). In
addition, other studies showed that some Trichoderma isolates
also could inhibit mycotoxin deoxynivalenol (DON) production
of Fusarium spp. (Busko et al., 2008; Matarese et al., 2012;
Tian et al., 2016b). DON, a common type B trichothecene
mycotoxin (Cuomo et al., 2007), usually co-occurs with ZEN
in the foods and feeds (Molto et al., 1997; Castillo et al., 2002;
Döll and Dänicke, 2011; Pietsch et al., 2013; Kovalsky Paris et al.,
2014). Both DON and ZEN are frequently detected mycotoxins
with high contamination levels (Stepien and Chełkowski, 2010).
Recent work showed that DON could be bio-transformed
into its modified form deoxynivalenol-3-glucoside (D3G) by
Trichoderma isolates. D3G was generated in the defense of
plants after infected by DON-producing pathogens, and D3G
was regarded as a detoxification product of DON catalyzed by
UDP-glucosyltransferases (Poppenberger et al., 2003; Schweiger
et al., 2010; Li et al., 2015; Pasquet et al., 2016). Our recent
study reported the occurrence of D3G in metabolism of selected
Trichoderma isolates against DON producers (Tian et al., 2016b).
However, little is known about the metabolism of ZEN in
Trichoderma isolates. Thus, our particular interest was that
whether Trichoderma spp. also possess the capacity to glycosylate
ZEN into glycosylated forms for self-protection. Herein, the
antagonistic potentials of Trichoderma isolates against ZEN-
producing F. graminearum and the metabolism of ZEN in
Trichoderma isolates was investigated in this work. A targeted
LC-MS/MS method for simultaneous determination of ZEN and

its reduced forms (α-ZOL, β-ZOL, α-ZAL, β-ZAL, and ZAN)
and glycosylated forms (Z14G, α-ZOL14G, and β-ZOL14G) was
applied to explore the anti-toxigenic activity of antagonists and
ZEN metabolization in Trichoderma isolates. It was observed
that three Trichoderma isolates could effectively suppress the
mycelia spread and mycotoxin production of ZEN-producing
F. graminearum. In addition, results of ZEN-treated experiment
showed that the tested Trichoderma isolates could not detoxify
ZEN via glycosylation, but could convert ZEN to its reduced (α-
ZOL and β-ZOL) and sulfated metabolites (Z14S and ZOL14S).
As far as we know, this is the first report of the metabolic activity
of Trichoderma isolates on ZEN, which would provide more
insights in the interaction between mycotoxin ZEN producing
fungi and antagonistic Trichoderma isolates.

MATERIALS AND METHODS

Chemicals and Reagents
The mycotoxin standards of ZEN, α-ZOL, β-ZOL, α-ZAL, β-
ZAL, and ZAN were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The standards of Z14G, α-ZOL14G, and β-ZOL14G
were kindly provided by the Laboratory of Food Analysis, Ghent
University (Belgium). Methanol and acetonitrile (HPLC-grade)
were purchased from Merck (Darmstadt, Germany). Ultrapure
water (18.2 M�·cm) used in our experiments was obtained from
a Milli-Q System (Bedford, MA, USA). Cleanert MC clean-
up columns were purchased from Bonna-Agela Technologies
(Tianjin, China). Other chemicals were obtained from Aladdin
(Shanghai, China).

Fungal Isolates
ZEN-producing F. graminearum species were from the
Huazhong Agricultural University. Eight Trichoderma isolates
were used in this study: T. harzianum JF309, T. koningii
GIM3.137, T. harzianum GIM3.442, T. longibranchiatum
GIM3.534, T. harzianum Q710613, T. atroviride Q710251,
T. asperellum Q710682 and T. virens Q710925. All these
Trichoderma isolates could convert DON into D3G, as reported
in our previous work (Tian et al., 2016b).

Antagonistic Potentials of Trichoderma

Isolates on Growth and Mycotoxin
Production of F. graminearum F1
The dual-culture test was performed to examine the antagonistic
potentials of Trichoderma isolates for controlling ZEN-
producing F. graminearum as described before (Matarese et al.,
2012; Tian et al., 2016b). The mycelial disks (F. graminearum and
Trichoderma spp. combinations) from actively-growing colonies
were placed on a 9-cm diameter dish. In addition, a disk of
F. graminearumwas placed without disks of Trichoderma isolates
(control). The Fusarium-Trichoderma combinations, as well as
the controls were incubated at 25◦C for 2 weeks. To evaluate the
inhibition efficacy of Trichoderma isolates on mycelia growth of
F. graminearum F1, the radius of each F. graminearum colony
was measured to create growth curve as described in Matarese
et al. (2012), and then the data were subjected to analysis of
variance of regression to compare the slope of growth curves
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FIGURE 1 | Chemical structures of ZEN, α-ZOL, β-ZOL, ZAN, α-ZAL, β-ZAL, Z14G, α-ZOL14G, and β-ZOL14G.

of the pathogen in the presence/absence of tested Trichoderma
isolates.

Treatment of Trichoderma Isolates with
ZEN
The tested Trichoderma isolates were activated on PDA medium
at 25◦C. Then, a mycelial disk of each activated Trichoderma
strain was moved from the edge of the colony, and inoculated
in a new dish containing of 10ml PDAmedium mixed with ZEN
at different concentrations (0, 0.5, 1, 2, and 4µg/ml). Pure ZEN
was added into the PDA medium as described before (Utermark
and Karlovsky, 2007). The mycelial disk of Trichoderma isolates
placed on PDA medium without mycotoxin was as control.
The dishes were incubated at 25◦C, and growth radius of the
tested Trichoderma isolates were measured two times a day
until the mycelia of tested strains spread over the whole dish.
Regression analysis of the growth data was performed to evaluate
the inhibitory effects of ZEN on mycelial growth of Trichoderma
isolates.

Mycotoxin Extraction
After incubation, the PDA medium and mycelia in the dish
were dried and ground into powder for preparation, followed
by adding 10ml of ACN/water/formic acid (84/15.9/0.1, v/v/v)
solution. The mixture was then shaken for 10min, and subjected
to ultrasonication for 30min. Next the mixture was centrifuged
at 4,000 rpm for 30min. 1ml of the supernatant was passed
through a Cleanert MC column for clean-up by following the
manufacturer instructions. Thereafter, the purified mixture was
moved into a new tube, and evaporated to dryness by nitrogen
gas at 45◦C. Finally, the residue was re-dissolved with 1mL of
methanol/water (1/1, v/v) and filtered through a 0.22-µm filter
for LC-MS/MS analysis.

Mycotoxin Analysis by LC-MS/MS
Mycotoxins were determined on an Accela 1250 UPLC system
(Thermo Fisher Scientific, San Jose, CA, USA) coupled to a TSQ
VantageTM (Thermo Fisher Scientific, San Jose, CA, USA) triple
stage quadrupole mass spectrometer. Separation was performed
on an Agilent Extend-C18 column (100mm × 4.6mm, 3.5µm)
at 30◦C with a flow rate of 350 µL/min. The mobile phase
consisted of water containing 5mM ammonium acetate (A) and
methanol (B). The gradient was as follows: 0min 20% B, 1min
20% B, 2min 50% B, 8min 100% B, 10min 100% B, 13min 20%
B, 15min 20% B. The injection volume was 10 µL.

For MS/MS analysis, the parameters were set as follows:
interface voltage of 2.5 kV (ESI−); desolvation temperature
of 270◦C; nebulizing gas (N2) pressure of 50 psi and drying
gas (N2) pressure of 25 psi; heat block temperature of 300◦C.
The quantitation and identification of target mycotoxins were
performed in selected reaction monitoring (SRM) mode. The
optimized MS/MS parameters for each analyte are listed in
Table 1. XcaliburTM software (Thermo Fisher Scientific, San Jose,
CA, USA, 2011) was used for data processing.

Liquid Chromatography High Resolution
Mass Spectrometry (LC-HRMS) Analysis of
ZEN Bio-transformation Products
LC-HRMS analysis was conducted on a UHPLC system (1290
series, Agilent Technologies, Santa Clara, CA, USA) coupled to
a quadruple time-of-flight (Q-TOF) mass spectrometer (Agilent
6530 Q-TOF, Agilent Technologies, Santa Clara, CA, USA).
Chromatographic separation was performed on the Agilent
Extend-C18 column. The mobile phase consisted of water
containing 5mM ammonium acetate (A) and methanol (B), and
the gradient elution program was: 0min 20% B, 1min 20% B,
2min 50% B, 8min 100% B, 10min 100% B, 13min 20% B,
15min 20% B.
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TABLE 1 | MS/MS parameters for detected mycotoxins in SRM mode.

Mycotoxin Precursor ion (m/z) Retention

time (min)

Product ion for

quantification (m/z)

Collision

energy (ev)

Product ion for

identification (m/z)

Collision

energy (ev)

ZEN 317.2 [M-H]− 8.60 175.5 26 131.5 32

ZAN 319.1 [M-H]− 8.44 205.5 23 160.5 24

α-ZOL 319.3 [M-H]− 8.29 160.5 22 130.5 33

β-ZOL 319.3 [M-H]− 7.73 160.5 22 130.5 33

α-ZAL 321.3 [M-H]− 8.11 277.5 24 303.5 23

β-ZAL 321.3 [M-H]− 7.45 277.5 23 303.5 24

Z14G 479.0 [M-H]− 6.78 317.5 20 175.6 45

α-ZOL14G 481.0 [M-H]− 6.61 319.6 18 275.5 37

β-ZOL14G 481.0 [M-H]− 5.78 319.6 23 275.5 36

FIGURE 2 | Colony morphology of F. graminearum F1 in co-culture assay after incubation on the potato dextrose agar (PDA). F. graminearum F1 grew alone (A);

F. graminearum 5035 grew against T. harzianum JF309 (B); T. koningii GIM3.137 (C); T. harzianum GIM3.442 (D); T. longibranchiatum GIM3.534 (E); T. harzianum

Q710613 (F); T. atroviride Q710251 (G); T. asperellum Q710682 (H); and T. virens Q710925 (I).
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The parameters of HRMS were set as follows: sheath gas (N2)
temperature, 350◦C, sheath gas flow, 11 L/min; dry gas (N2)
temperature, 350◦C, dry gas flow, 11 L/min; capillary voltage,
3.8 kV in negative mode; fragmentor, 130V; and nebulizer
pressure, 40 psi. Agilent software MassHunter B.06.00 (Agilent
Technologies, Santa Clara, CA, USA, 2012) was used for data
processing.

Statistical Analysis
All the experiments were set up in triplicates. Data were
presented as the mean ± standard error of the mean (SEM),
and data were subjected to two-tailed student’s t-test analysis
or regression analysis with Graphpad Prism 5.01 (GraphPad
Software, San Diego, CA, USA, 2007).

RESULTS

Effect of Trichoderma Isolates on Growth
of ZEN-Producing F. graminearum F1 in
Co-culture Assay
Trichoderma isolates and F. graminearum F1 were co-cultured
on PDA medium. These antagonists rapidly occupied the living
space, and inhibited the mycelial spread of F. graminearum
F1 due to their antagonistic activities (Figure 2). Growth
inhibition is the main pattern for antagonists to manage the
pathogen, and we found that seven of the tested Trichoderma
isolates were able to significantly suppress the mycelial growth
of F. graminearum F1 (Table 2). Furthermore, T. harzianum
Q710613, T. atroviride Q710251 and T. asperellum Q710682
displayed more effective inhibitory effects, as we observed
that these three Trichoderma isolates overgrew the colony of
F. graminearum F1, and the mycelium of Fusarium in these
pathogen-antagonist combinations were restricted to extend
vertically (Figure 2). These results showed that T. harzianum
Q710613, T. atroviride Q710251, and T. asperellum Q710682
were more effective suppressors for controlling the mycelia
growth of F. graminearum F1.

Effect of Trichoderma Isolates on
Mycotoxin Production of ZEN-Producing
F. graminearum F1 in Co-culture Assay
To investigate the effect of Trichoderma isolates on ZEN-related
mycotoxins production of F. graminearum, and verify whether
Trichoderma could glycosylate ZEN into glycosylated forms.
ZEN and its reduced derivatives (α-ZOL, β-ZOL, α-ZAL, β-
ZAL, and ZAN), as well as three glycosylated mycotoxins (Z14G,
α-ZOL14G, and β-ZOL14G), were monitored in this work.

F. graminearum F1 used in this dual-culture assay could
produce 1562µg/g ZEN, 27µg/g ZAN, 2.6µg/g α-ZOL, and
15µg/g β-ZOL on PDA medium (Figure 3). ZEN was the
major mycotoxin produced by the tested F. graminearum.
When F. graminearum F1 grew against antagonistic Trichoderma
isolates, the amount of mycotoxins produced by F. graminearum
F1 was inhibited because of the antagonistic activity of
Trichoderma. The inhibition rate of ZEN production ranged

TABLE 2 | The inhibitory effect of antagonistic Trichoderma isolates on mycelial

growth of F. graminearum F1 in dual culture.

Combination Regression parameters of growth curves

a P P slope

FG F1 vs. T. harzianum JF309 Gc 0.49 <0.0001 <0.0001

Gt 0.37 <0.0001

FG F1 vs. T. koningii GIM3.137 Gc 0.49 <0.0001 NS

Gt 0.45 <0.0001

FG F1 vs. T. harzianum

GIM3.442

Gc 0.49 <0.0001 <0.0001

Gt 0.40 <0.0001

FG F1 vs. T. longibranchiatum

GIM3.534

Gc 0.49 <0.0001 <0.0001

Gt 0.42 <0.0001

FG F1 vs. T. harzianum

Q710613

Gc 0.49 <0.0001 <0.0001

Gt 0.35 <0.0001

FG F1 vs. T. atroviride Q710251 Gc 0.49 <0.0001 <0.0001

Gt 0.33 <0.0001

FG F1 vs. T. asperellum

Q710682

Gc 0.49 <0.0001 <0.0001

Gt 0.32 <0.0001

FG F1 vs. T. virens Q710925 Gc 0.49 <0.0001 <0.0001

Gt 0.40 <0.0001

The radial growth rate of F. graminearum F1 facing antagonists on PDAmedium compared

with the radial growth rate of the control.

a, slope of the growth curve of F. graminearum (growth rate, mm/hour).

P, significance of regression line.

P slope, significance of the difference between slopes of the pathogen F1 in the presence

(Gt) and absence (Gc) of tested Trichoderma isolates.

NS, no significant difference.

from 9 to 97%, for ZAN ranged from 22 to 98%, for α-
ZOL ranged from 31 to 87%, and for β-ZOL ranged from
34 to 89%. Among the tested isolates, T. koningii GIM3.137
exhibited weaker inhibitory effects on the mycotoxin production
of F. graminearum F1 (Figure 3). While T. harzianum Q710613,
T. atroviride Q710251, and T. asperellum Q710682 exhibited a
better efficiency in inhibitingmycotoxin production of Fusarium.
When co-cultured with these three isolates, the amount of ZEN
and ZAN produced by F. graminearum F1 was inhibited by
over 93%, and the amount of α-ZOL and β-ZOL produced by
F. graminearum F1 was inhibited by over 80%.

Unexpectedly, no glycosylated forms of ZEN and ZOL were
observed when Trichoderma isolates were co-cultured with
ZEN-producing Fusarium. The experiment, as described below,
pinpointed the treatment of Trichoderma isolates with ZEN, and
analyzed the metabolites to confirm the obtained result.

Analysis of the Metabolites When
Trichoderma Grew on PDA Medium
Amended with Pure Mycotoxin ZEN
The Inhibition of ZEN on Growth of Trichoderma
It has been reported that ZEN could inhibit the growth of
some filamentous fungi, which help ZEN-producing Fusarium
species compete with other microbes, so ZEN is regarded as a
contributive factor for ZEN-producers (Utermark and Karlovsky,
2007). Firstly, we evaluated the inhibitory effects of ZEN on
growth of various Trichoderma isolates, as the toxic effects of
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FIGURE 3 | The inhibitory effect of antagonistic Trichoderma isolates on mycotoxin production (ZEN, A; ZAN, B; α-ZOL, C; and β-ZOL, D) of F. graminearum F1 in

co-culture assay. From left to right: F. graminearum F1 grew alone, and grew against T. harzianum JF309, T. koningii GIM3.137, T. harzianum GIM3.442,

T. longibranchiatum GIM3.534, T. harzianum Q710613, T. atroviride Q710251, T. asperellum Q710682, and T. virens Q710925. *P < 0.05, significantly different from

control.

ZEN have not yet been elucidated in the genus Trichoderma.
These effects were evaluated by comparing the mycelia growth
rate of Trichoderma spp. when exposed to different ZEN
concentrations (0, 0.5, 1, 2, and 4µg/ml) on PDA medium.
Results demonstrated that ZEN exhibited significant fungal toxic
effects on Trichoderma isolates: the mycelia growth of five
isolates were significantly inhibited by 1µg/ml of ZEN. While
for T. longibranchiatum GIM3.534, T. atroviride Q710251 and
T. asperellumQ710682, the inhibitory effects were observed when
treated with 2µg/ml of ZEN (Figure 4).

Subsequently, all the Trichoderma isolates treated with
2µg/ml ZEN were selected for further study of the metabolic
activity of Trichoderma isolates on ZEN. The whole medium and
mycelia were collected and prepared for analysis.

Analysis of the Metabolites by LC-MS/MS
The results revealed that glycosylated mycotoxins (Z14G, α-
ZOL14G, and β-ZOL14G) were not detected when Trichoderma
isolates were cultured with ZEN. This was in accordance with
the results of dual-culture assay. Interestingly, the reduced forms
of ZEN (α-ZOL and β-ZOL) were detected in the samples

(Figure 5). T. harzianum JF309, T. harzianum GIM3.442,
T. harzianum Q710613, T. atroviride Q710251, T. asperellum
Q710682, and T. virens Q710925 could metabolized ZEN into α-
ZOL and β-ZOL (Figures 5B–G). Among them, T. harzianum
JF309, T. harzianum GIM3.442, T. virens Q710925 converted
more α-ZOL than β-ZOL, while T. atroviride Q710251 and
T. asperellum Q710682 converted more β-ZOL than α-ZOL
(Figure 6). For T. koningii GIM3.137 and T. longibranchiatum
GIM3.534, only α-ZOL was observed in the ZEN-treated
experiment (Figures 5H,I).

Analysis of Metabolites by LC-HRMS
Besides glycosylation, sulfation is another detoxification process
for different mycotoxins in plants and fungi. Zearalenone-14-
sulfate (Z14S) was found to be a metabolite in Arabidopsis
thaliana, Rhizopus spp. and Aspergillus spp. when exposed to
ZEN, and zearalenol-14-sulfate (ZOL14S) was observed as a
fungal metabolite in ZEN-treated trial (Berthiller et al., 2007;
Brodehl et al., 2014). However, there were no reference standards
(Z14S and ZOL14S) available for quantitative analysis by
LC-MS/MS. For detection of sulfated forms of ZEN in prepared
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FIGURE 4 | The effects of ZEN on mycelial growth of Trichoderma isolates: T. harzianum JF309 (A), T. koningii GIM3.137 (B), T. harzianum GIM3.442 (C),

T. longibranchiatum GIM3.534 (D), T. harzianum Q710613 (E), T. atroviride Q710251 (F), T. asperellum Q710682 (G), and T. virens Q710925 (H). The tested

Trichoderma isolates were inoculated on PDA amended with ZEN at different concentrations (0.5, 1, 2, and 4µg/ml), and the control was inoculated on PDA without

ZEN. *P < 0.01, significantly different from control.

FIGURE 5 | SRM chromatograms of α-ZOL and β-ZOL in standard solution (10 ng/ml) (A) and in Trichoderma samples after 2µg/ml ZEN treatment (B–I). The red line

(m/z 319.3 > m/z 160.5) and blue line (m/z 319.3 > m/z 160.5) represent SRM traces for α-ZOL and β-ZOL, and the chromatographic retention time was used to

distinguish the two ZOL isomers.

samples of Trichoderma treated with 2µg/ml ZEN, a targeted
method for screening modified mycotoxins was applied on the
basis of LC-HRMS (Righetti et al., 2016). The negative precursor
ions m/z 317.1394, 319.1551, 397.0963, and 399.1119 (theoretical
m/z of [ZEN-H]−, [ZOL-H]−, [Z14S-H]−, and [ZOL14S-H]−,

respectively) were mass-isolated by the quadruple mass filter, and
then dissociated and detected by the TOF analyzer. The precursor
ion m/z 397.0963 was observed in all samples and dissociated
into a fragment of 317.14 which corresponds to the m/z of
[ZEN-H]−. In the sample of T. asperellum Q710682, precursor
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ion m/z 399.1119 was found, and could yield a fragment of m/z
319.16 which corresponds to the m/z of [ZOL-H]− (Table 3).
This could be explained by the fact that sulfated metabolites yield
fragments [Z14S-SO3-H]− and [ZOL14S-SO3-H]− after losing
a sulfonic group (SO−

3 ). In addition, the other major fragments
of precursor ions m/z 397.0963 and 399.1119 were in agreement
with [ZEN-H]− (m/z, 317.1394) and [ZOL-H]− (m/z, 319.1551),
respectively (Table 3). The fragments m/z 317.14, 175.07 and
131.09 for [Z14S-H]− and the fragments m/z 319.15, 275.20,
and 174.12 for [ZOL14S-H]− were also reported before (Brodehl
et al., 2014; Binder et al., 2017). In conclusion, these results
revealed the presence of Z14S and ZOL14S in Trichoderma
metabolism with ZEN treatment. For the first time, we reported

FIGURE 6 | Concentrations of the metabolites (α-ZOL and β-ZOL) detected in

samples of 2µg/ml ZEN-treated Trichoderma isolates on PDA medium.

that antagonistic Trichoderma isolates possess the detoxification
capability to sulfate ZEN, and these sulfated forms would be
quantified when reference standards are available in future.

DISCUSSION

The effective methods to manage mycotoxin contamination
include application of antagonistic microbes to prevent
mycotoxin production before harvest and using detoxification
agents to treat contaminated foodstuffs (Atanasova-Penichon
et al., 2016; Perczak et al., 2016; De Saeger and Logrieco,
2017). Due to its potentials to control plant pathogens,
the non-toxigenic Trichoderma genus has been intensively
investigated (Benítez et al., 2004). In the present study,
we co-cultured Trichoderma isolates with ZEN-producing
F. graminearum F1 to assess the inhibition and detoxification
capacities of tested Trichoderma isolates T. harzianum Q710613,
T. atroviride Q710251, T. asperellum Q710682 displayed
promising antagonistic potentials to control the growth and
mycotoxin production of ZEN-producing F. graminearum F1.
In order to exhaustively access their antagonistic potentials,
these Trichoderma isolates were dual cultured with other
ZEN-producing Fusarium species in the later experiment.
These antagonists exhibited prominent inhibitory actions on
both mycelia spread (Figure S1) and mycotoxin production
(Figure S2) of the ZEN-producers. Taken together, our recent
progress indicates that the three candidates are potential
biological control antagonists to combat toxigenic fungi, which
deserve attention and further analysis of their ability to control
disease development in field experiments.

TABLE 3 | Summary of metabolites in samples of ZEN-treated Trichoderma isolates on PDA medium analyzed by LC-HRMS.

Target compound m/z [M-H]− Major fragments

Theoretical m/z Observed m/z

Mycotoxin standard ZEN 317.1394 317.1386 289.15, 273.16, 175.07, 149.10, 131.09

α-ZOL, β-ZOL 319.1551 319.1547 291.21, 275.20, 257.26, 174.12

T. harzianum JF309 Z14S 397.0963 397.0953 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. koningii GIM3.137 Z14S 397.0963 397.0949 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. harzianum GIM3.442 Z14S 397.0963 397.0954 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. longibranchiatum GIM3.534 Z14S 397.0963 397.0948 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. harzianum Q710613 Z14S 397.0963 397.0950 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. atroviride Q710251 Z14S 397.0963 397.0952 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

T. asperellum Q710682 Z14S 397.0963 397.0953 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 399.1112 319.15, 291.21, 275.20, 257.26, 174.12

T. virens Q710925 Z14S 397.0963 397.0946 317.14, 289.15, 273.16, 175.07, 149.10, 131.09

ZOL14S 399.1119 ND ND

ND, Not detected.
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FIGURE 7 | The proposed metabolic detoxification process of mycotoxin ZEN in Trichoderma isolates.

Plants possess the capacity to detoxify phytotoxic compounds
into low-toxic products after infected by toxigenic fungi.
Mycotoxins are toxic xenobiotics for plants, which can be
conjugated to polar metabolites in detoxification reactions
of plants, generating low-toxic metabolites with structure
changed (Berthiller et al., 2016). The detoxification mechanisms
of plants against mycotoxins mainly include three phases:
transformation phase, conjugation phase and compartmentation
phase (Berthiller et al., 2007). Both glycosylation and sulfation are
common processes in detoxification reactions of different plants
against mycotoxins (Lemmens et al., 2016). It has been showed
that DON and ZEN can be bio-transformed into glycosylated and
sulfated forms in the detoxification process of plants (Berthiller
et al., 2007). The UDP-glucosyltransferase (UGT) capable of
converting DON into D3G was firstly identified in Arabidopsis
thaliana (Poppenberger et al., 2003), and then the first UGT
capable of converting ZEN into Z14G was also identified in
Arabidopsis thaliana (Poppenberger et al., 2006). With regard to
DON, our previous work proved that Trichoderma spp. possess
the ability to metabolize DON into its glycosylated form (Tian
et al., 2016b). Consequently, we explored whether Trichoderma
isolates possess the ability to modify mycotoxin ZEN in this
work. Not similar to plants, the tested Trichoderma isolates could
not bio-transform ZEN into its glycosylated forms, but could
convert ZEN into its reduced and sulfated form(s) (Figure 7).
Evidence was provided that Trichoderma isolates were able to
detoxify ZEN via sulfation when competing with ZEN-producing
F. graminearum.

LC-MS/MS is a useful tool for simultaneous determination
of different co-existing mycotoxins when standards are available
(Righetti et al., 2016). However, it is still challenging to
identify and quantify modified mycotoxins by using LC-
MS/MS due to the limited commercial availabilities of modified
mycotoxin standards. The HRMS has the advantage of providing
accurate ion mass-to-charge that can be used for structure
elucidation of compounds in a targeted or untargeted strategy

(Righetti et al., 2016), so it has become a promising tool
for analyzing the predicted metabolites without standards (De
Boevre et al., 2016; Righetti et al., 2016). In our current
work, the HRMS was used to obtain accurate mass and
fragmentation patterns of analytes, and the sulfated metabolites
(Z14S and ZOL14S) produced by Trichoderma isolates were
discovered. This contributes to further investigations of the
defense mechanism of biological control agents against toxigenic
fungi.
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